固体废物固化、稳定化技术
固化稳定化技术案例
固化稳定化技术案例
固化稳定化技术是一种广泛应用的环保技术,主要用于处理各种类型的危险废物,如放射性废物、有害废液和工业废渣等。
以下是两个关于固化稳定化技术的案例:
案例一:核废料固化稳定化
核废料是一种具有极高放射性的危险废物,必须采取安全可靠的处置措施。
固化稳定化技术是核废料处理的重要手段之一,通过将核废料与一种或多种固化剂混合,经过一定时间的固化反应,将其转化为一种坚硬、稳定的固化体。
这种固化体具有良好的抗辐射性、耐久性和抗渗透性,能够有效地限制放射性物质的迁移和扩散,保证环境安全和人类健康。
案例二:重金属废物固化稳定化
重金属废物是一种常见的工业危险废物,由于其有毒性和难降解性,对环境和人体健康造成极大的威胁。
固化稳定化技术可以将重金属废物转化为一种稳定的固化体,限制其迁移和扩散,从而减少对环境和人体健康的危害。
在固化稳定化过程中,通常采用一种或多种固化剂,如水泥、石灰、沥青等,与重金属废物混合,经过一定时间的反应,形成一种稳定的固化体。
这种固化体能够有效地固定重金属废物中的重金属离子,使其不再释放到环境中,保证环境安全和人类健康。
总之,固化稳定化技术是一种非常有效的危险废物处理手段,具有广泛的应用前景。
未来,随着科学技术的不断进步和应用领域的不断扩大,固化稳定化技术将会得到更加深入的研究和应用。
土壤修复技术介绍-固化稳定化技术
土壤修复技术介绍——固化稳定化技术固化/稳定化技术作为一项治理重金属的常用技术,自上世纪80 年代以来,已在美国、欧洲、澳大利亚等地区应用多年,现已广泛应用于处理含六价铬等重金属土壤、废渣和淤泥沉积物、铬渣、汞渣、砷渣等领域的环境治理中。
我国的污染土壤稳定化/固化研究起步于本世纪初。
2010年以来,该技术的工程应用快速增长,已成为六价铬等重金属污染废渣或污染土壤修复的主要技术方法之一。
据不完全统计,目前国内实施废渣或土壤稳定化/固化修复的工程案例已超过50 项。
1、技术原理:固化稳定化技术通过将重金属污染的土壤与特定的粘结药剂结合,使得土壤中的重金属被药剂固定,使其长期处于稳定状态,降低其迁移性。
这种方法较普遍的应用于土壤重金属污染的快速控制修复,对同时处理多种重金属复合污染土壤具有明显的优势。
美国环保署将固化/稳定化技术称为处理有害有毒废物的最佳技术。
2、技术特点:膨润土、海泡石、蒙脱石等天然矿物可以吸附土壤中的重金属,大大降低土壤中各种重金属的迁移性;氢氧化钙等碱性药剂可以与镉、铜、锌等重金属形成氢氧化物沉淀;硫化钠等可溶性硫化盐可以与土壤中重金属反应,使可溶性重金属转化为不溶性硫化物。
经过固化稳定化处理后的重金属仍然残留在土壤中,在一定条件下可能重新活化进入土壤中,造成污染,因此需要对修复地块的土壤和地下水进行长期的监测。
判断一种固化、稳定化方法对污染土壤是否有效,主要可以从处理后土壤的物理性质和对污染物质浸出的阻力两个方面加以评价。
(1)有效性:采用固化/稳定化药剂可以有效修复多种介质中的重金属污染,其适用的pH 值及其宽泛,在环境pH 值2~13 的范围都可以使用。
(2)长期性:修复产生可长期稳定存在的化合物,即使长时间在酸性环境下也不会释放出金属离子,保证污染治理效果长期可靠。
(3)高效性:操作工艺简单,与重金属瞬时反应,可短期内大面积修复污染,处理量可达数千吨每天。
稳定化技术可以在实现废物无害化的同时,达到废物少增容或不增容,从而提高危险废物处理处置系统的总体效率;还可以通过改进螯合剂的结构和性能使其与废物中的重金属等成分之间的化学螯合作用得到强化,进而提高稳定化产物的长期稳定性,减少处置过程中稳定化产物对环境的影响。
稳定化固化方式
稳定化固化方式
稳定化固化方式是一种用于处理废水和废物的技术,它通过改变废物的化学性质,使其在环境中更加稳定和安全。
稳定化固化方式主要包括化学固化、物理固化和生物固化三种方式。
化学固化是利用化学反应将废物转化成具有稳定性和安全性的固体物质。
这种方式通常包括添加固化剂或者改变废物的pH值、温度和溶剂等条件,来促使废物的固化过程。
化学固化可以有效地降低废物对环境的危害,并且可以减少废物的体积和毒性。
物理固化是通过改变废物的物理性质来使其更加稳定。
这种方式通常包括压实、固化和固化等方法,将废物压缩成坚固的块状或者固态物质,使其更加容易处理和处置。
物理固化可以有效地减少废物的体积,降低对环境的危害。
