光电子能谱法基本原理汇总

光电子能谱法基本原理汇总
光电子能谱法基本原理汇总

第十四章 X-射线光电子能谱法

14.1 引言

X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。

XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下:

⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析

⑵表面灵敏度高,一般信息采样深度小于10nm

⑶分析速度快,可多元素同时测定

⑷可以给出原子序数3-92的元素信息,以获得元素成分分析

⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团

⑹样品不受导体、半导体、绝缘体的限制等

⑺是非破坏性分析方法。结合离子溅射,可作深度剖析

目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。

14.2 基本原理

XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。

该过程可用下式表示:

hγ=E k+E b+E r(14.1)

式中:

hγ:X光子的能量(h为普朗克常数,γ为光的频率);

E k:光电子的能量;

E b:电子的结合能;

E r:原子的反冲能量。

其中E r很小,可以忽略。对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能E b,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(14.1)又可表示为:

E k= hγ- E b-Φ(14.2)

E b= hγ- E k-Φ(14.3)

这时,式中

hγ――入射光子能量(已知值)

E k――光电过程中发射的光电子的动能(测定值)

E b――内壳层束缚电子的结合能(计算值)

Φ――谱仪的功函数(已知值)

仪器材料的功函数Φ是一个定值,约为4eV,入射光子能量已知,这样,如果测出电子的动能E k,便可得到固体样品电子的结合能。原子能级中电子的结合能(Binding Energy,简称为B.E.), 其值等于把电子从所在的能级转移到Fermi能级时所需的能量。在XPS分析中,由于采用的X射线激发源的能量较高,不仅可以激发出原子价轨道中的价电子,还可以激发出芯能级上的内层轨道电子,其出射的光电子能量仅与入射光子的能量(即辐射源能量)及原子轨道结合能有关。因此,对于特定的单色激发源和特定的原子轨道,此时其光电子能量是特征的。当固定激发源能量时,其光电子能量仅与元素的种类和所电离激发的原子轨道有关。因此,我们可以根据光电子的结合能,判断样品中元素的组成,定性分析除H和He(因为它们没有内层能级)之外的全部元素。

芯能级轨道上的电子一方面受到原子核强烈的库仑作用而具有一定的结合能,另一方面又受到外层电子的屏蔽作用。当外层电子密度减少时,屏蔽作用将减弱,内层电子的结合能增加;反之则结合能将减少。因此当被测原子的氧化价态增加,或与电负性大的原子结合时,都导致其XPS峰将向结合能增加的方向位移。这种由化学环境不同引起的结合能的微小差别叫化学位移(Chemical shift)。利用化学位移值可以分析元素的化合价和存在形式,这也是XPS分析的最重要的应用之一。

在表面分析研究中,我们不仅需要定性地确定试样的元素种类及其化学状态,而且希望能测得它们的含量。X射线光电子能谱谱线强度反应的是原子的含量或相对浓度,测定谱线强度便可进行元素的半定量分析。光电子的强度不仅与原子浓度有关,而且也与光电子平均自由程、样品表面光洁程度、元素所处化学状态、X射线源强度、仪器状态等条件有关,因此,XPS技术一般不能给出所分析的某个元素的绝对含量,只能给出所分析各元素的相对含量,而且分析误差在10-15wt%左右。还需要指出的是,XPS是一种很灵敏的表面分析方法,具有很高的表面检测灵敏度,可以达到10-3原子单层。但是,对于体相的检测灵敏度仅为0.1%(原子分数,即元素的检测限)左右。

X光电子能谱法作为表面分析方法,提供的是样品表面的元素含量与形态,而不是样品整体的成分。XPS其表面采样深度(d = 3λ)与材料性质、光电子的能量有关,也同样品表面和分析器的角度有关。通常,对于金属样品取样深度为0.5~2nm,氧化物样品为1.5~4nm;有机物和高分子样品为4~10nm。它提供的仅是表面上的元素含量,与体相成分会有很大的差别,因而常会出现XPS和X射线粉末衍射(XRD)或者红外光谱(IR)分析结果的差异,后两者给出的是体相成分的分析结果。如果利用氩离子束溅射作为剥离手段,利用XPS作为分析方法,还可以实现对样品的深度分析。

14.3 仪器结构和使用方法

XPS仪器设计与最早期的实验仪器相比,有了非常明显的进展,但是所有的现代XPS仪器都基于相同的构造:进样室、超高真空系统、X射线激发源、离子源、电子能量分析器、检测器系统、荷电中和系统及计算机数据采集和处理系统等组成。这些部件都包含在一个超高真空(Ultra High Vacuum,简称为UHV)封套中,通常用不锈钢制造,一般用μ金属作电磁屏蔽。下面对仪器各部件构造及功能进行简单介绍。图14.1 是Kratos Axis Ultra DLD型多功能电子能谱仪的外形图。

