中考数学 第一章 数与式 二次根式及其运算复习1

合集下载

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。

2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。

★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

数轴 1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0

x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .

中考数学重点难点分值题型分布

中考数学重点难点分值题型分布

中考数学重点难点分值题型分布第一章数与式1.1实数考点1:实数的分类与实数的有关概念掌握题型:选择题、填空题; 分值:3分考试内容:1.实数的定义与分类2.实数的大小比较3.数轴4.相反数、倒数、绝对值5.无理数的估算考点2:实数的运算掌握题型:选择题、填空题;分值:3分、4分考试内容:1.平方根与立方根2.实数的混合运算考点3:科学计数法掌握与近似数了解题型:选择题;分值:3分考试内容:1.科学记数法2.近似数1.2代数式考点1:代数式理解——必考点题型:选择题;分值:4分考试内容:1.列代数式表示简单的数量关系2.能解释一些简单代数式的实际意义或几何意义考点2:求代数式的值题型:解答题;分值:6分考试内容:1.代数式的值的概念“了解2.根据问题所提供的资料,求代数式的值1.3整式考点1:整式及其运算灵活运用题型:填空题;分值:3分考试内容:1.整式的有关概念了解2.整数指数幂的意义和基本性质了解3.整式加减乘除法运算的法则4.会进行简单的整式加减乘除法运算考点2:整式乘法公式灵活运用——必考点题型:填空题;分值:3分、4分考试内容:1.完全平方公式、平方差公式的几何背景了解2.平方差公式、完全平方公式3.用平方差公式、完全平方公式进行简单计算考点3:因式分解灵活运用题型:填空题;分值:3分、4分考试内容:1.因式分解的意义及其与整式乘法之间的关系了解2.用提取公因式法、、公式法进行因式分解,会在实数范围内分解因式1.4分式与二次根式考点1:分式的概念与基本性质灵活运用——必考点题型:选择题;分值:3分考试内容:1.分式的概念了解2.确定分式有意义的条件3.确定使分式的值为零的条件4.分式的基本性质5.约分和通分考点2:分式的运算掌握——必考点题型:解答题;分值:6分考试内容:1.分式的加、减、乘、除、乘方运算法则2.简单的分式加减乘除乘方运算,用恰当方法解决与分式有关的问题考点3:二次根式掌握——必考点题型:选择题;分值:3分1.二次根式的概念2.最简二次根式3.二次根式的运算第二章方程组与不等式组2.1整式方程考点1:一元一次方程掌握,灵活运用题型:选择题、解答题;分值:3分、6分、8分考试内容:1.方程是刻画现实世界数量关系的一个数学模型了解2.运用一元一次方程解决简单的实际问题3.方程的解的概念了解4.由方程的解求方程中字母系数的值5.一元一次方程的有关概念了解6.一元一次方程的解法考点2:一元二次方程掌握,灵活运用——必考点题型:选择题、填空题;分值:3分、4分1.一元二次方程的概念了解2.一元二次方程的解法3.用一元二次方程根的判别式判断根的情况4.运用一元二次方程解决简单的实际问题2.2分式方程考点1:分式方程及其解法——必考点题型:选择题、填空题;分值:3分、4分考试内容:1.分式方程的概念2.分式方程的增根3.分式方程的求解4.分式方程的检验考点2:分式方程的应用题型:解答题;分值:10分考试内容:1.利用分式方程解决生活实际问题2.注意分式方程要对方程和实际意义进行双检验2.3方程组考点1:二元一次方程组题型:解答题;分值:7分考试内容:1.二元一次方程组的有关概念了解2.代入消元法、加减消元法的意义3.选择适当的方法解二元一次方程组考点2:二元一次方程组的应用——必考点题型:解答题;分值:9分考试内容:运用二元一次方程组解决简单的实际问题2.4不等式组考点1:不等式和一元一次不等式组题型:选择题、填空题;分值:3分、4分考试内容:1.不等式的意义了解2.根据具体问题中的数量关系列出不等式3.不等式的基本性质4.利用不等式的性质比较两个实数的大小5.一元一次不等式的解集了解6.解不等式组考点2:一元一次不等式组的应用——必考点题型:解答题;分值:8分考试内容:根据具体问题中的数量关系,用一元一次不等式或不等式组解决简单问题第三章变量与函数3.1位置的确定与变量之间的关系考点1:平面直角坐标系题型:选择题、填空题;分值:3分考试内容:1.坐标平面内点的坐标特征的运用2.坐标轴、原点对称的点的坐标的特征考点2:函数及其图象题型:选择题、填空题;分值:3分、8分考试内容:1.求函数自变量的取值范围2.根据条件写出函数关系式3.用描点法画出函数图像考点3:函数的有关应用题型:选择题;分值:3分考试内容:解决与函数有关的应用型问题3.2一次函数考点1:一次函数的概念、图象和性质题型:解答题;分值:3分、10分考试内容:1.对一次函数概念的理解理解2.根据已知条件用待定系数法确定函数解析式3.会画一次函数图象并能根据图象解决相关的问题4.根据自变量的变化判断函数值的增减情况灵活运用5.由函数值的取值范围判断自变量的取值范围,求一次函数图象的交点坐标考点2:一次函数的应用题型:解答题;分值:9分考试内容:与一次函数有关的应用问题灵活运用3.3反比例函数考点1:求反比例函数解析式题型:填空题;分值:4分考试内容:1.对反比例函数的理解2.根据已知条件用待定系数法确定反比例函数解析式考点2:反比例函数的图象和性质题型:解答题;分值:8分考试内容:1.会画反比例函数的增减性;掌握比例系数K的几何意义考点3:反比例函数的应用题型:填空题、解答题;分值:3分、9分考试内容:1.反比例函数与一次函数图象与性质的综合应用2.