生物固化是利用微生物或者生物体来降解废物,将其转化成稳定的有机物质。
这种方式通常包括生物降解、堆肥和腐熟等方法,利用微生物的代谢活动来降解废物中的有害物质,将其转化成无害的有
机物质。
生物固化可以有效地减少废物对环境的危害,并且可以制备有机肥料等资源。
总的来说,稳定化固化方式是一种有效处理废水和废物的技术,通过改变废物的化学、物理和生物性质,使其更加稳定和安全。
这种方式可以有效地减少废物对环境的危害,减少资源浪费,是目前环境保护和资源循环利用的重要手段。
希望通过大家的共同努力,不断推进这种技术的研究和应用,为我们的地球环境和人类健康做出更大的贡献。
固化稳定化技术
一、S/S技术介绍1、原理固化/稳定化(solidification/stabilization S/S)是将污染土壤与能聚结成固体的黏结剂混合,从而将污染物捕获或固定在固体结构中的技术。
这两个术语常结合使用但它们具有不同的含义:固化是在废物中添加固化剂,使其转变为不可流动固体或形成紧密固体的过程。
稳定化是将污染物转变为低溶解度、低迁移性及低毒性的物质的过程;稳定化不一定改变污染土壤的物理性状。
2、优缺点优点a)能快速控制污染物b)对多重金属污染有明显优势c)处理费用低d)工艺过程简单e)处理周期短f)固化物能用于其它用途(如:建筑材料)缺点a)不能有效去除重金属污染物毒性b)不能很好去除重金属污染物的含量c)土壤被破坏d)需要大量固化剂3、特殊金属处理多价态金属(As、Cr):通常需要使用氧化剂和还原剂进行处理a)As:固化前先进行氧化处理,从3价转化成5价b)Cr:固化前进行还原处理,从6价转化成3价Hg:自然状态下具有挥发性需进行预处理:采用活性炭吸附或反应形成HgS沉淀4、常用参数及其作用二、主要固化/稳定化材料1、主要S/S材料a)固化剂:水泥、火山灰、改性粘土、热塑材料b)稳定化剂:腐殖酸、磷酸盐、石灰、氧化镁、铁盐c)吸附剂:沸石、粘土、活性炭d)其他:硫化物、聚硫化物、螯合物、水玻璃、污泥2、可用作修复材料的副产物和废物a)有机物:生物质固体物质、粪肥、堆肥、沼渣、造纸污泥、木屑、乙醇生产副产物b)pH调节剂:石灰、草木灰、粉煤灰、制糖石灰渣、水泥窑石灰窑灰、赤泥、石灰稳定污泥c)矿物质:铸造砂、钢渣、硫酸污泥、石膏、水处理污泥三、搅拌混合与工程1、异位稳定化a)挖掘污染土壤b)筛分污染土壤,除去大颗粒物质,减少污染土壤的稳定化量c)对筛除的大颗粒物质进行清洗d)对筛下土壤添加(粉末或泥浆添加),并混合均匀e)养护(28d)和老化f)检测和处置四、浸出与评估1、评估与测试a)抗压强度b)渗透系数c)判断固化/稳定化处理过程成功与否主要是根据被处理过的有毒有害污染物抵抗自然界中可导致污染物释放的物理及化学过程的能力,通过毒性浸出试验来确定d)抗环境PH和Eh变化的能力e)长期环境行为和环境影响(固结剂同污染物的相互作用、碳酸化、硫酸盐和氯化物侵蚀、风化等)f)微观结构(XRD、SEM、EDX)g)风险评价2、固化块性能评估a)UCS:最低值要求,平均值要求;b)渗透系数:最高值要求,平均值要求,如:5x10-6to 1x10-6cm/sec ;c)浸出实验:最高值要求,平均值要求;d)场地概念模型e)修复目标f)风险限制g)浸出减少率h)目标地下水标准i)干湿和冻融实验:实验周期,损失率。
科技成果——异位固化、稳定化技术
科技成果——异位固化、稳定化技术技术适用性适用的介质:污染土壤可处理的污染物类型:金属类、石棉、放射性物质、腐蚀性无机物、氰化物、砷化合物等无机物以及农药/除草剂、石油或多环芳烃类、多氯联苯类以及二噁英等有机化合物。
应用限制条件:不适用于挥发性有机化合物和以污染物总量为验收目标的项目。
当需要添加较多的固化/稳定剂时,对土壤的增容效应较大,会显著增加后续土壤处置费用。
成果简介原理:向污染土壤中添加固化剂/稳定化剂,经充分混合,使其与污染介质、污染物发生物理、化学作用,将污染土壤固封为结构完整的具有低渗透性的固化体,或将污染物转化成化学性质不活泼形态,降低污染物在环境中的迁移和扩散。
系统构成和主要设备:主要由土壤预处理系统、固化/稳定剂添加系统、土壤与固化/稳定剂混合搅拌系统组成。
其中,土壤预处理系统具体包括土壤水分调节系统、土壤杂质筛分系统、土壤破碎系统。
主要设备包括土壤挖掘系统(如挖掘机等)、土壤水分调节系统(如输送泵、喷雾器、脱水机等)、土壤筛分破碎设备(如振动筛、筛分破碎斗、破碎机、土壤破碎斗、旋耕机等)、土壤与固化/稳定剂混合搅拌设备(双轴搅拌机、单轴螺旋搅拌机、链锤式搅拌机、切割锤击混合式搅拌机等)。