图14.1 Kratos Axis Ultra DLD型多功能电子能谱仪

14.3.1超高真空系统

超高真空系统是进行现代表面分析及研究的主要部分。XPS谱仪的激发源,样品分析室及探测器等都安装在超高真空系统中。通常超高真空系统的真空室由不锈钢材料制成,真空度优于1×10-9托。在X射线光电子能谱仪中必须采用超高真空系统,原因是(1)使样品室和分析器保持一定的真空度,减少电子在运动过程中同残留气体分子发生碰撞而损失信号强度;(2)降低活性残余气体的分压。因在记录谱图所必需的时间内,残留气体会吸附到样品表面上,甚至有可能和样品发生化学反应,从而影响电子从样品表面上发射并产生外来干扰谱线。

一般XPS采用三级真空泵系统。前级泵一般采用旋转机械泵或分子筛吸附泵,极限真空度能达到10-2Pa;采用油扩散泵或分子泵,可获得高真空,极限真空度能达到10-8Pa;而采用溅射离子泵和钛升华泵,可获得超高真空,极限真空度能达到10-9Pa。这几种真空泵的性能各有优缺点,可以根据各自的需要进行组合。现在新型X射线光电子能谱仪,普遍采用机械泵-分子泵-溅射离子泵-钛升华泵系列,这样可以防止扩散泵油污染清洁的超高真空分析室。标准的AXIS Ultra DLD 就是利用这样的泵组合。样品处理室(Smaple Treatment Center,简称为STC)借助于一个为油扩散泵所后备的涡轮分子泵进行抽真空。样品分析室(Sample Analysis Center,简称为SAC)借助于一个离子泵和附加于其上的钛升华泵(TSP)来抽空。

14.3.2快速进样室

为了保证在不破坏分析室超高真空的情况下能快速进,X射线光电子能谱仪多配备有快速进样室。快速进样室的体积很小,以便能在40~50分钟内能达到10-7托的高真空。

14.3.3 X射线激发源

XPS中最简单的X射线源,就是用高能电子轰击阳极靶时发出的特征X射线。通常采用Al Kα(光子能量为1486.6eV )和Mg Kα(光子能量为1253.8eV)阳极靶,它们具有强度高,自然宽度小(分别为830meV和680meV)的特点。这样的X 射线是由多种频率的X 射线叠加而成的。为了获得更高的观测精度,实验中常常使用石英晶体单色器(利用其对固定波长的色散效果),将不同波长的X射线分离,选出能量最高的X射线。这样做有很多好处,可降低线宽到0.2 eV,提高信号/本底之比,并可以消除X射线中的杂线和韧致辐射。但经单色化处理后,X射线的强度大幅度下降。

14.3.4 离子源

离子源是用于产生一定能量、一定能量分散、一定束斑和一定强度的离子束。在XPS中,配备的离子源一般用于样品表面清洁和深度剖析实验。在XPS谱仪中,常采用Ar离子源。它是一个经典的电子轰击离子化源,气体被放入一个腔室并被电子轰击而离子化。Ar离子源又可分为固定式和扫描式。固定式Ar离子源,将提供一个使用静电聚焦而得到的直径从125μm到mm量级变化的离子束。由于不能进行扫描剥离,对样品表面刻蚀的均匀性较差,仅用作表面清洁。对于进行深度分析用的离子源,应采用扫描式Ar离子源,提供一个可变直径(直径从35μm到mm量级)、高束流密度和可扫描的离子束,用于精确的研究和应用。

14.3.5 荷电中和系统

用XPS测定绝缘体或半导体时,由于光电子的连续发射而得不到足够的电子补充,使得样品表面出现电子“亏损”,这种现象称为“荷电效应”。荷电效应将使样品出现一个稳定的表面电势VS,它对光电子逃离有束缚作用,使谱线发生位移,还会使谱锋展宽、畸变。因此XPS中的这个装置可以在测试时产生低能电子束,来中和试样表面的电荷,减少荷电效应。

14.3.6能量分析器

能量分析器的功能是测量从样品中发射出来的电子能量分布,是X射线光电子能谱仪的核心部件。常用的能量分析器,基于电(离子)在偏转场(常用静电场而不再是磁场)或在减速场产生的势垒中的运动特点。通常,能量分析器有两种类型,半球型分析器和筒镜型能量分析器。半球型能量分析器由于对光电子的传输效率高和能量分辩率好等特点,多用在XPS谱仪上。而筒镜型能量分析器由于对俄歇电子的传输效率高,主要用在俄歇电子能谱仪上。对于一些多功能电子能谱仪,由于考虑到XPS和AES的共用性和使用的侧重点,选用能量分析器的主要依据是哪一一种分析方法为主。以XPS为主的采用半球型能量分析器,而以俄歇为主的则采用筒镜型能量分析器。

