二次根式练习题(初二数学)

合集下载

八年级二次根式练习题及答案

八年级二次根式练习题及答案

一、单选题1、当x≥3时,化简二次根式√(3−x)2的结果是( ) A. 3-x B. 3+x C. x-3 D. -3-x参考答案: C 【思路分析】考查含字母的根式化简。

本考点主要是化简含字母的二次根式,熟练掌握二次根式的性质是解决问题的关键。

【解题过程】 解:∵x≥3, ∴3-x≤0,∴√(3−x)2=|3-x|=x-3。

故选C 。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2、比较二次根式的大小:2−√3( )√3−√2。

A. < B. > C. = D. ≤参考答案: B 【思路分析】先将两数分母有理化,而后再利用分子进行比较,都为正时分子大的数大,都为负时分子大的数小,正数永远大于负数。

【解题过程】解:2−√3=2+√3>0,√3−√2=√3+√2>0,∴2+√3>√3+√2∴12−√3>1√3−√2故选B 。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、比较二次根式的大小:√15−√14( )√13−√12 A. < B. >C. =D. ≤参考答案: A 【思路分析】此题考查运用分子有理化法对二次根式大小的比较,运用分子有理化法时需注意:都是正数时分母大的,原二次根式反而小。

【解题过程】先将两数分子有理化,然后比较分母。

都是正数时分母大的,原二次根式小。

解:√15−√14=√15+√14>0, √13−√12=√13+√12>0, ∵√15+√14>√13+√12, ∴√15+√14<√13+√12 ∴√15−√14<√13−√12 故选A 。

八年级数学下册《二次根式》练习题带答案

八年级数学下册《二次根式》练习题带答案

八年级数学下册《二次根式》练习题班级:__________ 座号:__________ 姓名:__________________ 成绩:___________一、选择题(每小题4分,共24分)1.二次根式1-a 中,字母a的取值范围是…………………………………………()A.a<1 B.a≤1 C.a≥1 D.a>12.下列与 2 是同类二次根式的是……………………………………………………()A. 3 B.12 C.8 D. 2 -13.下列计算正确的是……………………………………………………………………()A. 2 × 3 = 6 B. 2 + 3 = 5 C.8 =4 2 D. 4 - 2 = 24.若(3-b)2=3-b,则…………………………………………………………………()A.b>3 B.b<3 C.b≥3 D.b≤35.下列根式中不是最简二次根式的是…………………………………………………()A.10 B.8 C. 6 D. 26.已知12-n 是正整数,则实数n的最大值为………………………………………()A.12 B.11 C.8 D.3二、填空题(每题3分,共36分)7.使式子4-x 无意义的x取值的是______________;8.计算:(6)2=____________;9.化简:81×49 =______________;10.化简:153=_________;11.比较大小:-32___________-2 3 ;12.写出一个无理数,使它与32的积为有理数_____________;13.若x-23-x=x-23-x成立,则x满足________________;14.已知一个正数的平方根是2x-6和x+3 ,则这个数是___________;15.如果最简二次根式3a-3 与7-2a 是同类二次根式,那么a的值是________;16.已知a、b为两个连续整数,且a<7<b,则a+b=_________;17.把二次根式313中根号外的因数移到根号内,结果是______________;18.观察并分析右边的数据,寻找规律:0,6,3,23,15,32,…,那么第10个数据应是_____________。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