关键技术(1)固化/稳定剂的种类及添加量固化/稳定剂的成分及添加量将显著影响土壤污染物的稳定效果,应通过试验确定固化/稳定剂的配方和添加量,并考虑一定的安全系数。
目前国外应用的固化/稳定化技术药剂添加量大都低于20%。
(2)土壤破碎程度土壤破碎程度大有利于后续与固化/稳定剂的充分混合接触,一般要求土壤颗粒最大的尺寸不宜大于5cm。
(3)土壤与固化/稳定剂的混匀程度混合程度是该技术一个关键性瓶颈指标,混合越均匀固化/稳定化效果越好。
土壤与固化/稳定剂的混匀程度往往依靠现场工程师的经验判断,国内外还缺乏相关标准。
(4)土壤固化/稳定化处理效果评价土壤固化/稳定化修复效果通常需要物理和化学两类评价指标:物理指标包括无侧限抗压强度、渗透系数;化学指标为浸出液浓度。
3第三章 危险废物的固化-稳固化处理技术
研究资料表明,铅、铜、锌、锡、镉均可得到很好的固定 但汞仍然主要以物理封闭的微包容形式与生态圈进行隔离的。 对于重金属水泥固化过程的化学机理,关于铅与铬研究得 较多。研究结果表明,铅主要沉积于水泥水化无颗粒的外表面 而铬则较为均匀地分布于整个水化物的颗粒之中。 有机物对于水化过程有干扰作用,减小最终产物的强度, 并使得稳定化过程变得困难。它可能导致生成较多的无定型物 质而干扰最终的晶体结构形式。在固化过程中加入黏土、蛭石 以及可溶性的硅酸钠等物质,可以缓解有机物的干扰作用,提 高水泥固化的效果。 应用水泥作为固化包容的主要材料大多被用于固定电镀工 业产生的污泥和其他类型的金属氢氧化物废物。
但是pH值过高,会形成带负电荷的轻基络合物,溶解度反 而升高。例如,pH值<9时,铜主要以Cu(OH)2沉淀的形式存在 当pH值>9时,则形成Cu(OH)3-和Cu(OH)42-络合物,溶解度增 加。许多金属离子都有这种性质,如铅当pH值>9.3时;锌当 pH值>9.2时;镉当pH值>11.1时;镍当pH值>10.2时,都会形 成金属络合物,造成溶解度增加。 水、水泥和废物的量比: 水分过小,则无法保证水泥的充分水合作用;水分过大,则 会出现泌水现象,影响固化块的强度。水泥与废物之间的量比应 用试验方法确定。 凝固时间 : 为确保水泥废物混合浆料能够在混合以后有足够的时间进行 输送、装桶或者浇注,必须适当控制初凝和终凝的时间。
包容化技术:用稳定剂/固化剂凝聚,将有毒物质
或危险废物颗粒包容或覆盖的过程。 固化和稳定化技术在处理危险废物时通常无法截 然分开,固化的过程会有稳定化的作用发生,稳定化 的过程往往也具有固化的作用。而在固化和稳定化处 理过程中,往往也发生包容化的作用。
工业固体废物固化和稳定化处理技术概述
工业固体废物固化和稳定化处理技术概述将危险废物变成高度不溶性的稳定的物质,这就是固化和稳定化。
废物固化和稳定化技术在危险废物管理工作中起到重要作用,其目的是使废物中的污染组分被固化材料包容或呈化学惰性,一般视为废物的最终处置的预处理技术。
一、固化和稳定化处理技术的定义1.固化技术固化技术是利用物理或化学方法将有害废物与能聚结成固体的某些惰性基材混合,从而使固体废物固定或包容在惰性固体基材中,使之具有化学稳定性或密封性的一种无害化处理技术。
固化所用的惰性材料为固化剂。
有害废物经过固化处理所形成的固化产物称为固化体。
这种固体可以以方便的尺寸大小进行运输,而无须任何辅助容器。
按照固化剂的不同,固化处理方法可以分为包胶固化、自胶结固化和水玻璃固化等方法。
2.稳定化技术稳定化技术是将有毒有害污染转变为低溶解性、低迁移性及低毒性的过程。
一般可分为物理稳定化和化学稳定化。
物理稳定化是将固体废物与一种疏松的物料(如粉煤灰)混合生成一种粗颗粒、有土壤状坚实度的固体,这种固体可以运送至处置场。
化学稳定化是指通过化学反应使有毒物质变成不溶性化合物,使之在稳定的晶格内固定不动。
实际操作过程中,固化和稳定化两个过程是同时发生的。
3.包容化技术包容化技术是指用稳定剂、固化剂凝聚,将有毒物质或危险废物颗粒包容或覆盖的过程。
固化和稳定化处理的目的是使污染组分呈现化学惰性或将其包裹起来,降低废物中毒性向生物圈迁移的能力,同时便于运输、利用或最终处置。
固化过程是一种利用添加剂改变废物的工程特性的过程,可以看作是一种特定的稳定化过程。