确定与反比例函数有关的应用型问题3.4二次函数考点1:二次函数的图象和性质题型:选择题、解答题;分值: 3分、3分考试内容:1.用配方法把抛物线的解析式y=ax2+bx+ca≠0化为y=ax-h2+ka≠0的形式2.根据已知条件用待定系数法确定二次函数的解析式3.根据抛物线的位置确定a、b、c的符号,根据公式确定抛物线的顶点和对称轴4.根据自变量的变化判断二次函数值的增减情况5.根据函数图象求一元二次方程的根,由一元二次方程根的情况判断抛物线与x轴的交点;根据图象判断一元二次不等式的解集考点2:二次函数的综合应用题型:解答题;分值:10分、12分考试内容:1.利用二次函数解决简单的实际问题2.与二次函数有关的综合应用第四章图形的认识4.1角、相交线与平行线考点1:角题型:选择题;分值:3分考试内容:1.角的有关概念了解2.角的比较、角的和差计算3.余角、补角考点2:相交线题型:选择题;分值:3分考试内容:1.对顶角2.垂线、点到直线的距离3.作已知直线的垂线4.命题、定理、证明考点3:平行线题型:选择题;分值:3分考试内容:1.平行线的性质2.平行线间的距离3.平行线的判定4.2三角形及其全等考点1:三角形的相关概念题型:选择题;分值:3分考试内容:1.角平分线、中线、高线、中位线以及性质2.画任意三角形的角平分线、中线和高3.三角形的稳定性、三边关系定理、三角形内角和定理考点2:三角形全等题型:填空题、解答题;分值:3分考试内容:1.全等三角形对应边相等、对应角相等2.三角形全等的判定定理:SAS, ASA, AAS, SSS, HL 4.3等腰三角形与直角三角形考点1:等腰三角形题型:选择题;分值:3分考试内容:1.等腰三角形的有关概念、性质和判定2.等边三角形的有关概念、性质和判定考点2:直角三角形题型:选择题;分值:3分考试内容:1.直角三角形的概念、性质和判定2.勾股定理及其逆定理:4.4多边形与平行四边形考点1:多边形题型:选择题;分值:3分考试内容:多边形和正多边形的概念、内角和与外角和公式了解考点2:平行四边形题型:解答题;分值:9分考试内容:1、平行四边形的概念和性质2、平行四边形的判定4.5特殊的平行四边形考点1:矩形题型:选择题、填空题、解答题;分值:3分、8分考试内容:1.矩形的概念、性质2.矩形的判定考点2:菱形题型:选择、解答;分值:3分、10分考试内容:1、菱形的概念、性质2、菱形的判定考点3:正方形题型:选择题、解答题;分值:3分考试内容:1.正方形具有矩形和菱形的性质2.既是矩形又是菱形的四边形是正方形4.6梯形依据考情选用题型:填空题;分值:3分考试内容:1.梯形的概念和性质2.等腰梯形的概念、性质和判定3.直角梯形的概念第五章圆5.1圆的性质及与圆有关的位置关系考点1:圆的有关概念与性质题型:选择题、解答题;分值:3分、4分、9分考试内容:1.垂径定理及其推论的应用2.弧、圆心角、圆周角之间的关系3.圆周角定理及其推论考点2:与圆有关的位置关系题型:选择题、解答题考试内容:1.点和圆的位置关系2.直线和圆的位置关系3.切线的性质和判定5.2与圆有关的计算题型:选择题、填空题、解答题;分值:3分、10分考试内容:1.求圆的周长、弧长及简单组合图形的周长2.求圆的面积、扇形的面积及简单组合图形的面积3.圆柱的侧面积和全面积的计算4.圆锥的侧面积和全面积的计算第六章空间与图形6.1圆形的轴对称、平移与旋转考点1:轴对称的概念及性质题型:选择题;分值:3分考试内容:1.轴对称的概念及性质2.基本图形的对称性及轴对称的应用考点2:图形的平移题型:选择题;分值:3分考试内容:1.平移的概念和性质2.简单图形的平移及平移的应用考点3:图形的旋转题型:选择题;分值:3分考试内容:1.旋转的概念及性质2.基本图形的旋转及旋转的应用6.2图形的相似考点1:相似的有关概念题型:近5年未考考试内容:成比例线段、比例的基本性质、黄金分割考点2:相似三角形的性质与判定题型:填空题;分值:3分考试内容:1.相似的概念及相似的判定2.相似的性质、多边形相似比、周长比与面积比考点3:位似的概念与性质题型:选择题;分值:3分考试内容:1.位似的概念和性质2.利用位似放大或缩小图形,会在坐标系中作位似图形并求出对应的坐标6.3解直角三角形题型:选择题、填空题、解答题;分值:3、6分考点1:锐角三角函数考试内容:1.锐角三角函数的定义及其性质2.特殊角的三角函数值考点2:解直角三角形考试内容:1.解直角三角形的概念2.直角三角形的边角关系3.仰角、俯角、坡度坡比4.用三角函数解决与直角三角形有关的实际问题6.4视图与投影考点1:几何体及其展开图题型:选择题;分值:3分考试内容:基本几何体的展开图考点2:几何体的三视图题型:选择题;分值:3分考试内容:画基本几何体或简单组合体的三视图,根据三视图描述实物考点3:投影题型:近五年未考考试内容:1.中心投影和平行投影2.影子、视点、视角和盲区的概念第七章统计与概率7.1统计考点1:数据的收集题型:选择题;分值:3分考试内容:1.普查和抽样调查2.总体、个体、样本和样本容量3.用样本估计总体的思想考点2:数据的处理题型:选择题;分值:3分考试内容:1.求一组数据的平均数包括加权平均数、众数、中位数、极差与方差2.根据具体问题,选择合适的统计量表示数据的集中程度或离散程度3.根据统计结果做出合理的判断和预测考点3:统计图表题型:解答题;分值:4分、8分考试内容:1.用扇形统计图表示数据2.频数、频率的概念,频数分布的意义和作用3.列频数分布表,画频数分布直方图和频数分布折线图4.利用统计图表解决简单的实际问题7.2概率考点1:事件的分类题型:选择题;分值:3分考试内容:不可能事件、必然事件和随机事件考点2:概率的计算题型:解答题;分值:10分考试内容:1.概率的意义2.运用列举法包括列表、画树状图计算简单事件发生的概率考点3:用频率估计概率题型:填空题;分值:3分考试内容:大量重复试验时,可以用频率估计概率解决一些实际问题。

