概率论例题汇总
概率论典型例题
P{ X 0} P{ X 2}
P{ X 0} P{ X 2} P{ X 5}
22 . 29
---
例2 设离散型随机变量 X 的分布函数为
0, x 1,
a,
1 x 1,
F
(
x
)
2 3
a,
1 x 2,
a b, x 2.
且 P{ X 2} 1 ,试确定常数a,b,并求 X 的分布律. 2
---
例5 设某仪器上装有三只独立工作的同型号电子 元件,其寿命(单位 : 小时)都服从同一指数分布,其
中参数 1 600,试求在仪器使用的最初200小时
内,至少有一只元件损坏的概率a. [思路] 以 Ai (i 1,2,3) 分别表示三个电子元件“在 使用的最初 200 小时内损坏”的事件, 于是 a P{ A1 A2 A3 } 1 P( A1 A2 A3 )
C B AB.
---
例3 假设目标出现在射程之内的概率为0.7,这时 射击命中目标的概率为0.6, 试求两次独立射击至 少有一次命中目标的概率.
[思路] 引进事件 A {目标进入射程}; Bi {第i次射击命中目标}, i 1,2.
故所求概率为事件B B1 B2的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
---
例4 设有来自三个地区的各10名、15名和25名考 生的报名表,其中女生的报名表分别为3份、7份和
5 份, 随机地取一个地区的报名表,从中先后抽出 两份.
(1) 求先抽到的一份是女生表的概率 p;
(2)已知后抽到的一份表是男生表,求先抽到 的一份是女生表的概率 p.
[思路] 由于抽到的表与来自哪个地区有关,故此 题要用全概率公式来讨论.
典型例题_概率论
第一部分 随机事件及其概率例 1 设A B C 、、为三个随机事件,试用A B C 、、表示下列事件。
1)“A B 与发生,而C 不发生”(表示为A B C ); 2)“三个事件都发生”(表示为A B C ); 3)“三个事件至少有一个发生”(表示为A B C⋃⋃);4)“三个事件恰好有一个发生”(表示为A B C A B C A B C++);5)“三个事件至少有两个发生”(表示为A B B C A C ⋃⋃或A B CA B C A B C A B C+++)6)“三个事件至多有两个发生”(表示为A B C 或A B C⋃⋃)。
例2 将n 只球随机地放入N (N ≥n )个盒子中去,假定盒子装球容量不限, 试求1)每个盒子至多装一只球的概率,2)指定其中一个盒子装一只球的概率。
解: 设事件A =“N 个盒子中,每个盒子至多装一只球”,事件B=“指定其中一个盒子装一只球”。
1)一个球放入N 个盒子中的放法有N 种,n 个球放入N 个盒子中的放法有nN 种。
假设固定前n 个盒子各装一球,其分配方法有!n 种,从N 个盒子中任取n 个盒子各装一球,取法有nN C 种,所以,事件A 的样本点数为nNC !n ,即事件A 的概率为nn NNn CA P !)(=2)若指定一个盒子里装一只球,首先考虑球的取法有1nC 种,其次,剩余的1N-个盒子中,1n -只球的放法有1(1)n N --种,所以事件B 的样本点数为1n C 1(1)n N --,即事件B 的概率为11(1)()n n nC N P B N--=注:还可以将模型推广,如生日问题,求事件“n 个人中至少有两人的生日相同”的概率。
设想一年有365天,将“天”看成‘盒子’,n 个人好比‘n 只球’,考虑事件A 的对立事件A =“n 个人在一年中生日全不相同”,它等价于“n 个球装入365个盒子中各装一球”,由前面的计算知:nnn C A P 365!)(365=,所以nnn C A P 365!1)(365-=。
概率论考试题以及解析汇总
.试题一一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。
A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( )A.919910098.02.0CB.i i i i C-=∑100100910098.02.0C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X EA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。
( )A. 0B. 1C. 26D. -16、设X ~)3,14(N ,则其概率密度为( )A.6)14(261--x e πB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计()A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为X123.PC 1/4 1/8则常数C 为( )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X近似的服从( )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( )A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:_________;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_________;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =___,B =____;4、随机变量X 的分布律为k C k XP )31()(==,k =1,2,3, 则C=_______;5、设X ~b (n,p )。
概率论_习题集(含答案)
《概率论》课程习题集一、计算题1. 10只产品中有2只次品, 在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)一只是正品,一只是次品;(3)第二次取出的是次品。
2. 一个学生接连参加同一课程的两次考试。
第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为.2/p 求 (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率; (2)若已知他第二次已经及格,求他第一次及格的概率3. 用某种方法普查肝癌,设:A ={ 检验反映呈阳性 },C ={ 被检查者确实患有肝癌 },已知()()5.C A P ,.C A P 90950==()5.C P 000=且现有一人用此法检验呈阳性,求此人真正患有肝癌的概率.4. 两台机床加工同样的零件,第一台出现次品的概率是0.03, 第二台出现次品的概率是0.02,加工出来的零件放在一起,并且已知第一台加工的零件比第二台的多一倍。
(1)求随意取出的零件是合格品的概率(2)如果随意取出的零件经检验是次品,求它是由第二台机床加工的概率5. 某人有5把钥匙,但忘了开房门的是哪一把,现逐把试开,求∶(1) 恰好第三次打开房门锁的概率(2) 三次内打开房门锁的概率(3) 如5把钥匙内有2把是开房门的,三次内打开房门锁的概率6. 设X 是连续型随机变量,其密度函数为()()⎩⎨⎧<<-=其它020242x x x c x f求:(1);常数c (2){}.1>X P7. 设X ~⎩⎨⎧≤≤=其他,02,)(x o cx x f 求(1)常数c ;(2)分布函数)(x F ;8. 一工厂生产的某种元件的寿命X (以小时计)服从参数为σμ,160= 的正态分布。
若要求,80.0)200120(≥≤<X P 允许σ最大为多少?9. 证明:指数分布有无记忆性(或称无后效性),即证:如果)(~λE X ,则有)()|(t X P s X t s X P >=>+>,0,0≥≥t s10. 对球的直径作测量,设测量值均匀地分布在],[b a 内,求球的体积的概率密度.11. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其他,021),11(2)(2x xx f ,求X 的分布函数。
概率论试题及答案
概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
概率论习题试题集
第一章随机事件与概率一、填空题1.已知随机事件 A 的概率P( A)0.5 ,事件 B 的概率P( B)0.6 ,条件概率P(B A)0.8 ,则P(A B)__________ ____ 。
2. 设 A,B为随机事件,已知P( A),,B),则P(AB)____________。
0.3 P(B)0.4 P( A3.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6 和,现目标被击中,则它是甲命中的概率为 ___________ 。
4.某射手在 3 次射击中起码命中一次的概率为0.875 ,则该射手在一次射击中命中的概率为___________ 。
5.设随机事件 A在每次试验中出现的概率为1,则在 3次独立试验中 A 起码发生一次的概率为3___________ .6.袋中有黑白两种球 , 已知从袋中任取一个球是黑球的概率为1, 现从袋中不放回地挨次取球, 则第 k 4次获得白球的概率为___________ 。
7.三台机器互相独立运行,设第一,第二,第三台机器不发生故障的概率挨次为,,,则这三台机器中起码有一台发生故障的概率是___________ 。
8.电路由元件 A 与两个并联的元件 B, C 串连而成,若 A, B,C 破坏与否互相独立,且它们破坏的概率挨次为,,0.1 ,则电路断路的概率是___________ 。
9. 甲乙两个投篮,命中率分别为,,每人投 3 次,则甲比乙进球数多的概率是___________ 。
10. 3 人独立破译一密码,他们能独立译出的概率分别是1115,,,则此密码被译出的概率是34________。
二、选择题1. 关于任意两个事件 A, B,有P( A B) 为()(A)P( A)P( B)(B)P(A)P(B)P(AB)(C)P( A)P(AB)(D)P(A)P(B)P(AB)2. 设 A, B 为两个互斥事件,且P( A)0, P(B)0 ,则以下正确的选项是()(A)P(A B)P(A)(B)P(B A)0(C ) P( AB) P( A)P( B) (D ) P(B A) 03. 其人独立地投了 3 次篮球, 每次投中的概率为 0.3 ,则其最可能失败 (没投中) 的次数为 ()(A ) 2 (B )2 或 3 (C ) 3(D )14. 袋中有 5 个球( 3 个新, 2 个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )(A )3(B )354(C )2(D )34105. n 张奖券中含有 m 张有奖的, k 个人购置,每人一张,此中起码有一个人中奖的概率是( )(A )m(B )1C n k m C n mC n kC m 1C n k m 1k C m r(C )( D )1C n kC n kr 三、计算题( 随机事件、随机事件的关系与运祘 )1.指出下边式子中事件之间的关系:⑴AB A ;⑵ABC A ; ⑶A B A 。
高等数学(概率论)习题及解答
高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。
1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。
2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。
现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。
求当下为晴天时,随后一天为阴天的概率。
2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。
根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。
以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。
概率论例题汇总
边缘分布为
7
若改为无放回摸球,则(X,Y)的联合分布律为
X
Y
0
3 10 3 10 3 5
1
3 10 1 10 2 5
3 5 2 5
X
Y
0
9 25 6 25
3 5
1
6 25 4 25 2 5 3 5 2 5
0
1
0
1
边缘分布为
与有放回的情况比较, 两者的联合分布完全不同,
i 1
5 0.1 2 0.2 1 0.3 4 0.4 1 .