稳定化过程是利用添加剂与废物混合来完成,固化与稳定化在概念上有一定的区别,但都是降低废物污染组分迁移性的处理方式。
二、固化和稳定化处理的基本要求(1)所得到的产品应该是一种密实的,具有一定几何形状和较强的抗压强度、抗冲击性、抗浸泡性、抗冻融性,化学性质稳定的固体。
(2)处理过程必须简单,应有有效措施减少有毒有害物质的逸出,避免工作场所和环境的污染。
稳定化固化在固体危险废物处理中的应用
稳定化固化在固体危险废物处理中的应用摘要:随着工业的发展,工业生产过程排放的危险废物日益增多。
据估计,全世界每年危险废物产生量为3.3亿吨。
由于危险废物带来的严重污染和潜在影响,为解决危险废物处理问题,研究危险废物处理方案,在分析稳定化/固化方案的基础上,进一步对稳定化/固化方案进行比较,为稳定化/固化在危险废物处理中提供一些必要的科学依据。
关键词:稳定化;固化;危险废物0引言危险废物:是指列入国家危险废物名录或者根据国家规定的危险废物鉴别标准和鉴别方法认定的具有腐蚀性、毒性、易燃性、反应性和感染性等一种或一种以上危险特性,以及不排除具有以上危险特性的固体、液体或其他形态的废物[1]。
稳定化:是指通过加入不同的添加药剂,通过物理或化学反应方式减少有害组分的毒性、溶解迁移性;稳定化过程是一种将污染物部分或全部束缚固定于支持基质上的过程。
稳定化固化是危险废物处理中的一项重要技术,在集中处理处置过程中占有重要的地位。
无法直接进行无害化、减量化处理的危险废物,都要全部或部分地经过稳定化固化处理后,才能进行最终处置或加以利用。
1 稳定化/固化处理危险废物稳定化/固化处理是尽可能将填埋处置的危险废物与环境隔绝的重要工程措施之一。
稳定化/固化处理应本着减量化和无害化的原则,采取各种措施对有害成分进行稳定化,减少危险废物中有害成分的浸出,使其经过处理后,达到降低、减轻或消除其自身危害性的作用,满足《危险废物填埋污染控制标准》中“允许进入填埋区控制限制”后进行填埋处置。
2 稳定化/固化方法经大量实践证实,稳定化/固化技术由于具有处理效果稳定、处理过程简单、处理费用低廉等特点,而被广泛用于危险废物的预处理过程中,目前国内外采用的稳定化/固化方法主要有:2.1水泥稳定化/固化水泥是最常用的危险废物稳定剂,由于水泥是一种无机胶结材料,经过水化反应后可以生成坚硬的水泥稳定化/固化体,从而达到降低废物中危险成分浸出的目的。
固化稳定化技术
固化稳定化技术
固化稳定化技术:通过物理封锁、化学反应形成沉淀从而达到降低污染物迁移性和活性的目的。
一、将污染土壤与黏结剂混合形成凝固体而达到物理封锁(如降低孔隙率等)
二、发生化学反应形成固体沉淀物(如形成氢氧化物或硫化物沉淀等)。
固化稳定化技术主要包括两个概念:固化、稳定化。
1、固化是指将污染物包裹起来,使之呈颗粒状或者大板块存在,进而使污染物处于相对稳定的状态;
2、稳定化是指将污染物转化为不易溶解、迁移能力或毒性变小的状态和形式。
(即通过降低污染物的生物有效性,实现其无害化或降低其对生态系统危害性的风险)。
固化稳定化技术按处置位置的不同,可分为原位固化稳定化和异位固化稳定化。
固化稳定化技术中许多物质都可以作为黏结剂,如硅酸盐水泥(Portland cement)、火山灰(Pozzolana)、硅酸酯(Silicate)和沥青(Btumen)以及各
种多聚物(Polymer)等。
硅酸盐水泥以及相关的铝硅酸盐(如高炉溶渣、飞灰
和火山灰等)是最常用的黏结剂。
固化稳定化技术的优点:
(1)成本和运行费用较低,适用性较强,原位异位均可使用。
(2)主要应用于处理无机物污染的土壤。
缺点:
(1)不适合含挥发性污染物土壤的处理。
(2)对于半挥发性有机物和农药杀虫剂等污染物的处理效果有限。
固体废物的物化处理
.
.
用。 (2)起泡剂:表面活性物质,主要作用在水-气界面上使其界面力降低,促使空 气在料浆中弥散,形成小气泡,防止气泡兼并,增大分选界面,提高气泡与颗粒 的粘附和上浮过程中的稳定性,以保证气泡上浮形成泡沫层。 常用的起泡剂:松醇油、脂肪醇等。 松醇油的主要成分为α-萜烯醇(C10H17OH)
浮选法的主要缺点:是有些工业固体废物浮选前需要破碎和磨碎到一定的细 度。浮选时要消耗一定数量的浮选药剂,且易造成环境污染或增加相配套的净化 设施。另外,还需要一些辅助工序(如浓缩、过滤、脱水、干燥)等。因此,在生 产实践中究竟采用哪一种分选方法,应根据固体废物的性质,经技术经济综合比 较后确定。
.
.
.
.