14.3.7 检测器系统

光电子能谱仪中被检测的电子流非常弱,一般在10-13A/s~10-19A/s,所以现在多采用电子倍增器加计数技术。电子倍增器主要有两种类型:单通道电子倍增器和多通道电子检测器。单通道电子倍增器可有106~109 倍的电子增益。为提高数据采集能力,减少采集时间,近代XPS

谱仪越来越多地采用多通道电子检测器。最新应用于光电子能谱仪的延迟线检测器(Delay Line Detector,简称为DLD),采用多通道电子检测器,尤其在微区(10μm左右)分析时,可以大大提高收谱和成像的灵敏度。

14.3.8 成像XPS

表面分析时的成像XPS可以提供表面相邻区中空间分布的元素和化学信息。对使用其他表面技术难以分析的样品而言,成像XPS是特别有用途的。这包括从微米到毫米尺度范围内非均匀材料、绝缘体、电子束轰击下易损伤的材料或要求了解化学态在其中如何分布的材料。在成像XPS 中,除了提供元素和化学态分布外,还能用于标出覆盖层稠密度,以估算X射线或离子束斑大小和位置,或检验仪器中电子光学孔径的准直。因而成像XPS成为能得到空间分布信息的常规应用方法。

XPS成像把小面积能谱的接收与非均质样品的光电子成像结合起来,可以在接近15μm的空间分辨率下通过连续扫描的方法采集。商品化的仪器现在组合了成像和小束斑谱采集的能力,能够在微米尺度上进行微小特征的表面化学分析。该技术的未来方向是在更小的区域内达到更高的计数率,将XPS成像推向真正的亚微米化学表征技术。

14.3.8 数据系统

X射线电子能谱仪的数据采集和控制十分复杂,涉及大量复杂的数据的采集、储存、分析和处理。数据系统由在线实时计算机和相应软件组成。在线计算机可对谱仪进行直接控制并对实验数据进行实时采集和处理。实验数据可由数据分析系统进行一定的数学和统计处理,并结合能谱数据库,获取对检测样品的定性和定量分析知识。常用的数学处理方法有谱线平滑,扣背底,扣卫星峰,微分,积分,准确测定电子谱线的峰位、半高宽、峰高度或峰面积(强度),以及谱峰的解重叠(Peak fitting)和退卷积,谱图的比较等。当代的软件程序包含广泛的数据分析能力,复杂的峰型可在数秒内拟合出来。

14.4 实验技术

14.4.1 样品的制备和处理

XPS能谱仪对分析的样品有特殊的要求,所以待分析样品需要根据情况进行一定的预处理。

由于在实验过程中样品必须通过传递杆,穿过超高真空隔离阀,送进样品分析室。因此对样品的尺寸有一定的大小规范,以利真空进样。通常固体薄膜或块状样品要求切割成面积大小为0.5cm×0.8cm大小,厚度小于4mm。为了不影响真空,要求样品要尽量干燥。另外,装样品不要使用纸袋,以免纸纤维污染样品表面。

对于粉体样品,可以用胶带法制样,即用双面胶带直接把粉体固定在样品台上。这时要求粉末样品要研细。这种方法制样方便,样品用量少,预抽到高真空的时间较短,可缺点是可能会引进胶带的成分。另外一种制样方法是压片制样,即把粉体样品压成薄片,然后再固定在样品台上,有利于在真空中对样品进行处理,而且其信号强度也要比胶带法高得多,不过样品用量太大,抽到超高真空的时间太长。在普通的实验过程中,一般采用胶带法制样。

考虑到对真空度影响,对于含有挥发性物质的样品(如单质S或P或有机挥发物),在样品进入真空系统前必须通过对样品加热或用溶剂清洗等方法清除掉挥发性物质。

对于表面有油等有机物污染的样品,在进入真空系统前必须用油溶性溶剂如环己烷,丙酮等清洗掉样品表面的油污。最后再用乙醇清洗掉有机溶剂,为了保证样品表面不被氧化,一般采用真空干燥。

光电子带有负电荷,在微弱的磁场作用下,可以发生偏转。在能量分析系统中,装备了磁头镜。因而,当样品具有磁性时,由样品表面出射的光电子就会在磁场的作用下偏离接收角,最后不能到达分析器,从而得不到正确的XPS谱。此外,当样品的磁性很强时,还可能磁化分析器头及样品架,因此,绝对禁止带有磁性的样品进入分析室。对于具有弱磁性的样品,需要退磁,才可以进行XPS分析。