二次根式初二练习题及答案

二次根式初二练习题及答案

二次根式初二练习题及答案一、选择题1. 将下列二次根式化简,得出最简形式:a) $\sqrt{8}$b) $\sqrt{75}$c) $\sqrt{27}$d) $\sqrt{50}$A) $2\sqrt{2}$ B) $3\sqrt{5}$ C) $6\sqrt{3}$ D) $5\sqrt{2}$2. 根据题意,判断下列等式是否成立:a) $\sqrt{16} = 4$b) $\sqrt{82} = 9$c) $\sqrt{5^2} = 5$d) $\sqrt{11^2} = -11$A) 是 B) 否3. 将下列二次根式化成标准形式:a) $3\sqrt{2} + \sqrt{8}$b) $5\sqrt{3} - 2\sqrt{12}$c) $4\sqrt{5} + 2\sqrt{20}$d) $2\sqrt{3} - 3\sqrt{6}$A) $5\sqrt{2}$ B) $3\sqrt{3}$ C) $6\sqrt{5}$ D) $-3\sqrt{3}$4. 计算:a) $\sqrt{25} + \sqrt{9}$b) $2\sqrt{49} - \sqrt{64}$c) $3\sqrt{36} + 4\sqrt{16}$d) $5\sqrt{81} - 2\sqrt{64}$A) 20 B) 4 C) 12 D) 85. 填空:a) $\sqrt{4} =$ ________b) $\sqrt{100} =$ ________c) $\sqrt{121} =$ ________d) $\sqrt{144} =$ ________A) 2 B) 10 C) 11 D) 12二、解答题1. 将下列各式化简为最简形式:a) $\sqrt{18}$b) $\sqrt{32}$c) $\sqrt{50}$d) $\sqrt{98}$2. 简化下列二次根式:a) $2\sqrt{27} - 3\sqrt{48}$b) $5\sqrt{15} + 3\sqrt{20}$c) $\sqrt{45} - 2\sqrt{12}$d) $4\sqrt{80} + 2\sqrt{45}$三、综合运用1. 解方程:$2x^2 - 18 = 0$2. 一个正方形的边长为$x$,则它的对角线长为多少?3. 某正方形面积等于某长方形面积的五分之一,且长方形的宽为$y$,则长方形的长是多少?四、答案选择题答案:1. A) $2\sqrt{2}$ 2. A) 是 3. B) $3\sqrt{3}$ 4. C) 12 5. A) 2解答题答案:1. a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{2}$ d) $7\sqrt{2}$2. a) $\sqrt{6}$ b) $4\sqrt{5}$ c) $\sqrt{45} - \sqrt{8}$ d) $6\sqrt{5} + 3\sqrt{2}$三、综合运用答案1. 解方程:$x = 3$ 或 $x = -3$2. 对角线长为$x\sqrt{2}$3. 长方形的长为$5y$通过以上练习题的训练,相信同学们对初二阶段的二次根式有了更深的理解和掌握。

【初二数学】二次根式练习题(共4页)

【初二数学】二次根式练习题(共4页)

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( ) A .m≤3 B .m <3 C .m≥3 D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个5.化简二次根式352⨯-)(得 ( ) A .35- B .35 C .35± D .306.对于二次根式92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是3 7.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅baa b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216acb =_________________. 17.当a=3时,则=+215a ___________.18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -. 20.(12分)计算:⑴))((36163--⋅-; ⑵63312⋅⋅; ⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-. 21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..;⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式:⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案: 一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A . 二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。