EX 2 xi2 pi
i 1 4
4 0.1 1 0.2 0 0.3 1 0.4 1 .
24
例2 设随机变量 X ~ N (0,1), 求 E ( X 2 ) 解 E( X )
4 xy, 0 x 1, 0 y 1 (1) f1 ( x, y ) 其他 0,
8 xy, 0 x y, 0 y 1 (2) f 2 ( x, y ) 其他 0,
讨论X ,Y 是否独立?
16
4 xy, 0 x 1, 0 y 1 f1 ( x, y ) 其他 0, 1 解 (1)经计算得边缘密度为
( 3 ) 概 率 P{ X Y 1 } .
y x
解 (1)
1 0
x 0
f ( x , y ) dxdy
0 1 x
dx cy( 2 x ) dy
c 1 5 24 2 ( 2 x ) x dx c 1 , c . 5 2 0 24
概率论典型例题共102页
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
概率论习题全部
习题一1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”;(2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”;(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在 2 000到2 500小时之间”.2. 投掷三枚大小相同的均匀硬币,观察它们出现的面.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面};(3)如记i A ={第i 枚硬币出现正面}(i =1,2,3),试用123,,A A A 表示事件A ,B ,C .3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件:(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -.4. 在区间]2,0[上任取一数,记112A x x ⎧⎫=<≤⎨⎬⎩⎭,1342B x x ⎧⎫=≤≤⎨⎬⎩⎭,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .5. 用事件A ,B ,C 的运算关系式表示下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中至少有一个出现;(5)三个事件都不出现;(6)不多于一个事件出现;(7)不多于二个事件出现;(8)三个事件中至少有二个出现.6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设i A 表示事件“第i 次抽到废品”,试用i A 的运算表示下列各个事件:(1)第一次、第二次中至少有一次抽到废品;(2)只有第一次抽到废品;(3)三次都抽到废品;(4)至少有一次抽到合格品;(5)只有两次抽到废品.7. 接连进行三次射击,设i A ={第i 次射击命中}(i =1,2,3),试用321,,A A A 表示下述事件:(1)A={前两次至少有一次击中目标};(2)B={三次射击恰好命中两次};(3)C={三次射击至少命中两次};(4)D={三次射击都未命中}.8. 盒中放有a个白球b个黑球,从中有放回地抽取r次(每次抽一个,记录其颜色,A={第i次抽到白球}(i=1,2,…,r),试用然后放回盒中,再进行下一次抽取).记iA}表示下述事件:{i(1)A={首个白球出现在第k次};(2)B={抽到的r个球同色},≤≤.其中1k r*9. 试说明什么情况下,下列事件的关系式成立:=.(1)ABC=A;(2)A B C A习题二1. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. 一口袋中有5个红球及2个白球.从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球.设每次取球时口袋中各个球被取到的可能性相同.求:(1)第一次、第二次都取到红球的概率;(2)第一次取到红球、第二次取到白球的概率;(3)两次取得的球为红、白各一的概率;(4)第二次取到红球的概率.3. 一个口袋中装有6只球,分别编上号码1~6,随机地从这个口袋中取2只球,试求:(1)最小号码是3的概率;(2)最大号码是3的概率.4. 一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,一只是不合格品;(3)至少有1只是合格品.5. 从某一装配线上生产的产品中选择10件产品来检查.假定选到有缺陷的和无缺陷的产品是等可能发生的,求至少观测到一件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某人去银行取钱,可是他忘记密码的最后一位是哪个数字,他尝试从0~9这10个数字中随机地选一个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰子,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A ={其中恰有一位精通英语};(2)事件B ={其中恰有两位精通英语};(3)事件C ={其中有人精通英语}.10. 甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,现从两个袋中各取一球,求两球颜色相同的概率.11. 有一轮盘游戏,是在一个划分为10等份弧长的圆轮上旋转一个球,这些弧上依次标着0~9十个数字.球停止在那段弧对应的数字就是一轮游戏的结果.数字按下面的方式涂色:0看作非奇非偶涂为绿色,奇数涂为红色,偶数涂为黑色.事件A ={结果为奇数},事件B ={结果为涂黑色的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B ;(4))(AB P .12. 设一质点一定落在xOy 平面内由x 轴,y 轴及直线x +y =1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x =31的左边的概率. 13. 甲、乙两艘轮船都要在某个泊位停靠6 h ,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.14. 已知B A ⊂,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .15. 设A ,B 是两个事件,已知P (A )=0.5,P (B )=0.7,()P A B =0.8,试求:P (A -B )与P (B -A ).*16. 盒中装有标号为1~r 的r 个球,今随机地抽取n 个,记录其标号后放回盒中;然后再进行第二次抽取,但此时抽取m 个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k 个标号相同的概率.习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. 一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投入基金,再购买股票的概率是多少?(2)已知他已购买股票,再投入基金的概率是多少?4. 罐中有m 个白球,n 个黑球,从中随机抽取一个,若不是白球则放回盒中,再随机抽取下一个;若是白球,则不放回,直接进行第二次抽取,求第二次取得黑球的概率.5. 一个食品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:投诉原因 擦伤 凹痕 外观 保质期内18% 13% 32% 保质期后 12% 22% 3%如果收到一个消费者的投诉,已知投诉发生在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只白球,乙袋中装有8只红球,6只白球.求下列事件的概率:(1)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(2)合并两只口袋,从中随机地取1只球,该球是红球.8. 设某一工厂有A ,B ,C 三间车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%、4%、2%.如果从全厂总产品中抽取一件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C 生产的概率.9. 某次大型体育运动会有1 000名运动员参加,其中有100人服用了违禁药品.在使用者中,假定有90人的药物检查呈阳性,而在未使用者中也有5人检验结果显示阳性.如果一个运动员的药物检查结果是阳性,求这名运动员确实使用违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个白球6个黑球,乙袋中有4个白球2个黑球.先从甲袋中任取2球投入乙袋,然后再从乙袋中任取2球,求从乙袋中取到的2个都是黑球的概率.12. 设事件B A ,相互独立.证明:B A ,相互独立,B A ,相互独立.13. 设事件A 与B 相互独立,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B14. 已知事件A 与B 相互独立,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P . 15. 三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4,求此密码被译出的概率.16. 设六个相同的元件,如下图所示那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的.*17. (配对问题)房间中有n 个编号为1~n 的座位.今有n 个人(每人持有编号为1~n 的票)随机入座,求至少有一人持有的票的编号与座位号一致的概率.(提示:使用概率的性质5的推广,即对任意n 个事件12,,,n A A A ,有 1121111111()()(1)()(1)().)k k n nk k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤⎛⎫=-+⎪⎝⎭+-++-∑∑∑ *18. (波利亚(Pólya )罐子模型)罐中有a 个白球,b 个黑球,每次从罐中随机抽取一球,观察其颜色后,连同附加的c 个同色球一起放回罐中,再进行下一次抽取.