孔雀石CuCO3 Cu(OH)2 H Cu 2 CO2 H 2O 蓝铜矿2CuCO3 Cu(OH)2 H Cu 2 CO2 H 2O 黑铜矿CuO H Cu 2 H 2O 赤铜矿Cu2O H Cu 2 Cu H 2O 硅孔雀石CuSiO3 2H 2O H Cu 2 SiO2 H 2O 铜蓝CuS H Cu 2 H 2 S
高价铁盐浸出含铋废物的反应为:
FeS2 2CuCl2 FeCl2 2CuCl 2S 0 CuFeS2 3CuCl2 FeCl2 4CuCl 2S 0 PbS 2CuCl2 PbCl2 2CuCl S 0 氯Z化n铜S溶液2浸C出金u属C硫l2化矿: ZnCl2 2CuCl S 0 Cu 2 S 2CuCl2 4CuCl S 0
异极性捕收剂:黄药类、脂肪酸类 常用的捕收剂
非极性油类捕收剂:煤油、柴油等
异极性捕收剂(heteropolar collector) 异极性捕收剂的分子由极性基(亲固基)和非极性基(疏水基)组成,如黄药 (ROCSSNa)和羧酸(RCOOH)或羧酸盐(RCOONa)等。其捕收对象主要取决于极 性基的选择性吸附。
固化稳定化 ppt课件
固化/稳定化处理对象
☆危险废物处理使其满足安全处置工程于技术要求。
☆其它处理过程的残渣、电镀废水处理产生的污泥,以及其 它工业废渣固化/稳定化处理,以防止其无控堆放造成环境 污染。
廉。 6)固化体要有较好的导热性和热稳定性,以防内热或外部
环境条件改变造成固化体结构破损,污染物泄漏。
6
评价指标
★浸 出 率 : 是评价固化体在水介质环境中受浸泡时有 毒有害物质溶解并进入环境中的性能指标。
★增 容 比 : 又称体积变化因素(包括体积缩小因素和 体积扩大因素),指固化/稳定化处理后废 物的体积比,CR=V前/V后。它是鉴别固化/ 稳定化处理方法好坏和衡量最终处置成本 的一项重要指标,其大小取决于药剂掺入 量和有毒有害物质控制水平。
基本原理:水泥是一种无机胶凝材料,经过水化反应后 可生成坚硬的水泥固化体,是最常用的危险 废物稳定剂,尤以普通硅酸盐水泥最为常用。 水泥固化就是一种以水泥为基材的固化方法, 其过程是:废物与硅酸盐水泥混合,如果废 物中没有水分则需要向混合物中加水以保证 水合作用发生,最终生成硅酸铝盐胶体,并 将废物中有毒有害组分固定在固化体中,达 到无害化处理的目的。
8
分类
根据固化基材及固化过程,目前常用的固化技术有: 水泥固化、石灰固化、塑性材料固化、有机聚合物固化、 自胶结固化、熔融固化(玻璃固化)和陶瓷固化。
实践表明:自胶结更适用于处理无机废物,尤其是 含阳离子废物;而无机基材包封(容)法则更适用于有 机废物或无机阴离子废物处理。
9
10
固体废弃物处置技术——固体废物固化
①将污泥浆、沥青与表面活性剂混合成乳浆状 ②分离除去大部分水分, ③进一步升温干燥,使混合物脱水。
工艺流程
(三)化学乳化法
化学乳化法的操作步骤也分三步进行:
①将放射性废物在常温下与乳化沥青混合, ②将混合物加热,脱去水分; ③将脱水干燥后的混合物排入废物容器待冷却硬
固化剂:固化所用的惰性材料
固化体:有害废物经过固化处理所 形成的固化产物。
对固化处理的基本要求包括: ①有害废物经固化处理后所形成的固化体应具有良好的抗 渗透性、抗浸出性、抗干湿性、抗冻融性及足够的机械强 度等,最好能作为资源加以利用,如作建筑基础和路基材 料等。 ②固化过程中材料和能量消耗要低,增容比(即所形成的 固化体体积与被固化废物的体积之比)要低 ③固化工艺过程简单、便于操作; ④固化剂来源丰富,价廉易得。 ⑤处理费用低。
原理:
沥青固化是以沥青为固化剂与有害废物在一·定的 温度、配料比、碱度和搅拌作用下产生皂化反应,使 有害废物均匀地包容在沥青中,形成固化体。
优点
良好的粘结性、化学稳定性与一定的弹性和塑性、 耐腐蚀性、辐射稳定性。 适用范围
中、低放射水平的蒸发残液,废水化学处理产生 的沉渣、焚烧炉产生的灰烬、塑料废物、电镀污泥、 砷渣等。
机理分析:
➢ 机理十分复杂,目前还没有透彻的研究。 ➢ 目前采用的方法: 使污染物转变或引入到某种晶格中去;通过物理过程
把污染成分直接渗入到惰性基材中;或兼而有之; ➢ 适用一种或几种类型的废物; ➢ 主要处理无机废物,对有机废物处理效果欠佳。
固化技术首先是从处理放射性废物发 展起来的。今天,固化技术已应用于处理 多种有毒有害废物如电镀污泥、砷渣、汞 渣、氰渣、铬渣等。
固化稳定化技术
固化稳定化技术文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]一、S/S技术介绍1、原理固化/稳定化(solidification/stabilization S/S)是将污染土壤与能聚结成固体的黏结剂混合,从而将污染物捕获或固定在固体结构中的技术。
这两个术语常结合使用但它们具有不同的含义:固化是在废物中添加固化剂,使其转变为不可流动固体或形成紧密固体的过程。
稳定化是将污染物转变为低溶解度、低迁移性及低毒性的物质的过程;稳定化不一定改变污染土壤的物理性状。