八年级上册数学二次根式练习题

八年级上册数学二次根式练习题

《二次根式》练习题一1.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤2.下列运算结果正确的是()A.B.C.(﹣)2=2D.3.下列式子是最简二次根式的是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.−√0.75B.14√63C.13√101D.√155.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:56.计算÷3×的结果正确的是()A.1B.2.5C.5D.67.下列整数中,与最接近的是()A.﹣1B.0C.1D.28.已知a<0,b≠0,化简二次根式的结果是()A.a B.﹣a C.a D.﹣a9.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如2 +1是型无理数,则(﹣)2属于无理数的类型为()A.型B.型C.型D.型10.已知y=x+5﹣,当x分别取1,2,3,…,2021时,所对应y值的总和是()A.16162B.16164C.16166D.1616811.如图,∠MON=90°,已知△ABC中,AC=BC=10,AB=12,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,点A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为()A.12.5B.13C.14D.15《二次根式》练习题二12.下列4个数:0.,,π﹣3.14,,其中无理数有个.13.若使代数式有意义,则x的取值范围是.14.计算的结果是.15.计算•(a≥0,b≥0)=.16.计算×÷2=.17.计算:(3+2)(3﹣2)=.18.若成立,则x满足的条件为.19.若=2﹣x,则实数x满足的条件是.20.设a、b、c是△ABC的三边的长,化简的结果是.21.若|2020﹣m|+=m,则m﹣20202=.22.计算:(1)++|1﹣|(2)3×÷223.计算:(1)÷(2)÷3×24.计算:•(﹣)÷(a>0)25.已知a、b满足,求的平方根.《二次根式》练习题三26.如图,四边形ABCD中,∠A=90°,AB=AD=3,BC=10,CD=8,求四边形ABCD 的面积.27.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD.28.求+的值.解:设x=+,两边平方得:x2=()2+()2+2=3++3﹣+4=10∴x=±∵+>0,∴+=请利用上述方法,求+的值.29.先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简.经过思考,小张解决这个问题的过程如下:①=②=③=④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简①;②30.如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB 的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为 .(直接写出结果)参考答案练习题一1.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤【解答】解:是二次根式的有①③⑤;②中被开方数小于0无意义,④是三次根式.故选:B.2.下列运算结果正确的是()A.B.C.(﹣)2=2D.【解答】解:A:∵=4,∴A选项不符合题意;B:∵==3,∴B选项不符合题意;C:∵(﹣)2=2,所以C选项符合题意;D:∵,所以D选项不符合题意.故选:C.3.下列式子是最简二次根式的是()A.B.C.D.【解答】解:A.=2,因此选项A不符合题意;B.=,因此选项B不符合题意;C.==,因此选项C不符合题意;D.的被开方数是整数,且不含有能开得尽方的因数,因此是最简二次根式,因此选项D符合题意;故选:D.4.下列二次根式中,最简二次根式是()A.−√0.75B.14√63C.13√101D.√15【解答】解:最简二次根式的条件:①被开方数的因式或因数的指数小于2;②被开方数的因数是整数,因式是整式.A、D不符合上述条件②,不是最简二次根式;B、不符合上述条件①,不是最简二次根式.故选C.5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC 是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.6.计算÷3×的结果正确的是()A.1B.2.5C.5D.6【解答】解:÷3×=3÷3×=×=1,故选:A.7.下列整数中,与最接近的是()A.﹣1B.0C.1D.2【解答】解:∵4<5<9,∴2<<3,∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∴1.2﹣1<1.3,∴与最接近的是1.故选:C.8.已知a<0,b≠0,化简二次根式的结果是()A.a B.﹣a C.a D.﹣a【解答】解:因为a<0,b≠0,所以,故选:B.9.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如2+1是型无理数,则(﹣)2属于无理数的类型为()A.型B.型C.型D.型【解答】解:(﹣)2=6﹣2××+2=﹣4+8,属于型无理数,故选:B.10.