试用数学归纳法证明:第k 次取得白球的概率为a a b+(1k ≥为整数).(提示:记{}k A k =第次取得白球,使用全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲乙两人各自独立地投掷一枚均匀硬币n 次,试求:两人掷出的正面次数相等的概率.20. 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率.21. 灯泡耐用时间在1 000 h 以上的概率为0.2,求:三个灯泡在使用1 000 h 以后最多只有一个坏了的概率.22. 某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为0.75,求:(1)在此时刻所有电梯都在运行的概率;(2)在此时刻恰好有一半电梯在运行的概率;(3)在此时刻至少有1台电梯在运行的概率.23. 设在三次独立试验中,事件A 在每次试验中出现的概率相同.若已知A 至少出现一次的概率等于2719,求事件A 在每次试验中出现的概率)(A P.*24. 设双胞胎中为两个男孩或两个女孩的概率分别为a及b.今已知双胞胎中一个是男孩,求另一个也是男孩的概率.25. 两射手轮流打靶,谁先进行第一次射击是等可能的.假设他们第一次的命中率分别为0.4及0.5,而以后每次射击的命中率相应递增0.05,如在第3次射击首次中靶,求是第一名射手首先进行第一次射击的概率.26. 袋中有2n-1个白球和2n个黑球,今随机(不放回)抽取n个,发现它们是同色的,求同为黑色的概率.*27. 3个外形相同但可辨别的球随机落入编号1~4的四个盒子,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒子的最小编号为2的概率.习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15i i p =(0,1,2,3,4,5)i =; (2)6)5(2i p i -=(0,1,2,3)i =; (3)251+=i p i (1,2,3,4,5)i =. 2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ⎛⎫<< ⎪⎝⎭;(3)(3)F (其中F (·)为X 的分布函数). 3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这口袋中任取一球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表示取出的3个球中最大号码,写出X 的分布律和分布函数.5. 在相同条件下独立地进行5次射击,每次射击时击中目标的概率为0.6,求击中目标的次数X 的分布律.6. 从一批含有10件正品及3件次品的产品中一件一件地抽取产品.设每次抽取时,所面对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为止所需次数X 的分布律:(1)每次取出的产品立即放回这批产品中再取下一件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出一件产品后总以一件正品放回这批产品中.7. 设随机变量X ),6(~p B ,已知)5()1(===X P X P ,求p 与)2(=X P 的值.8. 一张试卷印有十道题目,每个题目都为四个选项的选择题,四个选项中只有一项是正确的.假设某位学生在做每道题时都是随机地选择,求该位学生未能答对一道题的概率以及答对9道以上(包括9道)题的概率.9. 市120接听中心在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计算):求:(1)某天中午12点至下午3点没有收到紧急呼救的概率;(2)某天中午12点至下午5点至少收到1次紧急呼救的概率.10. 某商店出售某种物品,根据以往的经验,每月销售量X 服从参数4=λ的泊松分布.问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?11. 有一汽车站有大量汽车通过,每辆汽车在一天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X 服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y 为观察到的鸡蛋数,即Y 的分布与给定>0X 的条件下X 的分布相同,今求Y 的分布律.(提示:()(0),1,2,.P Y k P X k X k ===>=对于)13. 袋中有n 把钥匙,其中只有一把能把门打开,每次抽取一把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求首次打开门时试用钥匙次数的分布律.14. 袋中有a 个白球、b 个黑球,有放回地随机抽取,每次取1个,直到取到白球停止抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某高校在2010年上海世博会上的学生志愿者有6 000名,其中女生3 500名.现从中随机抽取100名学生前往各世博地铁站作引导员,求这些学生中女生数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ⎧=⎨⎩0,x A <<其他,试求:(1)常数A ;(2))5.00(<<X P .17. 设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<<X P ;(3)X 的分布函数.18. 证明:函数22e ,0,()0,0,xc x x f x c x -⎧⎪≥=⎨⎪<⎩(c 为正的常数)可作为一个密度函数.19. 经常往来于某两地的火车晚点的时间X (单位:min )是一个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ⎧--<<⎪=⎨⎪⎩其他. X 为负值表示火车早到了.求火车至少晚点2 min 的概率.20. 设随机变量X 的分布函数为0()1(1)e x F x x -⎧=⎨-+⎩,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求方程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银行的窗口等待服务的时间X (单位:min )是一随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -⎧⎪=⎨⎪⎩,0,,x >其它.某顾客在窗口等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银行,求他未等到服务就离开的概率;(2)设某顾客一个月要去银行五次,求他五次中至多有一次未等到服务而离开的概率.24. 以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -⎧->=⎨⎩其他. 求:(1)X 的密度函数;(2)P (至多等待2 min );(3)P (至少等待4 min );(4)P (等待2 min 至4 min 之间);(5)P (等待至多2 min 或至少4 min ).25. 设随机变量X 的分布函数为()arctan ()F x A B x x =+-∞<<+∞,求:(1)常数A ,B ;(2)(1)P X <;(3)随机变量X 的密度函数.26. 设随机变量X 服从)1,0(N ,借助于标准正态分布的分布函数表计算:(1))2.2(<X P ;(2))76.1(>X P ;(3))78.0(-<X P ;(4))55.1(<X P ;(5))5.2(>X P ;(6)确定a ,使得99.0)(=<a X P .27. 设随机变量X 服从)16,1(-N ,借助于标准正态分布的分布函数表计算:(1))44.2(<X P ;(2))5.1(->X P ;(3))8.2(-<X P ;(4))4(<X P ;(5))25(<<-X P ;(6))11(>-X P ;(7)确定a ,使得)()(a X P a X P <=>.28. 设随机变量X 服从正态分布2(,)N μσ,且二次方程240t t X ++=无实根的概率为12,求μ的值. 29. 某厂生产的滚珠直径X 服从正态分布)01.0,05.2(N ,合格品的规格规定直径为2.02±,求滚珠的合格率.30. 某人上班路上所需的时间)100,30(~N X (单位:min ),已知上班时间是8:30.他每天7:50分出门,求:(1)某天迟到的概率;(2)一周(以5天计)最多迟到一次的概率.习题五1. 二维随机变量),(Y X 只能取下列数组中的值:(0,0),(-1,1),11,3⎛⎫- ⎪⎝⎭,(2,0),且取这些组值的概率依次为125,121,31,61.求这二维随机变量的分布律,并写出关于X 及关于Y 的边缘分布律.2. 一口袋中有四个球,它们依次标有数字1,2,2,3.从这袋中任取一球后,不放回袋中,再从袋中任取一球.设每次取球时,袋中每个球被取到的可能性相同.以Y X ,分别记第一、二次取得的球上标有的数字,求),(Y X 的分布律及)(Y X P =.*3. 从3名数据处理经理、2名高级系统分析师和2名质量控制工程师中随机挑选4人组成一个委员会,研究某项目的可行性.设X 表示从委员会选出来的数据处理人数,Y 表示选出来的高级系统分析师的人数,求:(1)X 与Y 的联合分布律;(2)()P X Y ≥.*4. 盒中有4个红球4个黑球,不放回抽取4次,每次取1个,X ={前2次抽中红球数},Y ={4次共抽中红球数},求(1)二维随机变量),(Y X 的联合分布律:(2)给定1X =,Y 的条件分布律.5. 箱子中装有10件产品,其中2件是次品,每次从箱子中任取一件产品,共取2次.定义随机变量Y X ,如下:⎩⎨⎧=10X ,,若第一次取出正品,若第一次取出次品,⎩⎨⎧=10Y ,,若第二次取出正品,若第二次取出次品,分别就下面两种情况(1)放回抽样,(2)不放回抽样.求:(1)二维随机变量),(Y X 的联合分布律; (2)关于X 及关于Y 的边缘分布律;(3)X 与Y 是否独立,为什么?6. 