14.4.2 氩离子束溅射技术

为了清洁被污染的固体表面,在X射线光电子能谱分析中,常常利用离子枪发出的离子束对样品表面进行溅射剥离,以清洁表面。利用离子束定量地剥离一定厚度的表面层,然后再用XPS 分析表面成分,这样就可以获得元素成分沿深度方向的分布图,这是离子束最重要的应用。作为深度分析的离子枪,一般采用0.5~5 KeV的Ar离子源。扫描离子束的束斑直径一般在1~10mm 范围,溅射速率范围为0.1~50 nm/min。为了提高深度分辩率,一般应采用间断溅射的方式。为了减少离子束的坑边效应,应增加离子束的直径。为了降低离子束的择优溅射效应及基底效应,应提高溅射速率和降低每次溅射的时间。在XPS研究溅射过的样品表面元素的化学价态时,要特别注意离子束的溅射还原作用,它可以改变元素的存在状态,许多氧化物可以被还原成较低价态的氧化物,如Ti, Mo, Ta等。此外,离子束的溅射速率不仅与离子束的能量和束流密度有关,还与溅射材料的性质有关。

14.4.3 荷电校正(Calibration)

对于绝缘体样品或导电性能不好的样品,光电离后将在表面积累正电荷,在表面区内形成附加势垒,会使出射光电子的动能减小,亦即荷电效应的结果,使得测得光电子的结合能比正常的要高。样品荷电问题非常复杂,一般难以用某一种方法彻底消除。在实际的XPS分析中,一般采用内标法进行校准。最常用的方法是用真空系统中最常见的有机污染碳的C 1s的结合能(284.6 eV)作为参照峰,进行校准。

深度分析过程,剥离到一定深度,污染碳信号减弱或者消失,这时可以通过Ar 2p3/2特征峰或者是样品中稳定元素的特征峰作为参照进行校准。

14.4.4 XPS谱图分析技术

在XPS谱图中,包含极其丰富的信息,从中可以得到样品的化学组成,元素的化学状态及其各元素的相对含量。

XPS谱图分为两类,一类是宽谱(wide)。当用AlKα或MgKα辐照时,结合能的扫描范围常在0-1200eV或 0-1000eV。在宽谱中,几乎包括了除氢和氦元素以外的所有元素的主要特征能量的光电子峰,可以进行全元素分析。第二类为高分辨窄谱(narrow),范围在10-30 eV,每个元素的主要光电子峰几乎是独一无二的,因此可以利用这种“指纹峰”非常直接而简捷地鉴定样品的元素组成。

14.4.4.1定性分析

利用宽谱,可以实现对样品的定性分析。通常XPS谱图的横坐标为结合能(B.E.),纵坐标为光电子的计数率(Count Per Second,简称为CPS)。一般来说,只要该元素存在,其所有的强峰都应存在,否则应考虑是否为其他元素的干扰峰。激发出来的光电子依据激发轨道的名称进行标记。如从C原子的1s轨道激发出来的光电子用C 1s标记。由于X射线激发源的光子能量较高,可以同时激发出多个原子轨道的光电子,因此在XPS谱图上会出现多组谱峰。大部分元素都可以激发出多组光电子峰,可以利用这些峰排除能量相近峰的干扰,以利于元素的定性标定。由于相

近原子序数的元素激发出的光电子的结合能有较大的差异,因此相邻元素间的干扰作用很小。

定性分析的流程为:宽扫→指认最强峰对应的元素→标出该元素副峰在谱中所对应的位置→寻找剩余峰所属元素。由于光电子激发过程的复杂性,在XPS谱图上不仅存在各原子轨道的光电子峰,同时还存在部分轨道的自旋裂分峰,Kα2产生的卫星峰,携上峰以及X射线激发的俄歇峰等伴峰,在定性分析时必须予以注意。在分析谱图时,尤其对于绝缘样品,要进行荷电效应的校正,以免导致错误判断。使用计算机自动标峰时,同样会产生这种情况。

14.4.4.2 半定量分析

XPS研究而言,并不是一种很好的定量分析方法。它给出的仅是一种半定量的分析结果,即相对含量而不是绝对含量。现代XPS提供以原子百分比含量和重量百分比含量来表示的定量数据。

由于各元素的灵敏度因子是不同的,而且XPS谱仪对不同能量的光电子的传输效率也是不同的,并随谱仪受污染程度而改变,这时XPS给出的相对含量也与谱仪的状况有关。因此进行定量分析时,应经常较核能谱仪的状态。此外,XPS仅提供几个 nm厚的表面信息,其组成不能反映体相成分。样品表面的C, O污染以及吸附物的存在也会大大影响其定量分析的可靠性。