2023年中考数学复习第一部分考点梳理第一章数与式第4节二次根式

2023年中考数学复习第一部分考点梳理第一章数与式第4节二次根式

1.4 二次根式1.下列二次根式是最简二次根式的是 (D ) A .√32 B .√43C .√1.5D .2√102.[易错题]√4的算术平方根是 (B ) A.±√2 B.√2C.±2D.23.下列等式正确的是 (A ) A .(√3)2=3 B .√(−3)2=-3C .√33=3D .(-√3)2=-3 4.计算:√5+12-1×√5+12= (B ) A.0 B.1 C.2 D.√5−12【解析】√5+12-1×√5+12=√5+1−22×√5+12=√5−12×√5+12=(√5)2−124=1. 5.实数a 在数轴上的位置如图所示,则√(a −4)2+√(a −11)2 化简后为(A )A.7B.-7C.2a -15D.无法确定【解析】由数轴可知5<a <10,∴√(a −4)2+√(a −11)2=a -4+11-a =7.6.[数学文化]已知三角形的三条边长分别为a ,b ,c ,为求其面积,中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron)给出求其面积的海伦公式S =√p(p −a)(p −b)(p −c),其中p =12(a +b +c );我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S =12√a 2b 2−(a 2+b 2−c 22)2.若一个三角形的三边长分别为2,3,4,则其面积是 (B ) A .3√158B .3√154C .3√152D .√152【解析】∵三角形的三边长分别为2,3,4,∴p =12×(2+3+4)=92,由海伦公式得S =√92×52×32×12=3√154;或由秦九韶公式得S =12√22×32−(22+32−422)2=3√154.7.(2022·合肥三十八中一模)函数y=√1−2x的自变量的取值范围是x≤12.8.(2021·天津)计算(√10+1)(√10-1)的结果等于9.9.若x=√2−12,则4x2+4x=1.解法1:直接代入求值;解法2:整体代入求值.10.[创新思维]在如图的方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为6√2.【解析】由题意可知,第一行三个数的乘积为3√2×2×√3=6√6,设第二行中间的数为x,第三行第一个数为y,则√3xy=6√6,解得xy=√6√3=6√2.11.化简:√12+14×√−643-15√13.解:原式=2√3+14×(-4)-15×√33=2√3-1-5√3=-1-3√3.12.已知x=2-√3,y=2+√3.(1)求x2+y2-3xy的值;(2)若x的整数部分是m,y的小数部分是n,求5m2-n的值.解:(1)∵x=2-√3,y=2+√3,∴x+y=4,xy=1,∴x2+y2-3xy=(x+y)2-5xy=42-5×1=11.(2)∵1<√3<2,∴0<2-√3<1,3<2+√3<4,∴m=0,n=2+√3-3=√3-1,∴5m2-n=5×02-(√3-1)=1-√3.13.(2021·湖南娄底)若2,5,m 是某三角形三边的长,则√(m −3)2+√(m −7)2等于 (D ) A.2m -10 B.10-2m C.10D.4【解析】由题意,得3<m <7,∴原式=m -3+7-m =4.14.设a =√7+√6,b =√7-√6,则a 2023b 2022的值是 √7+√6 .【解析】由题意,得ab =(√7+√6)(√7-√6)=1,∴a 2023b 2022=a ·(ab )2022=√7+√6. 15.先观察下列各式,然后回答问题:第1个等式:√32−12=√8×1; 第2个等式:√52−32=√8×2; 第3个等式:√72−52=√8×3; 第4个等式:√92−72=√8×4; …(1)第6个式子是 √132−112=√8×6 ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明. 解:(2)第n 个等式是√(2n +1)2−(2n −1)2= √8n .证明:左边=√(4n 2+4n +1)−(4n 2−4n +1)= √8n =右边,∴等式成立. 16.观察以下等式: 第1个等式:√1+13=2√13; 第2个等式:√2+14=3√14; 第3个等式:√3+15=4√15; 第4个等式:√4+16=5√16; 第5个等式:√5+17=6√17;……按照以上规律,解决下列问题:(1)写出第6个等式: √6+18=7√18; (不用化简)(2)写出你猜想的第n 个等式: √n +1n+2=(n +1)√1n+2 (n 为正整数,用含n 的式子表示),并证明; (3)利用(2)中的结论化简: √2021+12023×√2023. 解:(2)证明:左边=√n(n+2)+1n+2=√n 2+2n+1n+2=√(n+1)2n+2. ∵n 为正整数,∴n +1>0,∴左边=(n +1)√1n+2=右边,∴等式成立.(3)√2021+12023×√2023=2022√12023×√2023=2022.。

2014-2015中考数学总复习-第一轮-第一章 第6讲 二次根式

2014-2015中考数学总复习-第一轮-第一章 第6讲 二次根式
第一章 数与式
第6讲 二次根式
【考点梳理】 一、平方根、算术平方根、立方根 1.如果一个数的平方等于a,那么这个数叫做a的 平方根 ,记作± a 如果一个正数 的平方等于a, 即 x 2 a,那么这个数 x叫做a的算数平方根, 记作 a 2.平方根有以下性质: ①正数有两个平方根,他们互为 相反数 ; ②0的平方根是0;③负数没有平方根。 3.如果x3=a,那么x叫做a的立方根,记作 3 a 二、二次根式 1.二次根式的有关概念 ⑴ 式子 a (a 0) 叫做二次根式.注意被开方数a只能是 非负数 ⑵ 最简二次根式 被开方数不含 分母 ,被开方数中不含能 开得尽方的因数或因式的二次根式, 叫做最简二次根式. (3) 同类二次根式 化成最简二次根式后,被开方数 相同 的二次根式,叫做同类二次根式.
【答案】:原式
3 2 2 4 3 2 2 1
考点3:二次根式的分母有理化 例4. 计算
2 2 2
2 2 2
的结果是( )
思路分析:利用二次根式的除法或分母有理化来解决,
=
2 2
+
2 2
=
2 +1
答案:
2 +1
方法指导:此题主要考察二次根式的除法及其分母有理化的运算, 这里
2 2
2 = ( 2) =
2
2 或者
3 2
2 2

= 2 2 = 2 2 =
2 2
2
2
考点即时练 4.(2013南京)计算
1 的结果是_______ 2
答案:
2
2.二次根式的性质
a 0); ⑴ a 0(
⑵ a 2
a
( a 0);
⑶ a2 a

中考数学复习第一章《数与式》第1讲《二次根式》精品实用课件

中考数学复习第一章《数与式》第1讲《二次根式》精品实用课件
中考数学复习精品实用课件
第一章 数与式
第2讲 二次根式
课前预习
1.使 x-3有意义的 x 的取值范围是( C )
A.x≤3
B.x<3
C.x≥3
D.x>3
2.9 的平方根是( C )
A.3
B.-3
C.3 和-3
D.81
3.25 的算术平方根是( A )
A.5
B.±5
C.-5
D.25
4.8 的立方根等于 2 .
20.化简 2÷( 2-1)的结果是( D )
A.2 2-1
B.2- 2
C.1- 2
D.2+ 2
1、考查二次根式有意义的条件或平方根; 2、考查二次根式非负数的性质; 3、综合二次根式、零指数、负指数、特殊角的 三角函数、绝对值化简等考查运算
(2)二次根式的乘法:逆用公式 ab= a· b(a≥0,b≥0),即得 二次根式的乘法法则:__a_·_b_=____a_b_(a≥0,b≥0).
(3)二次根式的除法:逆用公式 ab= ab(a≥0,b>0),即得二 次根式的除法法则:____ab_=____ba____(a≥0,b>0).
课堂精讲
C.
x=0, y=2
D.
x=1, y=1
8.已知 a,b 满足(a-1)2+ b+2=0,则 a+b= -1 .
考点 4:二次根式的化简及运算
9.下列运算正确的是( D )
A. 2+ 3= 5
B. 18=2 3
C. 2× 3= 5
D. 2÷ 12=2
10.计算( 6+ 3)( 6- 3)的结果等于 3 .
3.二次根式的性质 (1)( a)2=a( a≥0 ).
(2)

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。

其中,既不属于正数也不属于负数的数是零。

无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。

有理数包括正有理数、负有理数和零。

负无理数和正无理数的定义很明确。

2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。

3.数轴有三个要素:原点、正方向和单位长度。

实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。

4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。

5.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。

知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。

数轴上的每个点都对应着一个实数,反之亦然。

3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。

a的倒数是1/a(a≠0)。

6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。

确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。

7.近似数是一个与实际数值很接近的数。

它的精确度由四舍五入到哪一位来决定。

例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。

中考数学复习第一单元数与式数的开方与二次根式课件

中考数学复习第一单元数与式数的开方与二次根式课件

4.把分母中的根号化去的方法
(1) 1??= ??·????= ????;
(2)
1 ??-
??= (
??-
??+ ?? ??)( ??+
=
??)
???+?-????.
考点四 二次根式的估算 1.一般先对根式进行平方 ,如( 7)2=7; 2.找出与平方后所得数相邻的两个完全平方数,如4< 7< 9; 3.对以上两个整数开方 ,如 4=2, 9= 3; 4.这个根式的值在这两个相邻整数之间 ,如 2< 7<3.
第 5 课时
数的开方与二次根式
考点一 平方根、算术平方根与立方根 1.平方根、算术平方根 :实数 a(a≥0)的平方根为± ??,其中 ??为 a 的算术平方根, 正数的平方根有两个 ,互为① 相反数 ,算术平方根只有一个且为 ② 正数 ,0 的平方根是 0. 2.立方根:实数 a 的立方根为 3 ??(a 为任意实数),立方根只有一个,符号与被开方 数③ 相同 ,立方根等于本身的数为 ±1,0.
A.4
B.8
C.±4
D.±8
2.3 8的算术平方根是 ( C )
A.2 C. 2
B.±2 D.± 2
3.[2019·大庆]有理数-8的立方根为 ( A )
A.-2
B.2
C.±2
D.±4
4. (1)化简:- 9=
-3
,-
2
1
4=
-???? , (-2)2 =
2
.
(2)25 的平方根是 ±5 ,(-4)2 的算术平方根是 4 , 16 的算术平方根
图5-1
而 0<a< 2,则 a-2<0,所以原式=a +2-a= 2.