设二维随机变量),(Y X 的联合密度函数为1,01,01,4(,)0,x y xy f x y ⎧<<<<⎪=⎨⎪⎩其他.求:(1)关于X 及关于Y 的边缘密度函数;(2)110,022P X Y ⎛⎫≤≤≤≤ ⎪⎝⎭. 7. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中区域D 为x 轴,y 轴及直线y =2x +1围成的三角形区域.求:(1)),(Y X 的联合密度函数;(2)110,044P X Y ⎛⎫-<<<< ⎪⎝⎭;(3)关于X 及关于Y 的边缘密度函数;(4)X 与Y 是否独立,为什么?8. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中D 为由直线x +y =1,x +y =-1,x -y =1,x -y =-1围成的区域.求:(1)关于X 及关于Y 的边缘密度函数;(2)()P X Y ≤;(3)X 与Y 是否独立,为什么?9. 设随机变量X ,Y 是相互独立且分别具有下列分布律:X -2 -1 0 0.5概率4131 121 31Y -0.513概率21 41 41 写出表示),(Y X 的联合分布律.10. 设进入邮局的人数服从参数为λ的泊松分布,每一个进入邮局的人是男性的概率为p (0<p <1),X 为进入邮局的男性人数,Y 为女性人数,求:(1)关于X 及关于Y 的边缘分布律;(2)X 与Y 是否独立,为什么?11. 设X 与Y 是相互独立的随机变量,X 服从[0,0.2]上的均匀分布,Y 服从参数为5的指数分布,求:),(Y X 的联合密度函数及)(Y X P ≥.12. 设二维随机变量),(Y X 的联合密度函数为(34)e (,)0x y k f x y -+⎧=⎨⎩,0,0,x y >>其他,求:(1)系数k ;(2))20,10(≤≤≤≤Y X P ;(3)证明X 与Y 相互独立.13.已知二维随机变量),(Y X 的联合密度函数为⎩⎨⎧-=0)1(),(y x k y x f ,01,0,x y x <<<<其他,,(1)求常数k ;(2)分别求关于X 及关于Y 的边缘密度函数;(3)X 与Y 是否独立?为什么.14. 设随机变量X 与Y 的联合分布律为:YX1 0 252 b1a2532251 252 且53)01(===X Y P ,求:(1)常数a ,b 的值;(2)当a ,b 取(1)中的值时,X 与Y 是否独立,为什么?*15. 对于第2题中的二维随机变量),(Y X 的分布,求当2=Y 时X 的条件分布律. *16. 对于第7题中的二维随机变量),(Y X 的分布,求:(1)1110442P X Y ⎛⎫-<<<< ⎪⎝⎭;(2)当102X x x ⎛⎫=-<< ⎪⎝⎭时Y 的条件密度函数()Y X f y x .*17. 设二维连续型随机变量),(Y X ,证明:对任何x ,有()()()d ,Y P X x P X x Y y f y y +∞-∞≤=≤=⎰其中()Y f 为Y 的边缘密度函数.习题六1. 设随机变量X 的分布律为X -2-0.524概率81 41 81 61 31 求出:(1)2+X ;(2)1+-X ;(3)2X 的分布律.2. 设随机变量X 服从参数1=λ的泊松分布,记随机变量⎩⎨⎧=10Y ,11.X X ≤>若,若试求随机变量Y 的分布律.3. 设随机变量X 的分布密度为⎩⎨⎧=02)(x x f ,01,,x <<其他,求出以下随机变量的密度函数:(1)X 2;(2)1+-X ;(3)2X .4. 对圆片直径进行测量.测量值X 服从)6,5(上的均匀分布,求圆片面积Y 的密度函数.5. 设随机变量X 服从正态分布),(10N ,试求随机变量函数2Y X =的密度函数)(y f Y .6. 设随机变量X 服从参数1=λ的指数分布,求随机变量函数e X Y =的密度函数)(y f Y .7. 设随机变量X 服从)1,0(N ,证明:a X +σ服从),(2σa N ,其中σ,a 为两个常数且0>σ.8. 设随机变量X 在区间]2,1[-上服从均匀分布,随机变量⎪⎩⎪⎨⎧-=101Y 0,0,0.X X X >=<,若,若,若试求随机变量函数Y 的分布律.9. 设二维随机变量),(Y X 的分布律:Y X 1231 41 41 81 2 81 00 381 81 0求以下随机变量的分布律:(1)Y X +;(2)Y X -;(3)X 2;(4)XY . 10. 设随机变量X ,Y 相互独立,且11,4XB ⎛⎫ ⎪⎝⎭,11,4Y B ⎛⎫ ⎪⎝⎭, (1)记随机变量Y X Z +=,求Z 的分布律; (2)记随机变量X U 2=,求U 的分布律.从而证实:即使X ,Y 服从同样的分布,Y X +与X 2的分布并不一定相同.*11. 设随机变量X 服从参数为λ的泊松分布,给定X k =,Y 的条件分布为参数为k ,p 的二项分布(0<p <1,k 为非负整数).求:(1)Y 的分布律;(2)X -Y 的分布律;(3)证明:Y 与X -Y 相互独立. (提示:()()(),0,1,.k yP Y y P Y y X k P X k y +∞=======∑)12. 设二维随机变量X ,Y 的联合分布律为:Y X 12 3 1 91 00 2 92 91 0392 92 91 求:(1)max(,)U X Y =的分布律; (2)),min(Y X V =的分布律; (3)(,)U V 的联合分布律.13. 设二维随机变量()Y X ,服从在D上的均匀分布,其中D为直线0,0==y x ,2,2==y x 所围成的区域,求X Y -的分布函数及密度函数.*14. 设随机变量X ,Y 相互独立,且有相同的分布(0,1)N ,U X Y =-,V X Y =-,求:(1)U 的密度函数;(2)V 的密度函数.15. 设二维随机变量,X Y 的分布密度为),(y x f ,用函数f 表达随机变量Y X +的密度函数.16. 设随机变量2~(,)X N a σ,2~(,)Y N b τ,且X ,Y 相互独立,Z X Y =+,求Z X x =的条件分布密度函数.17. 用于计算机接线柱上的保险丝寿命服从参数2.0=λ的指数分布.每个接线柱要求两个这样的保险丝,这两个保险丝有独立的寿命X 与Y .(1)其中一个充当备用件,仅当第一个保险丝失效时投入使用.求总的有效寿命Z =X +Y 的密度函数.(2)若这两个保险丝同时独立使用,则求有效寿命max(,)U X Y =的密度函数.18. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,记Z 是以X ,Y 为边长的矩形的面积,求Z 的密度函数.*19. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,求X Z Y=的密度函数.(提示:使用1()()()()d ()d Z Y F z P Z z P Z z Y y f y y P X yz y =≤=≤==≤⎰⎰,其中用到X 与Y 的独立性.)习题七1. 设随机变量X 的分布律为X-121 1 2概率31 61 6112141 求:(1)()E X ;(2))1(+-X E ;(3))(2X E ;(4)()D X .2. 设随机变量X 服从参数为λ的泊松分布(0>λ),且已知((2)(3))2E X X --=,求λ的值.3. 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,试求2X 的数学期望2()E X .4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量.它在[2 000,4 000](单位:吨)上服从均匀分布.若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元.问应组织多少货源,才能使平均收益最大?5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3.假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望()E X 和方差()D X .6. 设随机变量X 有分布律:1()(1,2,),k k p P X k pq k -====其中01,1p q p <<=-,称X 服从具有参数p 的几何分布,求()E X 和()D X .(提示:由幂级数逐项求导的性质可知211011k kk k kq q q ∞∞-=='⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑∑,21(1)k k k k q ∞-=-=∑3012)11k k q q q q ∞=''''⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∑ 7. 设随机变量X 的密度函数为1()e 2x f x -=,求:(1)()E X ;(2))(2X E 的值.8. 某商店经销商品的利润率X 的密度函数为)(x f 2(1)0,x -⎧=⎨⎩,01,x <<其他,求()E X ,()D X .9. 设随机变量X 服从参数为λ的泊松分布,求1(1)E X -+.10. 设随机变量X 服从参数为p 的几何分布,0M >为整数,max(,)Y X M =,求()E Y .*11. 设随机变量X 有分布律:(),0,1,2,,k M N M k n k p P X k k n M N n -⎛⎫⎛⎫ ⎪⎪-⎝⎭⎝⎭====∧⎛⎫ ⎪⎝⎭,其中min(,)n M n M ∧=.12(1):.12(1)n n n n n n m m m m m m ⎛--⎫⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭提示使用*12. 将已写好n 封信的信纸随机地装入已写好的n 个收信人的对应地址的信封,若有一封信的信纸的收信人与信封一致时,称之为有一个配对.今X 为n 封已随机装好的信的配对数,求(),()E X D X .111111,:(1,2,,),,(),()0,cov(,),()=()2cov(,).ni i i i j i n n ni j i j i=1i j j i X i n X X E X E X X X X D X D X X X =-==+⎛⎧=== ⎨ ⎩⎝⎫+⎪⎭∑∑∑∑第封信配对,提示记有先求其他及使用公式13. 