14.4.4.3元素的化学态分析

(a)结合能分析

表面元素化学价态分析是XPS的最重要的一种分析功能,也是XPS谱图解析最难,比较容易发生错误的部分。在进行元素化学价态分析前,首先必须对结合能进行校准。因为结合能随化学环境的变化较小,而当荷电校准误差较大时,很容易标错元素的化学价态。此外,有一些化合物的标准数据依据不同的作者和仪器状态存在很大的差异,在这种情况下这些标准数据仅能作为参考,最好是自己制备标准样,这样才能获得正确的结果。另外,元素可能的化学状态有时也要结合实验过程来分析。

还有一些元素的化学位移很小,用XPS的结合能不能有效地进行化学价态分析,在这种情况下,就需要借助谱图中的线形,伴峰结构及俄歇参数法来分析。在XPS谱中,经常会出现一些伴峰,如携上峰,X射线激发俄歇峰(XAES)以及XPS价带峰。这些伴峰虽然不太常用,但在不少体系中可以用来鉴定化学价态,研究成键形式和电子结构,是XPS常规分析的一种重要补充。(b) XPS的携上峰分析

在光电离后,由于内层电子的发射引起价电子从已占有轨道向较高的未占轨道的跃迁,这个跃迁过程就被称为携上过程。在XPS主峰的高结合能端出现的能量损失峰即为携上峰。携上峰在有机体系中一种比较普遍的现象,特别是对于共轭体系会产生较多的携上峰。携上峰一般由π-π*跃迁所产生,也即由价电子从最高占有轨道(HOMO)向最低未占轨道(LUMO)的跃迁所产生。某些过渡金属和稀土金属,由于在3d轨道或4f轨道中有未成对电子,也常常表现出很强的携上效应。因此,也可以作为辅助手段来判定元素的化学状态。

(c)X射线激发俄歇电子能谱(XAES)分析

在X射线电离后的激发态离子是不稳定的,可以通过多种途径产生退激发。其中一种最常见的退激发过程就是产生俄歇电子跃迁的过程,因此X射线激发俄歇谱是光电子谱的必然伴峰。对于有些元素,XPS的化学位移非常小,不能用来研究化学状态的变化。这时XPS中的俄歇线随化学环境的不同会表现出明显的位移,且与样品的荷电状况及谱仪的状态无关,因此可以用俄歇化学位移(例如测定Cu,Zn,Ag)及其线形来进行化学状态的鉴别。通常,通过计算俄歇参数来判断其化学状态。俄歇参数是指XPS谱图中窄俄歇电子峰的动能减去同一元素最强的光电子峰动能。它综合考虑了俄歇电子能谱和光电子能谱两方面的信息,因此可以更为精确地研究元素的化

学状态。

(d)XPS价带谱分析

XPS价带谱反应了固体价带结构的信息,由于XPS价带谱与固体的能带结构有关,因此可以提供固体材料的电子结构信息。例如,在石墨,碳纳米管和C60分子的价带谱上都有三个基本峰。这三个峰均是由共轭π键所产生的。在C60分子中,由于π键的共轭度较小,其三个分裂峰的强度较强。而在碳纳米管和石墨中由于共轭度较大,特征结构不明显。而在C60分子的价带谱上还存在其他三个分裂峰,这些是由C60分子中的σ键所形成的。由此可见,从价带谱上也可以获得材料电子结构的信息。由于XPS价带谱不能直接反映能带结构,还必须经过复杂的理论处理和计算。因此,在XPS价带谱的研究中,一般采用XPS价带谱结构的进行比较研究,而理论分析相应较少。

14.4.5 元素沿深度分析(Depth Profiling)

XPS可以通过多种方法实现元素组成在样品中的纵深分布。最常用的两种方法是Ar离子溅射深度分析和变角XPS深度分析。

变角XPS深度分析是一种非破坏性的深度分析技术,只能适用于表面层非常薄(1~5 nm)的体系。其原理是利用XPS的采样深度与样品表面出射的光电子的接收角的正玄关系,可以获得元素浓度与深度的关系。取样深度(d)与掠射角(α,进入分析器方向的电子与样品表面间的夹角)的关系如下:d = 3λsin(α)。当α为90°时,XPS的采样深度最深,减小α可以获得更多的表面层信息,当α为5°时,可以使表面灵敏度提高10倍。在运用变角深度分析技术时,必须注意下面因素的影响:(1)单晶表面的点陈衍射效应;(2)表面粗糙度的影响;(2)表面层厚度应小于10 nm。