初三数学总复习大纲

初三数学总复习大纲

初三数学总复习大纲
第一部分数与式
●实数
●平方根和立方根
●科学计数法、近似数和有效数字
●指数
●整式运算
●因式分解
●分式
●二次根式
第二部分方程(组)和不等式(组)
●一元一次方程、一元二次方程
●分式方程
●一次方程组
●不等式(组)
●一元二次方程根的判别式
●列方程或方程组解应用题
第三部分函数
●平面直角坐标系、自变量x的取值范围
●正(反)比例函数
●一次函数的图像和性质
●二次函数的图像和性质
第四部分概率统计
●统计初步
●随机事件与简单事件的概率
●用频率估计概率、用列举法计算概率
●统计图表
●数据的收集、样本估计总体
第五部分几何基本概念
●基本概念
●平行线
第六部分空间图形
●简单的几何图形
第七部分三角形
●一般三角形
●等腰三角形
●直角三角形
●锐角三角形
●解直角三角形
●全等三角形
第八部分四边形
●平行四边形
●矩形、菱形、正方形
●梯形
第九部分图形与变换
●图形的平移、旋转与轴对称第十部分相似形
●比例线段
●相似三角形的判定与性质第十一部分圆
●远的有关概念及一些性质●和圆有关的角
●直线和圆的位置关系
●圆与圆的位置关系
●与圆相关的某些图形的计算●作图题。

【数学】中考考点过关-第1章:数与式

【数学】中考考点过关-第1章:数与式

方法
命题角度 1 实数的相关概念
1.[2019甘肃兰州A卷]-2 019的相反数是
()
B
解析:B 只有符号不同的两个数互为相反数,则-2 019的相反数是2 019,故选
B.
2.[2019甘肃天水]已知|a|=1,b是2的相反数,则a+b的值为
()
C
A.-3
B.-1 C.-1或-3 D.1或-3
解析:C 由|a|=1,得a=±1.由b是2的相反数,得b=-2,故a+b=-1或-3.故选C.
做同类项.所有的常数项都是同类项.
2.合并同类项:把一个多项式中同类项的系数相加,合并为一项,叫做合
并同类项.
3.去括号法则
(1)括号前是“+”时,括号内各项不变号,如a+(b-c)=⑦ a+b-;
(2)括号前是“-”时,括号内各项变号,如a-(b-c)=⑧ a-c.
简记为:去括号,“+”不变,“-”要变.

若a>0,b<0,|a|>|b|,则a+b=+(|a|-|b|);若
法 异号两数相加 a>0,b<0,|a|<|b|,则a+b=-(|b|-|a|);若a,b互为相
反数,则a+b=0.
一个数同0相加 a+0=⑱_a___
考点
考点1 考点2 考点3 考点4 考点5 考点6
实数的运算
运算名称 减法
a-b=a+(-b)
解析:B 7.01万亿=7.01×104×108=7.01×1012.故选B.
5.[2019洛阳一模]目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳

北师大版初中数学中考复习《数与式》

北师大版初中数学中考复习《数与式》

Day1 数与式说明:由于电脑输入问题,下文出现的“√”为根号一、实数1、科学计数法把一个数写成a×10ⁿ的形式叫做科学记数法,其中(1≤|a|<10,n 是整数)方法:把小数点拉到第一个数a的右边,再数经过了多少个数即为n 2、绝对值指一个数在数轴上所对应点到原点的距离注意:“距离”一定是正数3、相反数绝对值相等,正负号相反的两个数互为相反数4、倒数分子和分母相倒并且两个乘积是1的数互为倒数,0没有倒数。

5、无理数、有理数无理数:①开方开不尽的方根②无限不循环小数有理数:整数、分数6、实数的比较大小①定义法:正数>0>负数记忆方法:两个都是负数的情况下,绝对值大的反而小②数轴法:在数轴上的两个数,右边的数比左边的大③作差法:a-b>0则a>b;a-b<0则a<b;a-b=0则a=b7、数轴规定了原点、正方向和单位长度的直线叫数轴。

实数与数轴上的点是一一对应的8、近似数经过四舍五入得到的与原始数据相差不大的一个数9、平方根、算术平方根、立方根平方根:如果x²=a,则称x为a的平方根,其中a≥0,a的平方根也写成±√a(0的平方根是0;负数没有平方根)注意:根号里面的东西一定是≥0算术平方根:如果一个正数x满足x²=a,则称这个正数x为a的算术平方根。

a的算术平方根写作√a(0的算术平方根是0)★平方根与算术平方根的区别:平方根的x可以是正数、负数、0;算术平方根里面的x只能是正数或者0而不能是负数,并且√a没有负号的情况立方根:如果x³=a,则称x为a的立方根,a的立方根也写成±³√a(正数的立方根是正数、负数的立方根是负数)记忆:所谓立方,就是三次方的意思。