设随机变量X 的概率密度为1e ,0,()0,0,x x f x x -⎧>=⎨≤⎩求()E X ,)2(X E ,2(e )X E X -+,()D X .14. 设随机向量),(Y X 的联合分布律为:Y X 0 1 0 0.3 0.2 10.40.1求,(),(),(2),(3),(),(),cov(,),.X Y E X E Y E X Y E XY D X D Y X Y ρ-15. 盒中有3个白球和2个黑球,从中随机抽取2个,X ,Y 分别是抽到的2个球中的白球数和黑球数,求X 与Y 之间的相关系数Y X ,ρ.16. 设随机变量Y X ,相互独立,它们的密度函数分别为22e ()0x X f x -⎧=⎨⎩,0,,0,x x >≤44e ()0y Y f y -⎧=⎨⎩,0,,0,y y >≤求)(Y X D +.*17. 设随机变量1,,n X X 独立,具有公共的(0,1)上的均匀分布,令1min ,i i nY X ≤≤=求(),()E Y D Y .*18.设随机变量X有密度函数1e ,0,()()0,xx x f x ααλλα--⎧>⎪=Γ⎨⎪⎩其他λα>>(0,0为常数),则称X 服从具有参数αλ(,)的伽玛分布,记为~X αλΓ(,),其中10()e d y y y αα∞--Γ⎰=.有性质:对任意实数x ,有(1)()x x x Γ+=Γ,特别对正整数n 有(1)!n n Γ+=.今设1~(,)Y αλΓ,2~(,)Z αλΓ,且Y与Z相互独立,ZW Y=,求()E W1:()().Z E W E E Z E Y Y ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭提示使用独立性,有 *19. 设随机变量X 服从参数为(a ,b )的贝搭分布,即有密度11()(1),01,()()()0,a b a b x x x a b f x --Γ+⎧-<<⎪ΓΓ=⎨⎪⎩其他,求(),()E X D X .[提示:已知贝搭函数1110:(,)(1)d ,.t t t αβαββαββαβαβ--⎛⎫ΓΓ=- ⎪Γ⎝⎭⎰()()提示已知贝搭函数有关系式(,)=(+) 20. 验证:当),(Y X 为二维连续型随机变量时,按公式()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰及按公式()()d E X xf x x +∞-∞=⎰算得的()E X 值相等.这里,),(y x f ,)(x f 依次表示X Y X ),,(的分布密度,即证明:()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰()d xf x x +∞-∞=⎰21. 设二维随机变量),(Y X 服从在A 上的均匀分布,其中A 为x 轴,y 轴及直线x +y +1=0所围成的区域,求:(1)()E X ;(2))23(Y X E +-;(3))(XY E 的值.22. 设随机变量),(Y X 的联合密度函数为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他.求()E X ,()E Y , ()E XY ,22()E X Y +,()D X ,()D Y .23. 设随机变量Y X ,相互独立,且()()1E X E Y ==,()2D X =,()3D Y =.求:(1)22(),()E X E Y ;(2))(XY D .24. 袋中有2n个外形完全相同的球,其中n k ⎛⎫⎪⎝⎭个标有数字k (k =0,1,…,n ),从中不放回抽取m 次(每次取1个),以X 表示取到的m 个球上的数字之和,求E (X ).。
概率论例题汇总
求:(1) c;
0.3
1
2
0
0
1
0.1
0.1
0.1
0.2
0.2
0.3
0.4
0.3
0.5
0.5
设(X,Y)的概率密度是
*
求 (1) c的值;(2) 两个边缘密度;
解 (1)
例5
x
y
0
1
所以
y
x
(2)
所以
y
x
(2)
x
y
例1 已知 ( X, Y ) 的联合密度函数为 (1) (2) 讨论X ,Y 是否独立?
Y的边缘分布
X的边缘分布
所以 X,Y 的边缘分布律分别为
*
若改为无放回摸球,则(X,Y)的联合分布律为
边缘分布为
边缘分布为 与有放回的情况比较, 但边缘分布却完全相同。 两者的联合分布完全不同, 若改为无放回摸球,则(X,Y)的联合分布律为
例2 设二维随机变量(X,Y )的联合分布为
解
求:(1) c;
(2)
*
设X表示机床A一天生产的产品废品数,Y 表示机床B一天生产的产品废品数,它们的概率分布如下:
X
0
1
2
0.5
P
3
0.3
0.1
0.1
例1
解
Y
0
1
0.6
P
3
0.1
0.2
0.1
问:两机床哪台质量好?设两台机床的日产量相等。
均值相等, 据此不能判断优劣,再求方差.
X
0
1
2
0.5
P
3
0.3
第一章概率论典型例题
典型例题:一.排列1.特殊排列相邻、彼此隔开、顺序一定和不可分辨例1.晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例2.4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例3.5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?2.重复排列和非重复排列(有序)例4.5封不同的信,有6个信箱可供投递,共有多少种投信的方法?3.对立事件例5.七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例6.15人中取5人,有3个不能都取,有多少种取法?例7.有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?4.顺序问题例8.3白球,2黑球,先后取2球,放回,2白的种数?(有序)例9.3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例10.3白球,2黑球,任取2球,2白的种数?(无序)二.概率1. 一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.3. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.4. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.1.7 一个小孩用13个字母T T N M M I I H E C A A A ,,,,,,,,,,,,作组字游戏。
概率论习题集与答案
概率论习题一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、()0.7,()0.3,P A P A B =-= 则().P AB =5、()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ⋃=6、掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 假设,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面〞,事件B =“第二次掷出反面〞,事件C =“正面最多掷出一次〞。
那么(|)P C AB = 。
12、男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的表示为互不相容事件的和是 。
15、,,A B C 中不多于两个发生可表示为 。
二、选择题1、下面四个结论成立的是〔 〕2、设()0,P AB =则以下说法正确的选项是〔 〕3、掷21n +次硬币,正面次数多于反面次数的概率为〔 〕4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有〔 〕5、设A 、B 相互独立,且P (A )>0,P (B )>0,则以下等式成立的是〔 〕.A P (AB )=0.B P (A -B )=P (A )P (B ).C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有〔 〕.A P (AB )=l.B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=17、()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =〔 〕.A 0.2 .B 0.45 .C 0.6 .D8、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为〔 〕.A 0.125 .B 0.25.C 0.375 .D 0.509、设事件,A B 互不相容,()0.4P A =,()0.5P B =,则()P AB =〔 〕.A .B .C .D 110、事件A ,B 相互独立,且()0P A >,()0P B >,则以下等式成立的是〔 〕11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则〔 〕..A 事件A 与B 互不相容.B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=〔 〕.13、设A 、B 是两事件,且P 〔A 〕=0.6,P(B)=0.7则P 〔AB 〕取到最大值时是〔 〕.A 0.6 .B 0.7 .C 1 .D14、某人忘记了 号码的最后一个数字,因而他随意地拨号。
概率论 数学题集
概率论数学题集概率论数学题集概率论数学题集概率论题集一1.甲、乙、丙三人各向目标射击一发子弹,以a、b、c分别表示甲、乙、丙命中目标,试用a、b、c的运算关系表示下列事件:a1:“至少存有一人击中目标”:“恰有一人命中目标”:a2:“恰存有两人击中目标”:a3:“最多有一人命中目标”:a4:“三人均击中目标”:a5:a6:“三人均未命中目标”:2.存有三个子女的家庭,设立每个孩子就是男就是女的概率成正比,则至少存有一个男孩的概率就是多少?3(摸求问题)设合中存有3个白球,2个红球,现从合中任扣2个球,求得至一红一白的概率。