2、优缺点优点a)能快速控制污染物b)对多重金属污染有明显优势c)处理费用低d)工艺过程简单e)处理周期短f)固化物能用于其它用途(如:建筑材料)缺点a)不能有效去除重金属污染物毒性b)不能很好去除重金属污染物的含量c)土壤被破坏d)需要大量固化剂3、特殊金属处理多价态金属(As、Cr):通常需要使用氧化剂和还原剂进行处理a)As:固化前先进行氧化处理,从3价转化成5价b)Cr:固化前进行还原处理,从6价转化成3价Hg:自然状态下具有挥发性需进行预处理:采用活性炭吸附或反应形成HgS沉淀4、常用参数及其作用二、主要固化/稳定化材料1、主要S/S材料a)固化剂:水泥、火山灰、改性粘土、热塑材料b)稳定化剂:腐殖酸、磷酸盐、石灰、氧化镁、铁盐c)吸附剂:沸石、粘土、活性炭d)其他:硫化物、聚硫化物、螯合物、水玻璃、污泥2、可用作修复材料的副产物和废物a)有机物:生物质固体物质、粪肥、堆肥、沼渣、造纸污泥、木屑、乙醇生产副产物b)pH调节剂:石灰、草木灰、粉煤灰、制糖石灰渣、水泥窑石灰窑灰、赤泥、石灰稳定污泥c)矿物质:铸造砂、钢渣、硫酸污泥、石膏、水处理污泥三、搅拌混合与工程1、异位稳定化a)挖掘污染土壤b)筛分污染土壤,除去大颗粒物质,减少污染土壤的稳定化量c)对筛除的大颗粒物质进行清洗d)对筛下土壤添加(粉末或泥浆添加),并混合均匀e)养护(28d)和老化f)检测和处置四、浸出与评估1、评估与测试a)抗压强度b)渗透系数c)判断固化/稳定化处理过程成功与否主要是根据被处理过的有毒有害污染物抵抗自然界中可导致污染物释放的物理及化学过程的能力,通过毒性浸出试验来确定d)抗环境PH和Eh变化的能力e)长期环境行为和环境影响(固结剂同污染物的相互作用、碳酸化、硫酸盐和氯化物侵蚀、风化等)f)微观结构(XRD、SEM、EDX)g)风险评价2、固化块性能评估a)UCS:最低值要求,平均值要求;b)渗透系数:最高值要求,平均值要求,如:5x10-6to 1x10-6cm/sec ;c)浸出实验:最高值要求,平均值要求;d)场地概念模型e)修复目标f)风险限制g)浸出减少率h)目标地下水标准i)干湿和冻融实验:实验周期,损失率。
固体废物的固化与稳定化
(3)特点 使用的添加剂本身是废物,来源广,成本低; 操作简单,不需要特殊的设备,处理费用低; 被固化的废渣不要求脱水和干燥; 可在常温下操作,没有尾气处理问题等。 缺点:石灰固化体的增容比较大;固化体强度较低;固化体容 易受酸性介质浸蚀,需对固化体表面进行涂覆。
4.3.4 塑料固化
暂时乳化法
主要步骤
将污泥、沥青与表面活性剂混合成乳浆状; 处理中等放射性污泥时,可采用20%活性成分(1/3烷 基磺酸钠和2/3的烷基苯磺酸钠)的阴离子表面活性剂; 用量为与干污泥之比约6:1000; 处理高放射性污泥时,可采用90%活性成分(主要为 椰子壳中的氨基丙酮)的阴离子表面活性剂;用量为 与干污泥之比约5:100; 先经过滤除去大部分水分; 再升温干燥,进一步脱水。
(3)水泥固化工艺 有害固体废物、水泥、添加剂+水→搅拌混合→ 养护→水泥固化体。 要求: ①pH >8; ②水灰比在1:2左右; ③水泥与废物比:由实验确定。 ④凝固时间:初凝时间>2h,终凝时间在48h以 内; ⑤选择适当的添加剂; ⑥养护条件:室温、相对湿度80%、28天; 固化产物性能:抗压强度、浸出性等。 混合方法:外部搅拌混合法;筒内混合法;注入 法
产品要求基本原则
(1)所得到的产品应该是一种密实的、具有一定几何 形状和较好物理性质、化学性质稳定的固体; (2)处理过程必须简单,应有有效措施减少有毒有害 物质的逸出,避免工作场所和环境的污染; (3)最终产品的体积尽可能小于掺入的固体废物的体 积; (4)产品中有毒有害物质的水分或其他指定浸提剂所 浸析出的量不能超过容许水平(或浸出毒性标准);
泥易于和污泥中的油类,有机酸,金属氧化物反应损 害硬化过程)。 矿渣水泥: 具有抗硫酸盐和抗化学腐蚀性。 粉煤灰水泥:抗硫酸盐。
固体废物的稳定化固化技术
固体废物的稳定化固化技术
27
固化/稳定化处理技术
4.1.2.1水泥固化
水泥固化是以水泥为 固化剂将有害废物进 行固化的一种处理方 法。此法非常适用于 处理各种重金属的污 泥。
❖ 水泥固化法的应用; ❖ 水泥固化法的优点和
缺点。
固体废物的稳定化固化技术
28
水泥固化的工艺过程
固化/稳定化处理技术
固化处理方法可按原理分为包胶固化、自胶结固化、 玻璃固化和水玻璃固化。
包胶固化又可以分为水泥固化、石灰基固化、热塑 性材料固化和有机聚合物固化等。包胶固化适用于 多种类型的废物;
自胶结固化只适用于含有大量能成为胶结剂的废物;
玻璃和水玻璃固化一般只适用于极少量特毒废物的 处理。
固体废物的稳定化固化技术
固体废物的稳定化固化技术
25
固化/稳定化处理技术
固化/稳定化处理技术
包胶固化 自胶结固化 玻璃固化 水玻璃固化
固体废物的稳定化固化技术
26
固化/稳定化处理技术
4.1.2 包胶固化