其实也是用了“负负得正、正负得负”的原理,之所以“正数的立方根是正数、负数的立方根是负数”,是因为三个正数相乘是正数,而三个负数相乘则是负数。

10、实数的运算(1)运算顺序:乘方-开方-乘除-加减,如果有括号就先算括号里面的,同级运算从左到右。

中考复习 实数与二次根式-教师版

中考复习 实数与二次根式-教师版

第一章数与式§1.1实数与二次根式考点1实数的分类与实数的有关概念1.(2022舟山,1,3分)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-22.(2022绍兴,1,4分)实数-6的相反数是()A.-16B.16C.-6D.63.(2021杭州,1,3分)-(-2 021)= ()A.-2 021B.2 021C.-12 021D.12 0214.(2021湖州,1,3分)实数-2的绝对值是()A.-2B.2C.12D.−125.(2021丽水,1,3分)实数-2的倒数是()A.2B.-2C.12D.−12考点2实数的运算与实数大小的比较1.(2021温州,1,4分)计算(-2)2的结果是()A.4B.-4C.1D.-12.(2021宁波,1,4分)在-3,-1,0,2这四个数中,最小的数是()A.-3B.-1C.0D.23.(2022舟山,5,3分)估计√6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间4.(2022舟山,17(1),3分)计算:√83-(√3-1)0.5.(2022温州,17(1),5分)计算:√9+(-3)2+3-2-|−19|.6.(2022绍兴,17(1),4分)计算:6tan 30°+(π+1)0-√12.7.(2022金华,17,6分)计算:(-2 022)0-2tan 45°+|-2|+√9.8.(2021温州,17(1),5分)计算:4×(-3)+|-8|-√9+(√7)0.9.(2021丽水,17,6分)计算:|-2 021|+(-3)0-√4.考点3科学记数法1.(2022舟山,3,3分)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251 000 000人次,数据251 000 000用科学记数法表示为() A.2.51×108 B.2.51×107C.25.1×107D.0.251×1092.(2022绍兴,2,4分)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320 000吨二氧化碳.数字320 000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×1043.(2022金华,3,3分)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16 320 000吨,数16 320 000用科学记数法表示为()A.1 632×104B.1.632×107C.1.632×106D.16.32×1054.(2022湖州,2,3分)2022年3月23日下午,“天宫课堂”第2课在中国空间站开讲,神舟十三号乘组三位航天员翟志刚、王亚平、叶光富进行授课,某平台进行全程直播.某一时刻观看人数达到3 790 000人.用科学记数法表示3 790 000,正确的是()A.0.379×107B.3.79×106C.3.79×105D.37.9×105考点4实数的开方与二次根式1.(2021湖州,2,3分)化简√8的正确结果是()A.4B.±4C.2√2D.±2√22.(2020杭州,1,3分)√2×√3= ()A.√5B.√6C.2√3D.3√23.(2020宁波,11,5分)实数8的立方根是.4.(2021丽水,12,4分)要使式子√x−3有意义,则x可取的一个数是.基础练一、选择题(每小题3分,共33分)1.(2022衢州开化一模,)22的相反数是()A.122B.−122C.22D.-222.(2022金华模拟,)-6的倒数是()A.6B.-6C.-16D.163.(2022衢州开化一模,)2022年北京冬奥会收视率创历届新高,某视频平台与北京冬奥会相关视频的播放总量突破6 000 000 000次,6 000 000 000用科学记数法可表示为() A.6×109 B.0.6×1010C.60×108D.6×10104.(2022衢州常山一模,)在-2,0,-1,2这四个数中,最小的数是()A.-2B.0C.-1D.25.(2022温州文成一模,)数√2,-2,0,3中为无理数的是()A.√2B.-2C.0D.36.(2022杭州西湖一模,)在下列各数中,比-2 021小的数是()A.2 022B.2 020C.-2 022D.-2 0207.(2022台州玉环一模,)如果向东走5米记作+5米,那么-3米表示()A.向东走5米B.向西走5米C.向东走3米D.向西走3米8.(2022金华婺城一模,)正数2的平方根可以表示为()A.22B.±√2C.√2D.−√29.(2022温州乐清一模,)计算(-3)×5的结果是()A.2B.-2C.15D.-1510.(2022福建,)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.-√2B.√2C.√5D.π11.(2022台州玉环一模,)小明在学习《实数》这一章时,用两个面积为1的正方形以如图所示的方式拼出一个面积为2的正方形,则这个面积为2的正方形的边长的值大约在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间二、填空题(每小题4分,共4分)12.(2022宁波余姚一模,)若二次根式√3−x有意义,则x的取值范围是.三、解答题(共33分) 13.(2022福建,)计算:√4+|√3-1|-2 0220.14.(2022嘉兴嘉善一模,)计算:2 0220+(12)−1−√18.15.(2022杭州上城一模,)计算:√9+22−√83.16.新考法(2021河北,)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元. (1)用含m ,n 的代数式表示Q ;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q 的值.提分练一、选择题(每小题3分,共15分) 1.(2022台州椒江一模,)若a 的相反数是2 022,则a 为( )A.-2 022B.2 022C.-12 022 D.12 022 2.(2022宁波江北二模,)无论x 取什么数,总有意义的代数式是( )A.√x 2B.4xx 3+1 C.1(x−2)2 D.√x +33.(2022杭州上城一模,)斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路.某人行横道全长24 m,小明以1.2 m/s的速度过该人处时,9秒倒计时灯亮了.小明要在倒计时结束前通过马路,他的速度行横道,行至13至少要提高到原来的()A.1.1倍B.1.4倍C.1.5倍D.1.6倍4.(2022杭州萧山二模,)已知a>0,a+b<0,则下列结论正确的是()>-1 D.a2+ab>0A.-a<bB.a-b<0C.ab5.(2022新疆,)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104二、填空题(每小题4分,共24分)6.(2022陕西,)实数a,b在数轴上对应点的位置如图所示,则a-b.(填“>”“=”或“<”)7.(2022杭州西湖一模,)如图,点A,B分别表示数-x+3,x,则x的取值范围为.8.(2021丽水三模,)在如图所示的方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格中的实数之积为 .9.(2021台州模拟,)观察下面的变化规律:21×3=1−13,23×5=13−15,25×7=15−17,27×9=17−19,……. 根据上面的规律计算:21×3+23×5+25×7+⋯+22 019×2 021= . 10.新考法(2022北京,)甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的质量及包裹中Ⅰ号、Ⅱ号产品的质量如下:甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂. (1) 如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案 (写出要装运包裹的编号). 11.新设问(2022湖南长沙,)当今是大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力,看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1 000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1 000个方格中只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码.现有四名网友对2200的理解如下:YYDS (永远的神):2200就是200个2相乘,它是一个非常非常大的数; DDDD (懂的都懂):2200等于2002; JXND (觉醒年代):2200的个位数字是6;QGYW (强国有我):我知道210=1 024,103=1 000,所以我估计2200比1060大. 其中对2200的理解错误..的网友是 (填写网名字母代号). 三、解答题(共31分) 12.(2022温州洞头二模,)计算:√9+2×(-3)+|-4|-(√5)0.13.(2022宁波余姚一模,)计算:|-2|+(13)−1-(√3-2 022)0.14.(2022金华婺城一模,)计算:(3-π)0-2sin 30°-√12+|1−2√3|.15.(2021绍模拟,)【算一算】如图①,点A、B、C在数轴上,B为AC的中点,点A表示-3,点B表示1,则点C表示的实数为,AC的长为;【找一找】−1、如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数√22√2+1,Q是AB的中点,则点是这个数轴的原点;2【画一画】如图③,点A、B分别表示实数c-n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹).图①图②图③。