已知y=x+5﹣,当x分别取1,2,3,…,2021时,所对应y值的总和是()A.16162B.16164C.16166D.16168【解答】解:y=x+5﹣|x﹣3|,当x≤3时,∴y=x+5+x﹣3=2x+2,当x>3时,∴y=x+5﹣(x﹣3)=x+5﹣x+3=8,∴y值的总和为:4+6+8+8+8+……+8=4+6+8×2019=16162,故选:A.11.如图,∠MON=90°,已知△ABC中,AC=BC=10,AB=12,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,点A随之在边OM上运动,△ABC的形状保持不变,在运动过程中,点C到点O的最大距离为()A.12.5B.13C.14D.15【解答】解:取AB的中点D,连接CD,如图所示:∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=AB=6,∴CD===8,连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=6,∴OD+CD=6+8=14,即点C到点O的最大距离为14,故选:C.练习题二12.下列4个数:0.,,π﹣3.14,,其中无理数有2个.【解答】解:0.,,π﹣3.14,,其中无理数有π﹣3.14,,一共2个.故答案为:2.13.若使代数式有意义,则x的取值范围是x≤2且x≠0.【解答】解:由题意得:2﹣x≥0且x≠0,解得:x≤2且x≠0,故答案为:x≤2且x≠0.14.计算的结果是3.【解答】解:原式==3,故答案为:3.15.计算•(a≥0,b≥0)=6a.【解答】解:•(a≥0,b≥0)==6a.故答案为:6a.16.计算×÷2=3.17.计算:(3+2)(3﹣2)=1.【解答】解:原式=32﹣(2)2=9﹣8=1.故答案为:1.18.若成立,则x满足2≤x<3.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.19.若=2﹣x,则实数x满足的条件是x≤2.20.设a、b、c是△ABC的三边的长,化简的结果是2b﹣2a.【解答】解:原式=|a﹣b﹣c|﹣|a﹣b+c|=﹣a+b+c﹣a+b﹣c=2b﹣2a,故答案为:2b﹣2a.21.若|2020﹣m|+=m,则m﹣20202=2021.【解答】解:由题意得:m﹣2021≥0,解得:m≥2021,∵|2020﹣m|+=m,∴m﹣2020+=m,∴=2020,∴m﹣2021=20202,则m﹣20202=2021,故答案为:2021.22.计算:(1)++|1﹣|【解答】解:原式=3﹣2﹣1+=.计算:(2)3×÷2.【解答】解:原式=(3×÷2)==.23.计算:(1)÷(2)÷3×【解答】(1);(2).24.计算:•(﹣)÷(a>0).【解答】解:原式====.25.已知a、b满足,求的平方根.【解答】解:由题意知:,∴a2﹣4=0,∴a=±2,又a﹣2≠0,∴a=﹣2,当a=﹣2时,b=﹣1,∴===2,的平方根的平方根为±.练习题三26.如图,在四边形ABCD中,∠A=90°,AB=AD=3,BC=10,CD=8,求四边形ABCD的面积.【解答】解:连接BD,∵∠A=90°,AB=AD=3,∴BD===6,∵BC=10,CD=8,∴BD2+CD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴四边形ABCD的面积S=△ABD+S△BDC==+=9+24=33.27.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD.【解答】解:(1)证明:∵∠ABC=∠EBD=90°,∴∠ABD+∠CBD=∠ABD+∠ABE,∴∠CBD=∠ABE,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴∠EAB=∠BAC,∴AB平分∠EAC;(2)答案:.28.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.【解答】解:设x=+,两边平方得:x2=()2+()2+2,即x2=4++4﹣+6,x2=14∴x=±.∵+>0,∴x=29.先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简.经过思考,小张解决这个问题的过程如下:①=②=③=④在上述化简过程中,第④步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简①;②.【解答】解:(1)①=②=③=||=.故答案为:④;;(2)①.②===.30.如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB 的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为10cm.(直接写出结果)【解答】解:(1)①AC=AP时,AP=AC=6cm,则t=6÷2=3;②AC=CP时,CP=AC=6cm,在Rt△ACB中,CB===8(cm),∴BP=CB﹣CP=8﹣6=2(cm),∴t=(10+2)÷2=6;或如图1﹣1,过点C作CD⊥AB于D,则D为AP中点,AD=×6=3.6,AP=2AD=7.2,∴t=7.2÷2=3.6;③AP=CP时,如图1﹣2,过点P作PD⊥AC于D,则D为AC中点,∵∠ADP=∠ACB=90°,∴DP∥CB,∴点P为AB的中点,∴AP=AB=×10=5(cm),则t=5÷2=2.5.故当t=3或t=6或t=3.6或t=2.5时,△ACP为等腰三角形;(2)答案为:10cm.。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。