包胶固化是采用某种固化基材对废物块 或废物堆进行包覆处理。
1. 水泥固化 2. 石灰固化 3. 热塑性材料固化 4. 有机物聚合固化
对危险废物的化学氧化法处理是较为成熟的技术,可 以破坏多种有机分子,包括含氯的挥发性有机物、硫 醇、酚类,以及某些无机化合物,如氰化物。
常用的氧化剂有:臭氧、过氧化氢、氯气
固体废物的稳定化固化技术
17
稳定化/固化技术原理
氧化解毒原理
臭氧 处理氰化物
NaCN+O3→NaCNO+O2 和UV结合处理有机物
12
稳定化/固化技术原理
吸附原理
活性炭吸附
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泥固化的水化反应:
让废物料与硅酸盐水泥混合,如果废物 中没有水分,则需向混合物中加水,以 保证水泥分子跨接所必需的水合作用。
(1)硅酸三钙的水合反应 3CaO· 2+xH2O→2CaO· 2· 20+Ca(OH)2 Si0 Si0 yH
→CaO· 2· 20+2Ca(OH)2 Si0 mH
2(3CaO· 2)+xH2O→3CaO· 2· 20+3Ca(OH)2 Si0 2Si0 yH
对各种无机类型废物,尤其是重金属废物; 设备和工艺过程简单,设备投资、动力消 耗和运行费用都比较低; 价廉易得; 对含水率较高的废物可直接固化; 操作常温下即可进行; 对放射性废物的固化容易实现安全运输和 自动化控制等。
水泥固化的缺点
水泥固化体的浸出率较高,由于它的空 隙率较高所致,需作涂覆处理; 增容比较高,达1.5-2; 有的废物需进行预处理和投加添加剂, 使处理费用增高; 水泥的碱性易使铵离子转变为氨气逸出; 处理化学泥渣时,由于生成胶状物,使 混合器的排料较困难,需加入适量锯末。
→2(CaO· 2· 2O)+4Ca(OH)2 Si0 mH
(2)硅酸二钙的水合反应
2CaO· 2+ xH2O→2CaO· 2· 2O Si0 Si0 xH →CaO· 2· Si0 mH20+Ca(OH)2 2(2CaO· 2)+H2O→3CaO· 2· 2O+Ca(OH)2 Si0 2Si0 yH →2(CaO· 2· 2O)+2Ca(OH)2 Si0 mH
增容比:固化体体积与被固化有害废物体积的比值, V 即 c 2
V1
五、固化技术的应用
固化技术最早是用来处理放射性废物的 最近十年得到迅速发展,被广泛应用于 处理电镀污泥、铬渣、汞渣、砷渣、氰 渣和镉渣等。 特别适合含重金属废物
六、固化处理的基本要求
固化体应具有良好的抗渗透性、抗浸出性、抗 干湿性、抗冻融性及足够的机械强度等,最好 能作为资源加以利用,如作建筑材料和路基材 料等; 固化过程中材料和能量消耗要低,增容比要低; 固化工艺过程简单、便于操作 固化剂来源丰富,价廉易得 处理费用低
沥青固化的基本方法
沥青固化的基本方法有: 高温熔化混合蒸发法 暂时乳化法 化学乳化法
高温溶化混合蒸发法
是将废液加入预先熔化的沥青中,在 150-230℃下搅拌混合蒸发,待水分和其 他挥发组分排出后,将混合物排至贮存 器或处置容器中。
暂时乳化法
分三个步骤进行: 将污泥浆、沥青与表面活性剂混合成乳 浆状; 分离除去大部分水分; 进一步升温干燥,使混合物脱水。
图1
危险废物从产生到处置的管理体系
一、定义
固化:在危险废物中添加固化剂,使其 转变为不可流动固体或形成紧密固体的 过程。固化的产物是结构完整的整块密 实固体。 稳定化:将有毒有害污染物转变为低溶 解性、低迁移性及低毒性的物质的过程。 可分为物理稳定化和化学稳定化。
物理稳定化:是将固体废物与一种疏松 物料(如粉煤灰)混合生成一种粗颗粒、 有土壤状坚实度的固体,这种固体可以 用运输机械送至处置场。 化学稳定化:通过化学反应使有毒物质 变成不溶性化合物,使之在稳定的晶格 内固定不动。
2、自胶结固化
自胶结固化是将大量含有硫酸钙或亚硫 酸钙的泥渣,在适宜的控制条件下进行 煅烧,使其部分脱水至产生有胶结作用 1 CaSO H O 的亚硫酸钙或半水硫酸钙( )状 2 态,然后与特制的添加剂和填料混合成 稀浆,经凝结硬化形成自胶结固化体。 自胶结固化体具有抗透水性高、抗微生 物降解和污染物浸出率低的特点。
CaO· 203· 2O Fe nH
添加剂
作用:改善固化条件,提高固化体的质 量。 常用的添加剂有: 吸附剂 活性氧化铝、粘土、蛭石等 缓凝剂 酒石酸、柠檬酸、硼酸盐等 促凝剂 水玻璃、铝酸钠、碳酸钠等 减水剂 表面活性剂等
水泥固化技术的应用
最适用于无机类型的废物,尤其是含有重 金属污染物的废物。水泥高pH值,形成不 溶性的氢氧化物或碳酸盐形式。某些重金 属也可固定在水泥基体的晶格中。 研究指出,铅、铬、铜、锌、锡、镉均可 得到很好的固定。但汞仍然要以物理封闭 的微包容形式与生态圈进行隔离。对铅和 铬的水泥固化机理研究较多,铅主要沉积 于水泥水化物颗粒的外表面,而铬则较为 均匀地分布于整个水化物的颗粒之中。