2020中考数学总复习 第一章数与式 1.6 二次根式

2020中考数学总复习 第一章数与式 1.6  二次根式

2020中考数学总复习(人教数学)第一章 数与式1.6 二次根式课标解读1. 了解二次根式、最简二次根式的概念,了解二次根式加、减、乘、除运算法则,会运用它们进行有关的简单运算.2. 会进行二次根式的化简和二次根式的混合运算.知识梳理知识点一 二次根式的概念 形如)0(≥a a 的式子叫做二次根式,它具有双重非负性,即二次根式a 必须满足:当0≥a 时,0≥a .知识点二 二次根式的几个重要性质(1)=2)(a a )0(≥a .(2)=2a a =⎩⎨⎧<-≥)0()0(a a a a .(3)ab ).00≥≥b a ,(4)=b a ba )00(>≥b a ,. 知识点三 二次根式的运算1.最简二次根式:同时满足以下两个条件的二次根式,叫做最简二次根式.(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数不含分母.2.同类二次根式:几个二次根式化简后,如果被开方数相同,那么这几个二次根式就是同类二次根式.3.二次根式的加减:先将二次根式化简,再将同类二次根式合并,合并的方法与合并同类项的法则相同.4.二次根式的乘除: 乘法法则:=⋅b a ab (00≥≥b a ,)除法法则:=b a ba (00>≥b a ,) 5. 二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序相同,有理数的加法交换律、结合律,乘法的交换律、结合律、分配律以及多项式中的乘法公式,都适用于二次根式的运算.基础训练1. 函数92-=x x y 中的自变量x 的取值范围是( B ) A. 0≥x B.30≠≥x x 且 C.3±≠x D.30≠>x x 且2. 下列计算正确的是(C )A. 12223=-B.725=+C.3313= D.35332=+ 3. 下列二次根式中,与6是同类二次根式的是( B )A. 18B.54C.6.0D.163 4.化简=-+-2)4(2ππ 2 .5.若x x x -=+-1122,则x 的取值范围是1≤x .6.若实数y x ,满足44422+-+-=x x y ,则y x -2=0或-8.7.计算=+-)2332)(3223( 6 .8.计算:(1) )4812814(2-+ 解:原式=)343222(2-+)3222(2-=.624-=(2) )111711(117÷⋅ 解:原式=11711117⨯⨯ 1111711117=⨯⨯=1. 下列各式中是最简二次根式的是( D )A. 20B.9C.5.0D.52. 若n 24是整数,则正整数n 的最小值是(C )A.2B.3C.6D.83. 实数b a ,在数轴上对应点的位置如图所示,化简2)(b a a -+的结果是( A )A. b a +-2B.b a -2C.b -D.b4. 化简aa 1-的结果是(C ) A. a - B.a - C.a -- D.a5.使代数式1)2(11-++-++x x x x 有意义的x 的取值范围是011≠≤≤-x x ,且. 6.若26=-=+ab b a ,,则a b b a +的值为23. 7.化简=-+20182020)32()32(347-. 8.先仔细观察下面按照一定规律排列的各式,再解答后面提出的问题.① 312311=+ ② 413412=+ ③ (5)14513=+ (1)接下来第④个式子是615614=+; (2)请用含正整数n 的等式写出第n 个式子,并证明你的结论.解:当n 为正整数时,.21)1(21++=++n n n n 证明:左边=21)1(2)1(2122122++=++=+++=++n n n n n n n n n =右边 即.21)1(21++=++n n n n1.(2017,恩施)函数131-+-=x x y 的自变量x 的取值范围是( B ) A. 1≥x B.31≠≥x x 且 C.3≠x D.31≤≤x2.(2019,恩施)函数x x y 3211--+=中,自变量x 的取值范围是(D ) A.32≤x B.32≥x C.132-≠<x x 且 D.132-≠≤x x 且 3.(2019,绵阳))单项式y x a 1--与y x b 12-是同类项,则a b =__1____.4.(2018,广东)已知01=-+-b b a ,则=+1a 2 .。

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
实数的概念与分类
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.

中考数学 考点系统复习 第一章 数与式 第二节 数的开方与二次根式

中考数学 考点系统复习 第一章 数与式 第二节 数的开方与二次根式

x 7.(2022·常德)要使代数式 x-4有意义,则 x 的取值范围为 xx>>44.
8.(2022·天津)计算( 19+1)( 19-1)的结果等于 1188.
9.(2022·山西)计算 18×
1 2的结果为
33
.
10.(2022·泰安)计算: 8× 6-3 43=22 3 . 11.(2022·宿迁)满足 11≥k 的最大整数 k 是 33 . 12.已知 2× 12= 2×a 3=a b,则 a=22 ,b=6 6 . 13.(2022·荆州)若 3- 2的整数部分为 a,小数部分为 b,则代数式(2
+ 2a)·b 的值是 2 2 .
14.已知 a=21-1+(- 3)0,b=( 3+ 2)·( 3- 2),则 a+b=22 .
15.(2022·宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著
作,书中提出了已知三角形三边a,b,c求面积的公式,其求法是“以
小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减
第二节 数的开方与二次 根式
1.-27 的立方根是 A.3 B.-3 C.9
D.-9
( B)
2.(2022·北部湾模拟)下列属于最简二次根式的是
A.
1 3
B. 2
C. 9
D. 0.1
(B )
3.(2022·河北)下列正确的是 A. 4+9=2+3 B. 4×9=2×3 C. 94=32 D. 4.9=0.7
(B)
4.下列计算中正确的是 A.3 2- 2=3 B. 2× 3= 6 C. 2+ 3= 5 D. 12÷ 3=4
( B)
5.(2022·舟山)估计 6的值在 A.4 和 5 之间 B.3 和 4 之间 C.2 和 3 之间 D.1 和 2 之间

人教版中考第一轮复习九年级第一章:数与式(含答案)

人教版中考第一轮复习九年级第一章:数与式(含答案)

第一章:数与式 1.1:实数考点一:实数的相关概念 实数 ✧实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负无理数负分数负有理数负实数零正无理数正整数正有理数正实数实数✧ 实数大小的比较在数轴上表示两个数的点,右边的点表示的数 ,左边的点表示的数 。

正数大于零,负数小于零;两个正数,绝对值大的较 ;两个负数,绝对值大的较 。

设a 、b 是任意两实数:若0>-b a 。

则a b ;若0=-b a 。

则b a =;若0<-b a 。

则a b ;数轴: ✧数轴的三要素为 、正方向和单位长度。

数轴上的点与 一 一对应。

相反数、倒数、绝对值 ✧ 实数a 、b 互为相反数,则=+b a 。

实数a 、b 互为倒数,则=ab 。

✧绝对值:()()⎩⎨⎧<≥=00a a a aa 的集合意义是数轴上表示数a 的点与原点的距离。

数的乘方与开方 ✧ 负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0; ✧ 正数有两个平方根,负数没有平方根,0的平方根是0,正数的正的平方根叫做 。