选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。

而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。

2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。

3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。

4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。

5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。

6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一、单选题1.下列式子不是二次根式的是( )A B C D2有意义,则x的取值范围为( )A.x≥3B.x≠3C.x>3 D.x≤33.下列二次根式中,属于最简二次根式的是()A B C D4.已知a为实数,)A.a B.﹣a C.﹣1 D.05.若代数式1x-有意义,则x的取值范围是( )A.x>﹣1且x≠1B.x≥﹣1 C.x≠1D.x≥﹣1且x≠1 6.如果√(2a−1)2=1−2a,则a的取值范围是()A.a<12 B.a≤12C.a>12D.a≥127x﹣5,则x的取值范围是()A.x<5 B.x≤5C.x≥5D.x>58.式子√2−a+√a−2在实数范围内有意义,则x的取值范围是()A.x<2 B.x≥2C.x=2 D.x<﹣29.若1≤a≤2,则化简√a2−2a+1+|a−2|的结果是()A.2a−3B.−a C.3−2a D.1二、填空题10,则x的取值范围是___.11=_________.12.如图,数轴上点A表示的数为a,化简:a=_____.-=______.13.已知,x y为实数,且4y=,则x y14===n≥1时,第n个表达式为_____.三、解答题15.x为何值时,下列各式有意义?16.化简:(1(2(3;(417.已知a,b为等腰三角形的两边长,且满足b=4+求此三角形的周长.18.在一节数学课上,李老师出了这样一道题目:先化简,再求值:1x-+其中x=9.小明同学是这样计算的:解:1x-+x-1+x-10=2x-11.当x=9时,原式=2×9-11=7.小荣同学是这样计算的:解:1x-+x-1+10-x=9.聪明的同学,谁的计算结果是正确的呢?错误的计算错在哪里?19.已知二次根式√3−1a.2(1)求x的取值范围;(2)求当x=-2时,二次根式√3−1a的值;2(3)若二次根式√3−1a的值为零,求x的值.220.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化===|1|=1=_________________=________________=_________________②根据上述思路,试将下列各式化简:参考答案1.B【解析】0)a ≥的式子叫做二次根式”分析可知,A 、C 、D 中的式子都是二次根式,只有B 中的式子,由于30π-<,所以选项B 中的式子不是二次根式.故选B.2.A【解析】有意义,得到x-3≥0,解得:x≥3,故选:A .3.C【解析】A 、故A 不是;B 故B 不是;C 是;D 故D 不是.故选C4.D【解析】根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时意义,所以.故选D.5.D【解析】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.6.B【解析】根据二次根式的性质1可知:√(2a−1)2=|2a−1|=1−2a,即2a−1≤0故答案为B.a≤1.27.C【解析】∴5-x≤0∴x≥5.故选C.8.C【解析】解:由题意可得2-x=0,x-2=0,则x=2.故选择C.9.D【解析】解:∵1≤a≤2,∴a-1≥0,a-2≤0,=a-1+2-a=1,∴原式=√(a−1)2+|a−2|故答案为:D.10.x2≥【解析】,即x﹣2≥0,解得x≥2.试题分析:根据题意,故答案是x≥2.11.3【解析】=-=,|3|3故答案为:3.12.2.【解析】由数轴可得:0<a<2,则(2﹣a)=2.故答案为2.13.1-或7-.【解析】∵290x -且290x -≥,∴3x =±,∴4y =,∴1x y -=-或7-.故答案为:1-或7-.14(n =+【解析】(n ==+(n =+ 15.(1) x≥0;(2) x≤0;(3) x 为任意实数;(4) x≥1.【解析】解:(1)2x≥0,解得x≥0,(2)-x≥0,解得x≤0,(3)x 2≥0,解得x 为任意实数,(4)x -1≥0,解得x≥1.16.(1)8;(2)8||3||b a ;(3)8||y ;(4)13||y 【解析】解:(1==(28||3||ba==.(3==.(413||y==. 17.三角形的周长10.【解析】由题意,得24020aa--≥⎧⎨≥⎩,解得a=2,∴b=4 ,当a为腰时,三边为2,2,4,由三角形三边关系定理可知,不能构成三角形,舍去, 当b为腰时,三边为4,4,2,符合三角形三边关系定理,故三角形的三边长分别为4,4,2,∴三角形的周长=4+4+2=10.故答案为10.18.【解析】小荣同学的计算结果是正确的;,19.(1)x≤6 (2)2 (3)x=6【解析】(1)根据二次根式有意义的条件可得 3−12a ≥0,解得x ≤6 ,∴x 的取值范围是:x ≤6;(2)当x= -2时,二次根式√3−12a =√3−12×(−2)=√3+1=2; (3)由题意可得3−12a =0,解得x=6 .故答案为(1)x≤6 (2)2 (3)x=6 .203(2) 12. 【解析】==3+3=5-=12=122+.。