4(分球问题)将3个球随机的放入3个盒子中去,问:(1)每盒恰存有一球的概率就是多少?(2)空一盒的概率是多少?5(分组问题)30名学生中存有3名运动员,将这30名学生平均值分为3组与,谋:(1)每组有一名运动员的概率;(2)3名运动员分散在一个组的概率。
6(随机取数问题)从1到200这200个自然数中任取一个;(1)求得至的数能被6相乘的概率;(2)求取到的数能被8整除的概率;(3)求得至的数既能够被6相乘也能够被8相乘的概率.7某市有甲,乙,丙三种报纸,订每种报纸的人数分别占全体市民人数的30%,其中有10%的人同时定甲,乙两种报纸.没有人同时订甲乙或乙丙报纸.求从该市任选一人,他至少订有一种报纸的概率.8在110这10个自然数中任挑一数,谋(1)取到的数能被2或3整除的概率,(2)算出的数即为无法被2也无法被3相乘的概率,(3)取到的数能被2整除而不能被3整除的概率。
9盒中存有3个红球,2个白球,每次从袋中余因子一只,观测其颜色后送回,并再放进一只与所出之球颜色相同的球,若从合中已连续取球4次,试求第1、2次获得白球、第3、4次获得红球的概率。
10市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为2%、1%、3%,试求市场上该品牌产品的次品率。
(完整版)概率论大题附答案
第一章 随机事件及其概率1.6 假设一批100件商品中有4件不合格品.抽样验收时从中随机抽取4件,假如都为合格品,则接收这批产品,否则拒收,求这批产品被拒收的概率p . 解 以ν表示随意抽取的4件中不合格品的件数,则4964100C {1}1{0}110.84720.1528C p P P =≥=-==-≈-=νν.1.7 从0,1,2,,10…等11个数中随机取出三个,求下列事件的概率:1A ={三个数最大的是5};2A ={三个数大于、等于和小于5的各一个};3A ={三个数两个大于5,一个小于7}.解 从11个数中随机取出三个,总共有311C 165=种不同取法,即总共有311C 个基本事件,其中有利于1A 的取法有25C 10=种(三个数最大的是5,在小于5的5个数中随意取两个有25C 10=种不同取法);有利于2A 的取法有5×5=20种(在小于5的5个数中随意取一个,在大于5的5个数中随意取一个,有5×5=25种不同取法);有利于3A 的取法有5×25C 70=种(在小于5的5个数中随意取一个,在大于5的5个数中随意取两个).于是,最后得111102550()0.06()0.15()0.30165165165P A P A P A ======,,.1.8 考虑一元二次方程 02=++C Bx x , 其中B , C 分别是将一枚色子接连掷两次先后出现的点数. (1) 求方程无实根的概率α, (2) 求方程有两个不同实根的概率β.解 显然,系数B 和C 各有1,2,3,4,5,6等6个可能值;将一枚色子接连掷两次,总共有36个基本事件.考虑方程的判别式C B 42-=∆.事件{无实根}和{有两个不同实根},等价于事件{0}∆<和{0}∆>.下表给出了事件{∆由对称性知{0}∆<和{0}∆>等价,因此αβ=.易见,方程无实根的概率α和有两个不同实根的概率β为170.47αβ==≈.. ()1()1P AB P AB r =-=-, ()()1P A B P AB r +==-,()1()1[]P A B P A B p q r +=-+=-+-, ()()1[]P AB P A B p q r =+=-+-,([])()()P A A B P A AB P A p +=+==.1.18 假设箱中有一个球,只知道不是白球就是红球.现在将一个白球放进箱中,然后从箱中随机取出一个球,结果是白球.求箱中原来是白球的概率α.解 引进事件:=A {取出的是白球},1H ={箱中原来是白球},2H ={箱中原来是红球},则12,H H 构成完全事件组,并且12()()0.5P H P H ==.由条件知12(|)1(|)0.5P A H P A H ==,.由贝叶斯公式,有1111122()(|)2(|)()(|)()(|)3P H P A H P H A P H P A H P H P A H α===+.1.21 假设一厂家生产的每台仪器,以概率0.7可以直接出厂;以概率0.30需进一步进行调试, 经调试以概率0.90可以出厂,以概率0.10定为不合格品不能出厂.现在该厂在生产条件稳定的情况下,新生产了20台仪器.求最后20台仪器 (1) 都能出厂的概率α; (2) 至少两台不能出厂的概率β.解 这里认为仪器的质量状况是相互独立的.设1H ={仪器需要调试},2H ={仪器不需要调试},A ={仪器可以出厂}.由条件知1212()0.30 ()0.70 (|)0.80(|)1P H P H P A H P A H ====, ,,.(1) 10台仪器都能出厂的概率0112210100()()(|)()(|)0.300.800.700.940.940.5386P A P H P A H P H P A H ααα==+=⨯+===≈ ;.(2) 记ν——10台中不能出厂的台数,即10次伯努利试验“成功(不能出厂)”的次数.由(1)知成功的概率为p =0.06.易见,10台中至少两台不能出厂的概率109{2}1{0}{1}10.94100.940.060.1175P P P βννν=≥=-=-==--⨯⨯≈.1.23 设B A ,是任意二事件,证明:(1) 若事件A 和B 独立且B A ⊂,则()0P A =或()1P B =;(2) 若事件A 和B 独立且不相容,则A 和B 中必有一个是0概率事件.证明 (1) 由于B A ⊂,可见()()()()()()()()P AB P A P B P AB P A P A P A P B ===,,. 因此,若()0P A ≠,则()1P B =;若()0P B ≠,()0P A =.(2) 对于事件A 和B ,由于它们相互独立而且不相容,可见()()()0P A P B P AB ==,因此,概率()P A 和()P B 至少有一个等于0.补充:第二节 事件的关系和运算1. 设A ,B ,C 是三个随机事件,用事件A ,B ,C 的运算关系表示下列事件:⑴ A ,B ,C 三个都发生;⑵ A 发生而B ,C 都不发生;⑶ A ,B 都发生, C 不发生; ⑷ A ,B ,C 恰有一个发生;⑸ A ,B ,C 恰有两个发生;⑹ A ,B ,C 至少有一个发生; ⑺ A ,B ,C 都不发生.解:(1)ABC (2)ABC (3)ABC (4)ABC ABC ABC ++ (5)ABC ABC ABC ++ (6) A B C ++ (7) ABC第三节 事件的概率解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.40.30.6=+-=0.1 ()1()10.10.9P AB P AB =-=-=()()1()10.60.4P AB P A B P A B =+=-+=-= ()()()0.40.10.3P AB P A P AB =-=-=解:由()()()P A B P A P AB -=-,得()()()P A B P A P AB -=-()()()0.70.30.4P AB P A P A B =--=-=, ()1()10.40.6P AB P AB =-=-=3. 已知()09.P A =,()08.P B =,试证()07.P AB ≥. 解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.90.81≥+-0.7=解:由条件()()0P AB P BC ==,知()0P ABC =,()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ++=++---+1111500044488=++---+= 5. 设A ,B 是两事件,且()06.P A =,()07.P B =,问⑴ 在什么条件下,()P AB 取到最大值,最大值是多少? ⑵ 在什么条件下,()P AB 取到最小值,最小值是多少?解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+ 又因为()()P A P A B ≤+,()()P B P A B ≤+,所以(){}max (),()P A P B P A B ≤+, 所以0.7()1P A B ≤+≤,所以0.3()0.6P AB ≤≤.第四节 条件概率及与其有关的三个基本公式1.设有对某种疾病的一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种疾病,若某病人做这种化验呈阳性反应,则他患有这种疾病的概率是多少? 解:设{}A =某疾病患者,{}A =非某疾病患者,{}B =检查结果为阳性.依条件得,B A A ⊂+=Ω,且()0.01,P A = ()0.99P A =,(|)0.9P B A =(|)0.05P B A =所以()()()()()()()()0010901500109099005B P A P P AB ..A A P .B P B ....B BP A P P A P A A⨯===≈⨯+⨯+第五节 事件的独立性和独立试验1.设有n 个元件分别依串联、并联两种情形组成系统I 和II ,已知每个元件正常工作的概率为p ,分别求系统I 、II 的可靠性(系统正常工作的概率)解:{}A I =系统正常工作,{}B II =系统正常工作,{}B II =系统不正常工作 {}1,2,,i C i n ==每个元件正常工作,,且()i P C p =,{}i C =每个元件都不正常工作,()1i P C p =- 由条件知,每个元件正常是相互独立的,故1212()()()()()n n n P A P C C C P C P C P C p ===,()1i P C p =-,1212()()()()()(1)n n n P B P C C C P C P C P C p ===-()1()1(1)n P B P B p =-=--2. 设有六个相同的元件,如下图所示那样安置在线路中,设每个元件通达的概率为 p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的. 