Ar离子溅射深度分析方法是一种使用最广泛的深度剖析的方法,是一种破坏性分析方法,会引起样品表面晶格的损伤,择优溅射和表面原子混合等现象。其优点是可以分析表面层较厚的体系,深度分析的速度较快。其分析原理是先把表面一定厚度的元素溅射掉,然后再用XPS分析剥离后的新鲜表面的元素含量,从而获得元素沿样品深度方向的分布。XPS的Ar离子溅射深度分析,灵敏度不如二次离子质谱(简称为SIMS),但在定量分析中显示的基体效应相对较小。另外,XPS的溅射深度分析的优点是对元素化学态敏感,并且XPS谱图比溅射型AES谱图容易解释。现代XPS仪器由于采用了小束斑X光源(微米量级),空间分辨率已经发展到优于10μm,尤其对绝缘性材料,XPS深度分析变得较为现实和常用。

14.4 实验部分

实验1 XPS法测定TiO2薄膜表面的元素组成、含量及其价态分析

一、实验目的

1.了解和掌握XPS分析的基本原理以及在未知物定性鉴定上的应用;

2.了解XPS的半定量分析及其元素化学价态测定;

3.熟悉和了解X射线光电子能谱仪的使用和实验条件的选择;

二、方法原理

通过XPS分析技术扫描得到全元素的宽谱,测得各未知元素的原子轨道的特征结合能,从

其结合能来鉴定未知元素的种类,进行定性分析。利用元素浓度和XPS信号强度的线性关系进行定量分析。然后根据所收集各元素的窄谱,测得各元素的结合能和化学位移,来鉴定元素的化学价态。

三、实验步骤

(1)样品处理和进样

将干燥的已制备好的涂有TiO2薄膜的硅片切割成大小合适的片,固定到铜片的导电胶带上。然后将铜片固定在样品台上,送入快速进样室。开启低真空阀,用机械泵和分子泵抽真空到10-8托。然后关闭低真空阀,开启高真空阀,使快速进样室与分析室连通,把样品送到分析室内的样品架上,关闭高真空阀。

(2)检查硬件和软件

首先要检查水箱压力,电源,气源是否处于正常状态;检查双阳极是否退到最后;检查样品处理室(简称为STC)和样品分析室(简称为SAC)的真空(应优于3×10-9torr);检查STC-SAC之间阀门的开关状态。

其次,打开光纤灯和摄像机显示器,检查计算机软件中各操作界面中的指示灯是否正常。(3)仪器参数设置

在仪器手动控制“instrument manual control”窗口,在“Acquisition”界面,设置几个关键性参数: type:Snap shot;technique:XPS;lens mode:hybrid;B.E;Pass energy (通能):80eV;Energy region中一般输入O 1s,即由O 1s的信号强度来作为样品最佳测试位置判断标准。在“X-ray PSU”界面,参数设置为:Al(mono)(铝单色器);emission(发射电流):10 mA; Anode(阳极电压):15kV 。

(4)开启X-射线源

在“X-ray PSU”界面,按“standby”键,等待filament一项中灯丝电流值上升稳定至1.37A左右,点击“on”键。在“Neutraliser gun”界面打开中和枪,按“on”键;

(5)样品最佳测试位置调节

在“Acquisition”界面,按“on”键,开始收snapshot谱,对样品最佳测试位置进行手动调节。根据软件中的“Real time display”实时监控窗口中谱峰面积area值的变化,在“manipulator”界面,调节各个坐标轴方向的按键(主要是Z轴方向)找到信号最强的位置(即area值最大)。在“position table”界面点击“update position”,存储位置坐标到该样品名称下。在“Acquisition”界面先后按“restart”,“off”键。

(6)数据采集

在仪器管理“vision instrument manager”窗口下,创建文件名和路径,建立宽谱(wide)和窄谱(narrow)的相关操作文件。具体参数为:wide(定性分析):扫描的能量范围为0~1200 eV,通能(P.E.)为 80 eV,步长(Steps)为1eV/步,扫描时间(Dwells)为100s,扫描次数(Sweeps)为1次;narrow(化学价态分析):扫描的能量范围依据各元素而定,按照结合能由大到小的顺序(O1s,Ti2p,C1s)输入,通能(P.E.)为40eV,扫描步长为0.1 eV/步,扫描次数可以为1-5次,收谱时间为5~10min,其中对应于非导电性样品要多收C 1s谱来进行荷电校正。

设置完成后,按“resume”键回到自动控制状态,按“submit”键,开始按照预设路径自动收谱并存储。

(7)退样

数据采集结束后,按“manual now”键,按“off”键关掉X射线枪和电子中和枪,并将样品退出分析室,送到快速进样室。

四、数据处理

(1) 数据转化

在数据处理“vision processing”窗口,点黑文件块,点右键,在“display”窗口的谱图中点右键,在“Export File”下点击“data to an ASCII file”,将所有文件块数据保存。