二次根式计算题 100 道

二次根式计算题 100 道

二次根式计算题 100 道一、化简类1、√82、√183、√274、√325、√506、√727、√988、√1289、√16210、√200二、计算类11、√2 +√812、√3 √1213、2√5 +3√2014、4√12 9√2715、√27 √7516、√48 +√1217、√18 √32 +√218、√24 √6 +3√819、2√12 6√1/3 +√4820、3√45 √125 +5√20三、乘法运算类21、√2 × √822、√3 × √1223、√5 × √2024、√6 × √3025、2√3 × 3√226、3√5 × 2√1027、4√2 × 5√828、5√6 × 6√329、√18 × √2430、√27 × √32四、除法运算类31、√8 ÷ √232、√18 ÷ √333、√24 ÷ √634、√48 ÷ √1235、√50 ÷ √536、√72 ÷ √837、√98 ÷ √738、√128 ÷ √1639、√162 ÷ √1840、√200 ÷ √20五、混合运算类41、(√5 +√3)(√5 √3)42、(√2 + 3)(√2 1)43、(2√3 1)(2√3 + 1)44、(3√2 + 2)(3√2 2)45、(√5 2)²46、(√3 + 1)²47、(2√5 3)²48、(4√2 + 1)²49、√(2 √3)²50、√(3 √5)²六、分母有理化类51、 1/(√2 1)52、 1/(√3 √2)53、 2/(√5 +√3)54、 3/(√6 √5)55、 4/(√7 √6)56、 5/(√8 √7)57、 6/(√9 √8)58、 7/(√10 √9)59、 8/(√11 √10)60、 9/(√12 √11)七、含参数类61、已知 a =√2 + 1,b =√2 1,求 a² b²62、若 x = 2 +√3,y =2 √3,求 x²+ y²63、设 m =√5 + 2,n =√5 2,计算 m² n²64、已知 p = 3 +√2,q =3 √2,求 p² 2pq + q²65、当 a =√7 + 2,b =√7 2 时,求(a + b)²(a b)²66、若 x =√11 + 3,y =√11 3,计算 xy67、给定 m =2√3 + 1,n =2√3 1,求 m²n + mn²68、设 a = 4 +√15,b =4 √15,求 a²b ab²69、已知 c = 5 +2√6,d =5 2√6,求 c²/d + d²/c70、当 e =3√2 + 1,f =3√2 1 时,求 ef/(e + f)八、比较大小类71、√11 与√1372、√15 与 473、2√3 与3√274、√5 + 1 与 375、2√7 3 与 276、√18 √12 与√10 √877、√20 +√5 与5√278、3√11 2√7 与4√3 √1979、√17 √13 与√11 √780、5√2 3√3 与4√3 2√2九、求值类81、已知 x =√3 + 1,求 x² 2x + 2 的值82、若 y =√5 2,求 y²+ 4y + 4 的值83、当 z =2√2 1 时,求 z²+ 2z + 1 的值84、已知 a =√7 + 3,求 a² 6a 7 的值85、若 b =√10 1,求 b² 2b 1 的值86、当 c =3√3 + 2 时,求 c² 4c 5 的值87、已知 d =4√2 3,求 d²+ 6d + 5 的值88、若 e =√13 2,求 e²+ 4e + 3 的值89、当 f =5√2 + 1 时,求 f² 10f + 26 的值90、已知 g =6√3 5,求 g² 12g + 40 的值十、综合应用类91、一个直角三角形的两条直角边分别为√12 厘米和√27 厘米,求这个直角三角形的面积。

初二数学二次根式练习题

初二数学二次根式练习题

初二数学二次根式练习题1. 简化下列各根式:(1) $\sqrt{16}$ ;(2) $\sqrt{25}$ ;(3) $\sqrt{36}$ ;(4) $\sqrt{49}$ ;(5) $\sqrt{64}$ .解答:(1) $\sqrt{16} = 4$ ;(2) $\sqrt{25} = 5$ ;(3) $\sqrt{36} = 6$ ;(4) $\sqrt{49} = 7$ ;(5) $\sqrt{64} = 8$ .2. 计算下列各根式:(1) $2\sqrt{9}$ ;(2) $3\sqrt{16}$ ;(3) $4\sqrt{25}$ ;(4) $2\sqrt{32}$ ;(5) $5\sqrt{18}$ .解答:(1) $2\sqrt{9} = 2 \times 3 = 6$ ;(2) $3\sqrt{16} = 3 \times 4 = 12$ ;(3) $4\sqrt{25} = 4 \times 5 = 20$ ;(4) $2\sqrt{32} = 2 \times \sqrt{16 \times 2} = 2 \times 4\sqrt{2} =8\sqrt{2}$ ;(5) $5\sqrt{18} = 5 \times \sqrt{9 \times 2} = 5 \times 3\sqrt{2} =15\sqrt{2}$ .3. 化简下列各根式:(1) $\frac{\sqrt{24}}{\sqrt{6}}$ ;(2) $\frac{\sqrt{45}}{\sqrt{5}}$ ;(3) $\frac{\sqrt{75}}{\sqrt{3}}$ ;(4) $\frac{\sqrt{8}}{\sqrt{2}}$ ;(5) $\frac{\sqrt{50}}{\sqrt{10}}$ .解答:(1) $\frac{\sqrt{24}}{\sqrt{6}} = \frac{\sqrt{4 \times 6}}{\sqrt{6}} = \frac{2\sqrt{6}}{\sqrt{6}} = 2$ ;(2) $\frac{\sqrt{45}}{\sqrt{5}} = \frac{\sqrt{9 \times 5}}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{5}} = 3$ ;(3) $\frac{\sqrt{75}}{\sqrt{3}} = \frac{\sqrt{25 \times 3}}{\sqrt{3}} =\frac{5\sqrt{3}}{\sqrt{3}} = 5$ ;(4) $\frac{\sqrt{8}}{\sqrt{2}} = \frac{\sqrt{4 \times 2}}{\sqrt{2}} =\frac{2\sqrt{2}}{\sqrt{2}} = 2$ ;(5) $\frac{\sqrt{50}}{\sqrt{10}} = \frac{\sqrt{25 \times 2}}{\sqrt{10}} = \frac{5\sqrt{2}}{\sqrt{10}} = \frac{5\sqrt{2}}{\sqrt{2} \times \sqrt{5}} = \frac{5}{\sqrt{5}} = \frac{5\sqrt{5}}{5} = \sqrt{5}$ .4. 用一句话解释什么是二次根式。