解: 设{}i A i =第条线路通达,1,2,3,i = {}A =代表这个装置通达,{}i A i =第条线路不通达,1,2,3,i = {}A =代表这个装置不通达, 由条件知,2()i P A p =,2()1i P A p =-,23123()1()1()1(1)P A P A P A A A p =-=-=--第二章 随机变量及其分布2.8 口袋中有7个白球,3个黑球,每次从中任取一球且不再放回. (1) 求4次抽球出现黑球次数X 的概率分布;(2) 抽球直到首次出现白球为止,求抽球次数Y 的概率分布.解 (1) 随机变量X 有4个可能值0,1,2,3,若以W 和B 分别表示白球和黑球,则试验“4次抽球”相当于“含7个W 和3个B ”的总体的4次不放回抽样,其基本事件总数为410C 210=,其中有利于{}X k = (0,1,2,3)k =的基本事件个数为:437C C k k-,因此 437410C C {}(0,1,2,3)C k k P X k k -===,或01230123~351056371131210210210210621030X ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2) 随机变量Y 显然有1,2,3,4等4个可能值;以W k 和B k 分别表示第(1,2,3,4)k k =次抽到白球和黑球,则“不放回抽球直到首次出现白球为止”相当于“自含7个白球3个黑球的总体的4次不放回抽样”,其基本事件总数410P 10987120=⨯⨯⨯=.易见 7843728{1}{2}10120109120P Y P Y ⨯======⨯,,327732171{3}{4}109812010987120P Y P Y ⨯⨯⨯⨯⨯======⨯⨯⨯⨯⨯, .1234~842871120120120120Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭. 2.11 设X 服从泊松分布,且已知{1}{2}P X P X ===,求{4}P X =.解 以X 表示随意抽取的一页上印刷错误的个数,以)4,3,2,1(=k X k 表示随意抽取的第k 页上印刷错误的个数,由条件知X 和)4,3,2,1(=k X k 服从同一泊松分布,未知分布参数λ决定于条件:2{1}{2}ee 2!P X P X λλλλ--====,.于是λ=2.由于随机变量)4,3,2,1(=k X k 显然相互独立,因此42222{=4}=e =e 0.090243P X --≈ !2.14 设随机变量X 服从区间25[,]上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率α.解 设Y 3次独立试验事件{3}A X =>出现的次数,则Y 服从参数为(3,)p 的二项分布,其中23p =.因此234820(){2}{3}3(1)92727P B P Y P Y p p p ===+==-+=+=α.2.17 设随机变量X 服从正态分布(3,4)N ,且满足 {}{}P X C P X C <=≥和{}2{}P X C P X C <=≥ ,分别求常数C解 (1)由{}X C <与{}X C ≥为对立事件,又{}{}P X C P X C <=≥得 1{}2P X C <=所以C=3 (2) 由题意可知23{}=32C P X C Φ-<=()所以反查表可得 3.88C ≈2.22 设随机变量X 服从[1,2]-上的均匀分布,求随机变量Y 的分布律,其中10 00 10X Y X X -<==>⎧⎪⎨⎪⎩,若,,若,,若.解 由于X 服从[1,2]-上的均匀分布,知随机变量Y 的概率分布为1{1}{0}{10}{0}{0}032{1}{0}{02}31~1233P Y P X P X P Y P X P Y P X P X Y =-=<=-≤<=======>=<≤=⎛⎫ ⎪ ⎪ ⎪⎝⎭,,;-1.补充:第二节 离散随机变量解:由条件知,随机变量X 的分布列如下:设{}A =至多遇到一次红灯,则54()(0)(1)64P A P X P X ==+==2.设每分钟通过交叉路口的汽车流量X 服从泊松分布,且已知在一分钟内无车辆通过与恰好有一辆车通过的概率相同,求在一分钟内至少有两辆车通过的概率。
概率论考研题目及答案
概率论考研题目及答案题目一:概率论基本概念问题:某工厂生产的零件,合格率为0.95。
求:1. 随机抽取一个零件,它是合格品的概率。
2. 随机抽取两个零件,至少有一个是合格品的概率。
答案:1. 由于合格率为0.95,随机抽取一个零件是合格品的概率即为合格率,即 P(合格) = 0.95。
2. 抽取两个零件至少有一个是合格品的概率可以通过计算两个零件都不合格的概率,然后用1减去这个概率来得到。
两个零件都不合格的概率是 (1 - 0.95) * (1 - 0.95) = 0.0025。
因此,至少有一个是合格品的概率为 1 - 0.0025 = 0.9975。
题目二:条件概率问题:某地区有两家医院,A医院的产妇数量占70%,B医院占30%。
在A医院出生的婴儿中,男孩的比例是60%,在B医院出生的婴儿中,男孩的比例是70%。
现在随机选择了一个男孩,求这个男孩是在A医院出生的概率。
答案:设事件A为在A医院出生,事件B为在B医院出生,事件M为是男孩。
根据题意,我们有:- P(A) = 0.7- P(B) = 0.3- P(M|A) = 0.6- P(M|B) = 0.7使用全概率公式,我们可以计算出P(M):\[ P(M) = P(A)P(M|A) + P(B)P(M|B) = 0.7 \times 0.6 + 0.3\times 0.7 = 0.63 \]现在我们要求的是P(A|M),即在已知是男孩的条件下,这个男孩是在A医院出生的概率。
使用贝叶斯公式:\[ P(A|M) = \frac{P(M|A)P(A)}{P(M)} = \frac{0.6 \times0.7}{0.63} \approx 0.6985 \]题目三:随机变量及其分布问题:一个随机变量X服从参数为λ的泊松分布。
求:1. X的期望值和方差。
2. X=k的概率,其中k是一个给定的正整数。
答案:1. 泊松分布的期望值(E[X])和方差(Var(X))都等于参数λ。
概率论习题试题集6
一、填空题1. 若一个样本的观测值为0,0,1,1,0,1,则总体均值的矩估计值为___________,总体方差的矩估计值为___________。
2. 设1,0,0,1,1是来自两点分布总体),1(p B 的样本观察值,则参数p q -=1的矩估计值为___________。
3. 若由总体),(θx F (θ为未知参数)的样本观察值所求得95.0)9.355.35(=<<X P ,则称___________是θ的置信度为___________的置信区间。
4. 设由来自正态总体)9.0,(~2μN X 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间为___________。
5. 设一批产品的某一指标),(~2σμN X ,从中随机地抽取容量为25的样本,测得样本方差2210=S ,则总体X 的方差2σ的置信区度为%95的置信区间为___________.二、选择题1. 设总体),(~2σμN X ,其中2σ已知,则总体均值μ的置信区间长度l 与置信度α-1的关系是( )(A )当α-1缩小时,l 缩短; (B )当α-1缩小时,l 增大; (C )当α-1缩小时,l 不变;(D )以上说法都错。
2. 设总体),(~2σμN X ,2σ已知,若样本容量n 和α-1均不变,则对于不同的样本观测值,总体均值的置信区间的长度( )。
(A )变长;(B )变短;(C )不变;(D )不能确定。
3. 设n X X X ,,21是来自总体的一个样本,2,σμ==DX EX ,则方差2σ的无偏估计值是( )(A )当μ已知时,统计量∑=-n i i X n 12)(1μ;(B )当μ已知时,统计量∑=--n i i X n 12)(11μ; (C )当μ未知时,统计量∑=-n i i X X n 12)(1;(D )当μ已知时,统计量∑=--n i i X X n 12)(11。
概率论题目汇总
◆设A B C 是三件事。
且P(A)=P (B )=P(C)=1/4,P(AB)=P(BC)=0.P(AC)=1/8,求A B C 至少有一个发生的概率。
解 由于()0P AB =,所以()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 1111544488=++-=◆设A B 是两件事 且(P )=0.6,P(B)=0.7 问(1)在什么条件下P(AB)取得最大 最大值是多少?(2)在什么条件下P(AB) 取得最小 最小是多少? 解 由于()()()()P AB P A P B P A B =+- ,所以 (1)当()0.7P A B = 时,()P AB 取最大值0.6; (2)当()1P A B = 时,()P AB 取最小值0.3.◆某工厂有10个车间,每个车间选出2名代表出席职工代表大会,又从这20名代表中任选10人组成工会委员会 求:第二车间在工会委员会中有代表的概率;每个车间在工会委员会中都有代表的概率解:令A ={第二车间在工会委员会中有代表},B ={每个车间在工会委员会中都有代表},则(1)10181020()1C P A C =-;(2)1010202()P B C =◆甲乙丙3台机床同时加工一种零件零件由个台机器加工的百分比依次是50% 30%20% 个机床加工的优质品率依次是80%85%90% 将加工的零件应放在一起 从中任取1个 取得优质品的概率。
解:令1B ={取到的产品是甲机床加工的},2B ={取到的产品是乙机床加工的}, 3B = {取到的产品是丙机床加工的},A ={取得优质品}.则112233()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B =++0.50.80.30.850.20.90.835=⨯+⨯+⨯=◆将两信息分别编码为AB 传递出去,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作B 的概率为0.01。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y X
0
1
2
0 0.1 c 0.1
1 0.2 0.1 0.2
求:(1) c;(2) X ,Y 的边缘分布;(3) P( X Y 1) . 解 (1) 0.1 c 0.1 0.2 0.1 0.2 1 c 0.3 .