(2) 定性分析

用计算机采集宽谱图后,首先标注每个峰的结合能位置,然后再根据结合能的数据在标准手册中寻找对应的元素。最后再通过对照标准谱图,一一对应其余的峰,确定有哪些元素存在。原则上当一个元素存在时,其相应的强峰都应在宽谱图上出现。现在新型的XPS能谱仪,可以通过计算机进行智能识别,自动进行元素的鉴别。由于结合能的非单一性和荷电效应,所以计算机自动识别经常会出现一些错误的结论,要特别注意。

(3) 元素化学价态分析

从“processing window”窗口下,点击“quantify”中的“qualification region”,对每个元素窄谱谱蜂扣背底;在“components”界面,进行分峰拟合,有几个谱峰输入几次该元素光电子标识(如Ti2p)。这时在计算机系统上会自动定出各元素窄谱谱蜂的结合能位置。依据所测C1s光电子峰结合能数据判断是否有荷电效应存在。如有,先校准每个结合能数据,然后再依据这些结合能数据,参考各元素结合能标准数据库,鉴别这些元素的化学价态。

(4)半定量分析

在定量分析程序中,根据已经进行扣背底的每个元素谱峰的面积计算和元素的灵敏度因子,计算机会自动计算出每个元素的相对原子百分比和质量百分比。

在“processing window”下,按住ctrl键,选中已经扣背底的C、O、Ti各元素块,点击“options”下的“Browser actions”,点击“profile spectra”,选中“region”和“area”两项,点击“display in window”框,出现“quantification report”窗口,即给出表面元素

C、O、Ti的相对原子含量和相对重量含量比的数据报告。拷贝这些数据到写字板,保存即可。

(5) 数据校正

首先,分析所测样品中C1s谱峰。将该谱图中显示C1s峰的结合能与基准值284.6ev(通常,以污染炭(CH2)n中的C1s峰(284.6eV)作为基准)相比较。若所测样品中的C1s的结合能比284.6 eV 小,则将所有元素结合能坐标加上二者差值;若所测样品中的C1s的结合能比284.6 eV 大,则将所有元素结合能坐标减去二者差值,进行校正。

五、思考题

1.在XPS的定性分析谱图上,经常会出现一些峰,在XPS的标准数据中难以找到它们的归属,这些峰应该如何归属?

2.对于一个不导电的有机样品,是否可以直接用结合能的数据进行化学价态的鉴别?应如何处理才能保证价态分析的正确性。

实验2 CeO2/Si界面元素组分的XPS深度剖析

一、实验目的

1. 熟悉并掌握利用XPS Ar离子束溅射法进行深度分析的原理,了解它在材料深度分析上的

优缺点。

2. 学会分析不同元素的XPS谱随Ar离子溅射时间的变化图。

二、实验原理

XPS深度分析常被用于表征界面反应以及在薄固体膜中鉴别界面反应产物。该分析方法原理是,利用离子源产生一定能量、一定束斑、一定强度的一次离子束。一次离子被加速入射到样品上,就会从样品表面附近区移走原子,从而把样品表面一定厚度的元素溅射掉,然后再用XPS 分析剥离后的新表面的元素含量,这样就可以获得元素沿深度分布的信息。它是一种破坏性分析方法,会引起样品表面晶格的损伤,择优溅射和表面原子混合等现象。但其优点是可以分析表面层较厚的体系,深度分析的速度较快。

三、实验步骤

(1)进样和检查仪器硬件、计算机软件,打开光纤灯和摄像机显示器。设置“Acquisition”

界面参数:Type,Snap shot;Technique,XPS; Hybrid:B.E;Pass energy,80eV;Energy region:O 1s。开启X-射线枪和电子中和枪,对样品测试位置进行调整,并储存该位置;(2)未剖析前样品表面XPS谱收集。在“vision instrument manager”窗口,创建文件名和路径。设置宽谱和窄谱参数:wide: 0~1200 eV;Pass energy:160 eV;Steps:0.1eV;

Dwells:100s,Sweeps:1 ; narrow:扫描的能量范围按照结合能由大到小(Ce 3d, O 1s,C 1s;Si 2p,)的顺序输入;Pass energy:40 eV;Steps:0.1eV;Dwells:100s,Sweeps:1。点击“resume”和“submit”键,收集表面XPS谱并存储;

(3)在“vision instrument manager”窗口,按“manual”键到手动状态;在“instrument manual control”窗口,手动先关X-ray枪和电子中和枪;

(4)点击计算机软件上仪器线路图中的“close SAC-STC Valve”框,关闭SAC与STC间的真空阀;

(5)开启Ar气源;点开气路中的“Ion Gun Gas On”框,等程序完成后,点“Ion Gun Gas Off”

框,进行一次表面清洗;

(6)点击“Ion gun”界面中“table”下的“high sample”一行,然后点击“restore row”;(7)再次开启气路中的“Ion gun gas on”,等到仪器主控面板上气体压力为2.9*10-8托后,点击“Ion gun”界面中的“stand by”,等离子枪灯丝“filament”电流先升后降至 1.42A 后,点击“on”键(亮绿灯)开启离子抢。溅射时间依据离子枪的溅射速率而定(1~10 min),循环次数依据样品需要剖析的厚度而定;