(完整版)二次根式专题练习(含答案)

(完整版)二次根式专题练习(含答案)

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2 3.下列计算正确的是()A.=2B.= C.=x D.=x 4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.化简+﹣的结果为()A.0 B.2 C.﹣2D.26.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x7.下列式子运算正确的是()A.B.C. D.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.二.填空题9.要使代数式有意义,则x的取值范围是.10.在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.11.计算:= .12.化简:= .13.计算:(+)= .14.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= ;(2)a1+a2+a3+…+a n= .15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .16.已知:a<0,化简= .17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+)×.22.计算:×(﹣)+|﹣2|+()﹣3.23.计算:(+1)(﹣1)+﹣()0.24.如图,实数a、b在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.26.已知:a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.28.化简求值:,其中.参考答案与解析一.选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.2.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.(2016•南充)下列计算正确的是()A.=2B.= C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣bD.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.(2016•营口)化简+﹣的结果为()A.0 B.2 C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3+﹣2=2,故选:D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C. D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.【分析】把x的值代入所求代数式求值即可.也可以由已知得(x﹣1)2=3,即x2﹣2x﹣2=0,则x3﹣3x2+3x=x(x2﹣2x﹣2)﹣(x2﹣2x﹣2)+3x﹣2=3x﹣2,代值即可.【解答】解:∵x3﹣3x2+3x=x(x2﹣3x+3),∴当时,原式=()[﹣3()+3]=3+1.故选C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.(2016•贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0 .【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为 3 .【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.(2016•聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2016•威海)化简:= .【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.(2016•潍坊)计算:(+)= 12 .【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(2016•黄石)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= =﹣;;(2)a1+a2+a3+…+a n= ﹣1 .【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:a n==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:a n==﹣;(2)a1+a2+a3+…+a n=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知:a<0,化简= ﹣2 .【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).【分析】由S n=1++===,求,得出一般规律.【解答】解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共11小题)18.(2016•泰州)计算或化简:﹣(3+);【分析】先化成最简二次根式,再去括号、合并同类二次根式即可;【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.(2016•盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式=9﹣7+2﹣2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2﹣﹣1,=﹣1.把x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数a、b在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知,a<0,且b>0,∴a﹣b<0,∴,=|a|﹣|b|﹣[﹣(a﹣b)],=(﹣a)﹣b+a﹣b,=﹣2b.【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a、b及a﹣b的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a、b及a﹣b的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;(2)由(1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当a>0时,=a;②当a<0时,=﹣a;③当a=0时,=0.26.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