✧ 若a b =3,则b 叫做a 的立方根。

考点1 正数、负数的意义1.(2019 滨州)2.(2019 云南)若零上8℃记作+8℃,则零下6℃记作 ℃.3.(2019 乐山)某天早晨的气温是℃,到中午升高了℃,晚上又降低了℃.则晚上的温度是 .4.(2019 乐山)4.一定是( )A. 正数B. 负数C.0D.以上选项都不正确 考点2 实数及其分类1.(2019·玉林)下列各数中,是有理数的是( )A .ΠB .1.2 C. 2 D.33 2.(2018·重庆)下列四个数中,是正整数的是( ) A .-1 B .0 C.12D .13.(2018·菏泽)下列各数:-2,0,13,0.020 020 002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1(2018巴中)1. 下列各数:,0,,023,,,0.30003……,中无理数个数为( )A . 2个B . 3个C .4个D .5个4.(2019·桂林)若海平面以上1 045米,记作+1 045米,则海平面以下155米,记作( ) A .-1 200米 B .-155米 C .155米 D .1 200米考点3 数轴、相反数、绝对值、倒数 5.(2019·威海)-3的相反数是( )A .-3B .3 C.13 D .-136.(2019·德州)-12的倒数是( )A .-2 B.12 C .2 D .17.(2019·遂宁)-|-2|的值为( )A. 2 B .- 2 C .± 2 D .28.(2019·陇南)如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A.0 B.1 C.2 D.39.(2018·攀枝花)如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q10.(2019·成都)若m+1与-2互为相反数,则m的值为.考点4 科学记数法和近似数11.(2019·荆门)已知一天有86 400秒,一年按365天计算共有31 536 000秒,用科学记数法表示31 536 000正确的是( )A.3.153 6×106 B.3.153 6×107 C.31.53 6×106 D.0.315 36×10812.(2019·潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( )A.10.02亿 B.100.2亿 C.1 002亿 D.10 020亿13.(2019·烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A.1.5×10-9秒 B.15×10-9秒 C.1.5×10-8秒 D.15×10-8秒14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是( )A.131 000 B.0.131×106 C.1.31×105 D.13.1×104【能力提升】15.(2019·天水)已知|a|=1,b是2的相反数,则a+b的值为( )A.-3 B.-1 C.-1或-3 D.1或-316.(2019·枣庄)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A.-(a+1) B.-(a-1) C.a+1 D.a-117.(2019·泰安)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( )A.4.2×109米 B.4.2×108米 C.42×107米 D.4.2×107米第2讲实数的运算【基础过关】考点1 平方根、算术平方根、立方根1.(2018·安顺)4的算术平方根是( )A .± 2 B. 2 C .±2 D .2 2.(2019·烟台)-8的立方根是( )A .2B .-2C .±2D .-2 2 3.(2019·南京)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根 4.(2019·通辽)16的平方根是( )A .±4B .4C .±2D .+2 考点2 实数的大小比较5.(2019·菏泽)下列各数中,最大的数是( )A .-12 B.14 C .0 D .-26.(2019·常德)下列各数中比3大比4小的无理数是( )A.10B.17 C .3.1 D.1037.(2019·宜昌)如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的点是( )A .点AB .点BC .点CD .点D 考点3 实数的运算8.(2019·淄博)比-2小1的数是( )A .-3B .-1C .1D .3 9.(2019·天津)计算(-3)×9的结果等于( )A .-27B .-6C .27D .6 10.(2019·聊城)计算:(-13-12)÷54= .11.(2019·十堰)计算:(-1)3+|1-2|+38.12.(2019·黄石)计算:(2 019-π)0+|2-1|-2sin45°+(13)-1.【能力提升】13.(2019·广东)实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a>bB .|a|<|b|C .a +b>0 D.ab <014.(2019·贺州)计算11×3+13×5+15×7+17×9+…+137×39的结果是( )A.1937 B.1939 C.3739 D.383915.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下3x 2=,把显示结果输入如图的程序中,则输出的结果是 .16.64的算术平方根是 。

2023年中考数学总复习第一章《数与式》第二节 二次根式

2023年中考数学总复习第一章《数与式》第二节 二次根式

2023年中考数学总复习第一章《数与式》第二节二次根式一、选择题1.[2020·邯郸丛台区二模]下列二次根式中,是最简二次根式的是()A.B.C.D.2.[2020·上海]下列二次根式中,与是同类二次根式的是()A.B.C.D.3.[2020·衡水模拟]下列计算正确的是()A.B.C.D.4.[2020·宜昌]对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.B.C.D.5.[2020·石家庄模拟]如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与BC.A与C D.B与C(第5题图)6.[2020·原创]下列运算正确的是()A. B.C. D.7.[2020·聊城]计算的结果正确的是()A.1B.C.5D.98.[人八下课本P11,T12高仿]如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78cm2B.cm2C.cm2D.cm2(第8题图)9.[易错][2020·秦皇岛模拟]按如图所示的运算程序,若输入数字“9”,则输出的结果是()A.7B.C.1D.(第9题图)二、填空题10.[2020·扬州]代数式在实数范围内有意义,则实数x的取值范围是_______.11.[2020·保定模拟]若2□=6,则“□”内的运算符号为_______.12.[2020·河北模拟]计算×-的结果是_______.13.[2020·保定定兴县一模]==_______.14.[2020·哈尔滨]计算的结果是______.15.[2020·常德]计算:=_______.16.[2020·山西]计算:=_______.三、解答题17.[2019·石家庄新华区模拟]计算:.18.[创新][2020·遵化二模]利用平方差公式可以进行简便计算:例1:99×101=(100-1)(100+1)=1002-12=10000-1=9999;例2:39×410=39×41×10=(40-1)(40+1)×10=(402-12)×10=(1600-1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-3.∴a2-b2=32-( 10-3)2=9-(10-6 10+9)=-10+6 10
【例 3】 (1)已知 x=2- 3,y=2+ 3,求 x2+xy+y2 的值; (2)已知 x+1x=-3,求 x-1x的值.
解:(1)原式=(x+y)2-xy=16-1=15 (2)(x-1x)2=(x+1x)2-4=5,x-1x=± 5
③( 10-3)2014·( 10+3)2015. 解:原式=( 10-3)2014×( 10+3)2014×( 10+3)=[( 10-
3)( 10+3)]2014×( 10+3)=1×( 10+3)= 10+3
(3)已知 10的整数部分为 a,小数部分为 b,求 a2-b2 的值. 解:∵3< 10<4,∴ 10的整数部分 a=3,小数部分 b= 10
【点评】 解决根式估值类问题有两种方法:(1)记住常见的无 理数的近似值,如 2≈1.414, 3≈1.732 等;(2)估计无理数在哪两 个整数之间,如 9< 10< 16,即 3< 10<4,故 10是 3 到 4 之 间的数.通常所采用的方法为:一般先对根式平方,找出与平方后 所得数字相邻的两个开得尽方的整数,然后再对这两个整数进行开 方,就可以确定这个根式在哪两个整数之间.
[对应训练] 4.(1)(2015·南京)估计 52-1介于( C ) A.0.4 与 0.5 之间 B.0.5 与 0.6 之间 C.0.6 与 0.7 之间 D.0.7 与 0.8 之间 (2)(2014·安徽)设 n 为正整数,且 n< 65<n+1,则 n 的值为
(D ) A.5 B.6 C.7 D.8
(3)已知 a,b,c 是△ABC 的三边长,试化简: (a+b+c)2 + (a-b-c)2 + (b-c-a)2 +
(c-a-b)2. 解:原式=|a+b+c|+|a-b-c|+|b-c-a|+|c-a-b|=(a+b+
c)+(b+c-a)+(c+a-b)+(a+b-c)=2a+2b+2c
【点评】 (1)对于二次根式,它有意义的条件是被开方数大于 或等于 0;(2)注意二次根式性质( a)2=a(a≥0), a2=|a|的区别,判 断出各式的正负性,再化简.
值为( C )
A.9 B.±3 C.3 D.5
(2)(2015·孝感)已知 x=2- 3,则代数式(7+4 3 )x2+(2+
3)x+ 3的值是( C )
A.0 B. 3 C.2+ 3 D.2- 3
(3)(2014·德州)若 y=
x-4+ 2
4-x-2,则(x+y)y=___14____.
【例 4】 (1)(2015·天津)估计 11的值在( C ) A.在 1 和 2 之间 B.在 2 和 3 之间 C.在 3 和 4 之间 D.在 4 和 5 之间 (2)(2015·苏州)若 m= 22×(-2),则有( C ) A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2
试题 已知 a=2- 3,求aa2+-11- a2a--21a+1的值. 错解 解:原式=(a+(1)a+(1)a-1)- (aa--11)2=a-1-aa- -11=a- 2. ∴当 a=2- 3时, 原式=2- 3-2=- 3.
剖析 (1)题目中的隐含条件 为 a=2- 3 <1,所以 a2-2a+1= (a-1)2=|a-1|=1-a,而不是 a-1; (2)注意挖掘题目中的隐含条件,是解决数学问题的关键之一, 上题中的隐含条件 a=2- 3<1 是进行二次根式化简的依据,应注 重分析能力的培养,提高解题的正确性.
[对应训练] 1.(1)(2015·随州)若代数式x-1 1+ x有意义,则实数 x 的取值 范围是( D ) A.x≠1 B.x≥0 C.x≠0 D.x≥0 且 x≠1 (2)如果 (2a-1)2=1-2a,则( B ) A.a<12 B.a≤12 C.a>12 D.a≥12 (3)若 20n是整数,则正整数 n 的最小值为___5___.
【点评】 (1)x2+xy+y2 是一个对称式,可先求出基本对称式 x+y=4,xy=1,然后将 x2+xy+y2 转化为(x+y)2-xy,整体代入 即可;(2)注意到(x-1x)2=(x+1x)2-4,可得(x-1x)2=5,x-1x=± 5.
3.(1)已知 m=1+ 2,n=1- 2,则代数式 m2+n2-3mn的
斐波那契(约1170-1250)是意大利数学家,他研究了一列数, 这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着一列数 称为数列).后来人们在研究它的过程中,发现了许多意想不到的结 果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数 恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在 实际生活中也有广泛的应用.
(3)计算: 24- 32+ 23-2 16; 解:原式=2 6-12 6+13 6-13 6=32 6 (4)计算: 48÷ 3- 12× 12+ 24. 解:原式= 16- 6+2 6=4+ 6
【点评】 (1)先把各二次根式化为最简二次根式,再进行二次 根式的乘除运算,然后合并同类二次根式;(2)二次根式化简,依据 ab = a· b(a≥0,b≥0), ba= ba(a≥0,b>0),前者将被开方数分解, 后者分子、分母同时乘一个适当的数使分母变成一个完全平方数,即 可将其移到根号外;(3)二次根式加减,即化简之后合并同类二次根 式;(4)二次根式乘除结果要化为最简二次根式.
5)=1