技术 适用对象 优点 1. 水泥搅拌,处理技支已相当成熟 2. 对废物中化学性质的变动具有相当 的承受力 3. 可由水泥与废物的比例来控制固化 体的结构缺点与不透水性 4. 无需特殊的设备,处理成本低 5. 废物可直接处理,无需前处理 1. 所用物料价格便宜,容易购得 2. 操作不需特殊设备及技术 3. 在适当处置环境,可维持波索来( pozzolanic reaction)反应的持续进行 缺点 1.废物中若含有特殊的盐类,会 造怐固化体破裂 2.有机物的分解造成裂隙,增加 渗透性,降低结构强度 3.大量水泥的使用增加固化体的 体积和质量 1. 固化体的强度较低,且需较 长的养护时间 2. 有较大的体积膨胀,增加清 运和处置的困难 1. 需要特殊设备和专业操作人 员 2. 废物中若含氧化剂或挥发性 物质,加热时可能会着火或逸 散,废物须先干燥,破碎后才 能进行操作 1. 对可燃或具挥发性的废物并 不适用 2. 高温热融需消耗大量能源 3. 需要特殊的设备及专业人员 1. 应用面较为狭窄 2. 需要特殊的设备及专业人员
电镀污泥固化处理
固化材料为425号普通硅酸盐水泥,水/ 水泥质量比为0.47—0.88,水泥/废物 质量比0.67-4.00,固化体的抗压强度 可以达到6—30MPa。固化体的浸出试验 结果说明,Pb2+、Cd2+、Cr6+的浸出浓度 都远低于相应的浸出毒性鉴别标准。
水泥固化的优点
4 2
3、水玻璃固化
是以水玻璃为固化剂,无机酸类(如硫 酸、硝酸、盐酸和磷酸)为助剂,与有 害废物按一定比例进行中和和缩合脱水 反应,形成凝胶体,将有害废物包容, 经凝结硬化逐步形成水玻璃固化体。 具有工艺简单、价廉易得,处理费用低、 固化体耐酸性强,抗透水性号,重金属 浸出率低等特点。
表6-1各种固化/稳定化技术的适用对象和优缺点
三、塑料固化
塑料固化是以塑料为固化剂与有害废物 按一定的配料比,并加入适量的催化剂 和填料(骨料)进行搅拌混合,使其共 聚合固化而将有害废物包容形成具有一 定强度和稳定性的固化体。
按塑料的种类分为: 热塑性塑料固化:聚乙烯、聚氯乙稀树 酯等 热固性塑料固化:脲醛树脂和不饱和树 酯等
塑料固化的特点
人们进而开发了以脲甲醛和沥青等高分子有机 物为基材的固化技术。此类固化技术的优点是 与废物的相容性更高,增容比相对较小,而且固 化体的重量也较轻。 向水泥中添加硅酸钠,可以使水泥固化产生更 好的效果。 开始出现以有机聚合物为基材的塑料固化和利 用水泥、粉煤灰、石灰及粘土混合处理废物的 技术。
化学乳化法
分三步进行: 将有害废物在常温下与乳化沥青混合; 将混合物加热,脱去水分; 将脱水干燥后的混合物排入废物容器, 待冷却硬化后即形成沥青固化体。
影响沥青固化体性质的因素
沥青的种类 直馏沥青效果最好 废物量、化学组成及混合状况 一般应控制加 入的废物量与沥青的重量比在40-50% 残余水分 应控制在10%以下,最好小于0.5% 表面活性剂 使浸出率升高 掺入的化合物、氧化剂 硝酸盐、亚硝酸盐掺 入后,会降低沥青的燃点
固化可以看作是一种特定的稳定化过程, 可以理解为稳定化的一个部分 无论是稳定化还是固化,其目的都是减 小废物的毒性和可迁移性,同时改善被 处理对象的工程性质。
固化剂:固化所用的添加剂 固化体:有害废物经过固化处理所形成 的固化产物
二、固化/稳定化技术发展的历史
固化/稳定化技术的根源可以追溯到上世纪50 年代放射性废物的固化处置。例如,美国在处理 低水平放射性液体废物时,先用蛭石等矿物进行 吸附,或者先用普通水泥将其固化,然后再进行 填埋处置。在欧洲,放射性废物基本上是先用水 泥固化,再用惰性材料包封,然后进行海洋处置。 进入70 年代后,危险废物污染环境的问题日益 严重,作为危险废物最终处置的预处理技术,稳 定化/ 固化在一些工业发达国家首先得到研究 和应用。
第六篇 固体废物固化\稳定化
主讲:宋立杰
第一节 概述
固化/稳定化技术是处理重金属废物和其 他非金属危险废物的重要手段,是危险 废物管理中的一项重要技术。 经其它无害化、减量化处理的固体废物, 都要全部或部分地经过稳定化/ 固化处 理后,才能进行最终处置或加以利用。 固化/稳定化作为废物最终处置前的预处 理技术在国内外已得到广泛应用。
优点:可以在常温下操作;为使混合物聚合 凝结仅加入少量的催化剂即可;增容比和固 化体的密度较小。 缺点:塑料固化体耐老化性能较差;固化体 一旦破裂,污染物浸出会污染环境,因此处 置前都应有容器包装,因而增加了处理费用; 混合过程中释放有害烟雾;需要熟练的操作 技术。
四、玻璃固化
原理:是以玻璃为固化剂,将其与有害 废物以一定比例混合后,在900-1200℃ 高温下熔融,经退火后即可转化为稳定 的玻璃固化体。 从固化体的稳定性、对融融设备的腐蚀 性、处理时的发泡情况和增容比来看, 硼硅酸盐玻璃是最有发展前途的固化方 法。
玻璃固化法的特点
优点:①玻璃固化体致密,在水及酸、 碱溶液中的浸出率小;②增容比小;③ 在玻璃固化过程中产生的粉尘量少;④ 玻璃固化体有较高的导热性、热稳定性 和辐射稳定性。 缺点:装置较复杂,处理费用昂贵、工 作温度较高、设备腐蚀严重,以及放射 性核素挥发量大等。