(完整版)二次根式经典练习题初二

(完整版)二次根式经典练习题初二

二次根式练习题一、选择题1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=33.若x<0,则x x x 2-的结果是( )A .0B .—2C .0或—2D .24.下列说法错误的是 ( )A .962+-a a 是最简二次根式 B.4是二次根式C .22b a +是一个非负数 D.162+x 的最小值是45n 的最小值是( )A.4B.5C.6D.26.化简6151+的结果为( )A .3011B .33030C .30330D .1130 7..把a a 1-根号外的因式移入根号内的结果是( )A 、 a -B 、a --C 、aD 、a -8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+B. a b =+C. 22a b =+D. a b =+9. )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 10. 下列式子中正确的是( )A. =B. a b =-C. (a b =-D. 22==二、填空题11.①=-2)3.0( ;②=-2)52( 。

12.化简:计算=--y x yx _______________;13.计算3393aa a a -+= 。

14)1x p 的结果是 。

15. 当1≤x <55_____________x -=。

16.))2000200122______________=g 。

17.若0≤ a ≤1,则22)1(-+a a = ;18.先阅读理解,再回答问题:2,<1;3,=<的整数部分为2;4,=<<3;n 为正整数)的整数部分为n 。

x ,小数部分是y ,则x -y =______________。

三、计算(1)225241⎪⎪⎭⎫⎝⎛-- (2))459(43332-⨯(3)2332326--(4)2(5)(()2771+--(6). ((((22221111+-(7)计算:1031 (231)321211++++++++四、 解答题1.已知:的值。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共4页) 第2页(共4页)
二次根式练习题(初二数学)
一、选择题:1
合并的是( )
A
B
C
D
.2
a =-,则a 是( )
A .正数
B .负数
C .非正数
D .非负数
3
x 的取值范围是( )
A .13
x ≥
B .13
x >
C .13
x ≤
D .13
x <
4.下列等式中一定成立的是( )
A
= B
a b =- C
=
D
x y =+
5.若a<1

A .a-1
B .-a-1
C .1-a
D .a+1
6
50x -=,则x 的取值范围是( )
A .x>5
B .x<5
C .x≥5
D .x≤5
7
.计算23a ) A .正数 B .负数 C .非负数
D .非正数
8、下列各式中一定是二次根式的是( ) A.a .
B.13+x
C.21x -
D.21x +
9、下列计算正确的是:( )
A .228=
- B .123=- C .523=+ D .263=
10、下列各式中,与12能合并为一个二次根式的是( )
A .96
B .
72
1
C .50
D .
27
4 12、下列各式中一定是二次根式的是( )
A.a .
B.13+x
C.21x -
D.21x + 二、填空题:
1.________)23(2
=- 23与32的大小关系是______________
2.有意义时,当a a 21_______- ; 当x
时, 3.若22-+
-x x 有意义,则x=_______
4.__________2,02可以化简为那么已知a a a -< 5.当m<3时,______________)3(2=-m 6.设x,y 为实数,满足______1
1,144=--+-+-<
y y x x y 化简
7.__________1
0=-
<a
a a 时,化简当 8. 若|a-b+1|
互为相反数,则(a-b)2007= 。

9
.y =
中x 的范围 。

10.若2<x<3
|2|
2
a a -+
-= 。

11
.99101
⋅= 。

12.___________12
x x
是二次根式,则若
-.
第3页(共4页). 第4页(共4页).
13._____,2
1
838,=+---=
xy x x y y x 则为实数,且若
14.计算:22)832
1
4
64(÷+- 15。

则已知__________1,11=+
=-
x
x x
x
16、设7的小数部分为b ,那么(4+b)b=______________ 17、__________2,02可以化简为那么已知a a a -< 三.计算: (1)5025.02
1

(2))16(49-⨯-
(3))102
1
(325
3
1-⨯⨯ (4)3200
(5))0(185
2
>x y x (6)5
3
1513÷
(7)10
1
1252403-- (8)20082007)23()23(-+
(9
(10
)四、先化简,再求值:
1
、((6)a a a a --
,其中12
a =。

2、2
2
11(
)2b
a b a b a ab b -÷-+-+
,其中1a =
1b =
3、
2222
211
()a ab b a b a b -+÷--
,其中1a =
,1b =
五、观察下列分母有理化的计算:
454
51,
343
41,
232
31,
121
21-=+-=+-=+-=+,……
从计算结果中找出规律,并利用这一规律计算:

)2001
20021 (3)
412
311
21++
+++
++
+()12002+。

相关文档
最新文档