2
个数:当
n=2
时,
1 1+ 5[( 2
5)n-(1-2
5)n]=
1 5
1+ [( 2
5
)2

(
1- 2
5 )2] =
1 5
(
1+ 2
5

1- 2
5 1+ )( 2
5

1- 2
5)=
1 5
×1× 5=1
【例 1】 (1)下列各式中
2,3 5,- 3, -7, x2+1,一定是二次根式的有( B )个. A.2 B.3 C.4 D.5 (2)等式 2kk--31= 2kk--31成立,则实数 k 的范围是( D ) A.k>3 或 k<12 B.0<k<3 C.k≥12 D.k>3
[对应训练] 2.(1)(2015·聊城)计算:( 2+ 3)2- 24=___5___. (2)计算: ① 24× 13-4× 18×(1- 2)0; 解:原式=2 6× 33-4× 42×1=2 2- 2= 2 ②(3 2-1)(1+3 2)-(2 2-1)2;
解:原式=(3 2)2-1-[(2 2)2-4 2+1]=18-1-8+4 2-1=8 +4 2
数学
山西省
第一章 数与式 二次根式及其运算
1.二次根式的概念 一般地,我们把形如___a____的式子叫做二次根式,有意义的条件: ___a_≥_0____.
最简二次根式
(1)被开方数不含分母 必须满足两个条件(2)被开方数中不含有开得尽
方的因数或因式.
4.同类二次根式 几个二次根式化简为最简二次根式后,如果被开方数相同,那么 这几个二次根式叫同类二次根式. 5.二次根式的运算 (1) 加 法 : 可 以 先 将 二 次 根 式 化 成 最 简 二 次 根 式 , 再 将 __同__类__二__次__根__式______进行合并; (2)乘法: a· b=__a_b_(_a≥__0_,__b_≥__0_)__; (3)除法: ba=_____ba_(_a_≥__0_,__b_>__0_)_____.
正解 解:∵a=2- 3<1,∴a-1<0. ∴ a2-2a+1= (a-1)2=|a-1|=1-a. ∴原式=(a+(1)a+(1)a-1)-1a--1a=a -1+1=a. ∴当 a=2- 3时,原式=2- 3
2016 年中考预测题 1. 16的算术平方根是( A ) A.4 B.±4 C.2 D.±2 2.已知:y= x-2+ 4-2x+3,则 xy 的值为__8____.
(1)某些二次根式的题目中隐含着“a≥0”这个条件,做题时要善于 挖掘隐含条件,巧妙求解;
(2)若几个非负数的和为零,则每一个非负数都等于零.
2.求值问题“五招” (1)巧用平方;(2)巧用乘法公式;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
命题点 1:二次根式的性质
(2013·山西)下列计算错误的是( B )
A.x3+x3=2x3
B.a6÷a3=a2
C. 12=2 3 D.(13)-1=3

命题点 2:二次根式的运算 1.(2012·山西)下列运算正确的是( D ) A. 4=±2 B.2+ 3=2 3 C.a2·a4=a8 D.(-a3)2=a6
2.(2015·山西)阅读与计算:请阅读以下材料,并完成相应的 任务.
【例 2】 (1)(2015·宁夏)下列计算正确的是( B ) A. 3+ 2= 5 B. 12÷ 3=2 C.( 5)-1= 5 D.( 3-1)2=2 (2)(2014·济宁)如果 ab>0,a+b<0,那么下面各式:① ba= ba,② ba· ba=1,③ ab÷ ba=-b.其中正确的是( B ) A.①② B.②③ C.①③ D.①②③
6.二次根式的估值 二次根式的估算,一般是对根式平方,找出与平方后所得数字相邻 的两个开方开得尽方的整数对其进行开方,就可以确定这个根式在 哪两个整数之间.
1.“双重非负性” 算术平方根 a具有双重非负性,一是被开方数 a 必须是非负数,
即 a≥0;二是算术平方根 a的值是非负数,即 a≥0.算术平方根的非 负性主要用于两方面:
斐波那契数列中的第
n
个数可以用
1 1+ 5[( 2
5)n-(1-2
5)n]表示
(其中,n≥1).这是用无理数表示有理数的一个范例.
请根据以上材料,通过计算求出斐波那契数列中的第 1 个数和第
相关文档
最新文档