9
例2 设二维随机变量(X,Y )的联合分布为
Y X
0
1
2
0 0.1 0.3 0.1 0.5
0.1 0.3 0.2 0.6 .
11
例5 设(X,Y)的概率密度是
cy (2 x), 0 x 1,0 y x
f (x, y)
0,
其他
求 (1) c的值;(2) 两个边缘密度; y
(3)概 率 P{ X Y 1} .
解 (1)
f ( x, y)dxdy
1
x
0
0 dx0 cy(2 x)dy
2 e2 xdx x e y dy
0
0
y
2 e2 x (1 e x )dx 0 O
1.
x
3
5
例1 袋中有2只白球3只
XY 0
黑球,有放回摸球两次,
9
定义X为第一次摸得的白
0 25
球数,Y为第二次摸得的 白球数,则(X,Y)的联合
6
1 25
分布律为
3
Y的边缘分布
5
所以 X,Y 的边缘分布律分别为
7
若改为无放回摸球,则(X,Y)的联合分布律为
XY 0
3
0 10
1
3 10
3
5
1
33 10 5 12 10 5 2 5
XY 0 1
9
6
3
0 25
25
5
6
4
2
1 25
25
5
3
2
5
5
边缘分布为
与有放回的情况比较,两者的联合分布完全不同,
但边缘分布却完全相同。
8
例2 设二维随机变量(X,Y )的联合分布为
15
例1 已知 ( X, Y ) 的联合密度函数为
4xy, 0 x 1, 0 y 1
(1)
f1(x, y)
0,
其他
(2)
8xy,
f2(x, y)
0,
0 x y, 0 y 1 其他
讨论X ,Y 是否独立?
16
4xy, 0 x 1, 0 y 1
1 0.2 0.1 0.2 0.5 0.3 0.4 0.3
求:(1) c; (2) X ,Y 的边缘分布;(3) P( X Y 1) .
解 (1) 0.1 c 0.1 0.2 0.1 0.2 1 c 0.3 .
(2) 边缘分布
X 01
Y
01
2
P 0.5 0.5
P
0.3
0.4
0.3 10
P{X
1, Y
1}
22 52
4 25
1
P{X
0, Y
0}
32 52
9 25
P{X
1, Y
0}
23 52
6 25
P{X
0, Y
1}
32 52
6 25
22 4
P{X 1, Y 1}
52
25
XY
0
1
9
6
0
25
25
6
1
25
4 25
2
例2 令随机变量 X 表示在 1,2,3,4 中等可能地取一个值,
令随机变量 Y 表示在 1 到 X 中等可能地取一个值。求
( X , Y ) 的联合分布律及 P{X 3, Y 2}.
解 由于 Y 的取值依赖于 X 的取值,由乘法公式得( X , Y )
的联合分布律为
Y
pij P{ X i, Y j} X
P{X i)P{Y j | X i) 1
11, 1 j i 4
(2)求 概 率 P{Y X } .
解 (1) 由规范性
f ( x, y)dx dy A
e2 xdx
e ydy
0
0
1 A 1, 2
A2.
4
2e(2x y) , x 0, y 0
f (x, y)
0,
其他
x
(2) P{Y X} 0
dx 0 f ( x, y) dy
X0 1
P32
55
Y0 1
P32
55
1
6
3
25 5
4
2
25 5
2
5 X的 边缘 分布
6
若改为无放回摸球,则(X,Y)的联合分布律为
XY 0
3
0 10
1
3 10
3
5
边缘分布为
1
33 10 5 12 10 5 2 5
A32 A52
3 10
23 3
A52
10
3 2 A52
3 10
A22 1 A52 10
2
4i
3
P{X 3, Y 2}
111 1 1 2. 4
4 8 8 12 12 3
1234
1
40
11 88 11 12 12
11 16 16
00
00 10
12 11 16 16
3
例1 设二维随机变量(X,Y)的联合密度函数为
f
(
x,
y)
Ae(2 x
0,
y)
,
x 0, y 0
其他
(1)求系数 A ;
2y
y2 ),
2
0,
0 y1
其他
yx
1x
14
f
(x,
y)
24 5
y
(2
x),Байду номын сангаас
0 x 1,0 y x
0 ,
其他
(3) P{ X Y 1}
24
1
1 y
2 dy y(2 x)dx
50
y
24
1 2
3 (
y
3 y2
y3 )dy
5 02
x y1
y
(1 , 1) 22
yx
0
1x
24 5 3 . 5 64 8
例2 设二维随机变量(X,Y )的联合分布为
Y X
0
1
2
0 0.1 0.3 0.1 0.5
1 0.2 0.1 0.2 0.5 0.3 0.4 0.3
求:(1) c; (2) X ,Y 的边缘分布;(3) P( X Y 1) .
解 (3) P( X Y 1)
P( X 0,Y 0) P( X 0,Y 1) P( X 1,Y 0)
c
1
(2
x)
x
2
dx
5
c 1,
c 24 .
20
24
5
yx
1x
12
f
(x,
y)
24 5
y
(2
x),
0 x 1,0 y x
0 ,
其他
(2)
fX (x)
f ( x, y)dy
y
x 24
0 5 y(2 x)dy
12 x2(2 x) , 0 x 1 5
0
所以
f
X
(
x)
12 5
x2(2
x),
0 x1
0,
其他
yx
1x
13
f
(x,
y)
24 5
y
(2
x),
0 x 1,0 y x
0 ,
其他
(2)
fY ( y)
f ( x, y)dx
y
1 24 y(2 x)dx
y5
24 3
y2
y( 2 y ) , 0 y 1 0
52
2
所以
fY ( y)
24 5
y( 3 2
例1 袋中有2只白球3只黑球,有放回摸球两次,每 次摸一只。定义X为第一次摸得的白球数,Y为第二 次摸得的白球数,求(X,Y)的联合分布律。
解 X 的可能取值为 0,1,Y 的可能取值为 0,1,
P{X
0, Y
0}
32 52
9 25
P{X
0, Y
1}
32 52
6 25
P{X 1, Y 0} 2 3 6 52 25