(8)刻蚀完成后,切换ion gun灯为“stand by”,点击“off”键关掉离子枪。然后点击“ion gun gas off”框关闭Ar气源;

(9)收集不同溅射时间下的样品表面的XPS谱图。先开计算机仪器线路图中SAC-STC真空阀,后开X-ray枪为“stand by”状态,开启电子中和枪为“On”,自动进行宽谱和窄谱收取;(10)所有测试结束后,点击“manual now”,关掉X射线枪和中和枪,并将样品退出分析室,送到快速进样室。

四、数据处理

通过深度分析程序,作出不同元素的XPS谱随Ar离子溅射时间的变化图。再通过定量处理可以获得样品各原子百分比与溅射时间的关系。而溅射时间与样品的深度有线性关系,可以通过标定获得剥离深度。

需要注意的是:未溅射剥离的表面XPS分析时用C1s(284.6eV基准)校正,如果要刻蚀多

次,第二次收谱则要在窄谱中加上Ar 2p峰来校正,因为随着刻蚀进行,污染C元素含量在不断减少,不能用于校正了。此外,在进行元素化学状态的分析时,一定要注意溅射还原现象。

五、思考题

1. 在Ar离子剥离深度分析中,溅射时间与深度有何联系?

2. 深度剖析分析中,荷电效应如何校正?

参考资料

(1) D.Briggs著,桂琳琳,黄惠忠,郭国霖等译,《X射线与紫外光电子能谱》,北京大学出版社,

1984。

(2) 黄惠忠,《论表面分析及其在材料研究中的应用》,科学技术文献出版社,2002。

(3) 周清,《电子能谱学》,南开大学出版社,1995。

(4) 朱永发,《电子能谱学》讲义,清华大学,http://166.111.28.134;

(5) 查询数据库网址:https://www.360docs.net/doc/1919160584.html,/xps/Bind_e_spec_query.asp,或者:

https://www.360docs.net/doc/1919160584.html,。

(完整版)X射线光电子能谱分析(XPS)

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS 方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = hν- E b - φs (18.1)

光电子能谱分析法基本原理模板

第十四章 X-射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等 ⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。 14.2 基本原理 XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。 该过程可用下式表示: hγ=E k+E b+E r(14.1) 式中: hγ:X光子的能量(h为普朗克常数,γ为光的频率);

射线光电子能谱分析

射线光电子能谱分析 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

X射线光电子能谱分析 一、固体表面的分析 固体不同于气体、液体,不具有流动性,在一定应力的作用下也不会发生明显的形状改变。固体的表面也与液体表面不同,不存在理想的平滑表面。固体表面厚度定义为5倍于原子或分子的直径:对于原子结构的固体物质,铁、硅,表面约为1 nm;对于分子结构的固体物质,如聚合物,其表面是5倍单体的厚度,约为5~10 nm;实际测样中,有时指1个或几个原子层,有时指厚度达微米级的表层。 大多数固体表面,在组分上或结构上都是和体内不一样的。(1)组分不同。对很多合金,某些元素会在表面富集,称为表面偏析或分凝,掺杂生长的晶体也有这种现象。Cu-Ni合金中,在表面20个原子层中Cu的含量是体内的5倍。表面还可以吸附外界的原子,而这些外来原子与体内不同,不仅能在表面形成吸附层,还可以在表面生成化合物。(2)表面的排列与体内不同。晶体中的原子处于有规律的周期性排列状态,而在表面这种周期突然中断,表面出现重构和驰豫现象。重构指的是表面最外层原子的排列与体内不同。而驰豫指的是表面原子所处的力场与体内原子不同,因此表面原子会发生相对于正常位置的上移或下移,以此来降低体系能量的现象。晶体表面原子周期性的突然中断还会使表面出现各种缺陷,例如台阶、弯折、重位、凸沿等等,而这些缺陷往往是吸附活性点,对催化等非常重要。(3)表面的电子结构与体内原子结构不同。每个原子/离子在体内的都是有规律地排布,从空间上讲是电子处于一种平衡状态,而表面原子从空间分布上至少是缺一个方向的平衡(面、棱、角),电子云的分布也不相同。因此,表面的原子比体内原子活性更大。 由于表面和体内具有上述不同之点,使得表面许多物理、化学性质,如光学、电学、磁学、热学、机械、化学活动性等性质与体内不同。对于表面的这些性质的研究能揭露一些表面现象的本质。例如催化与表面吸附层和表面原子结构的关系等。其他还有表面钝化、活化、腐蚀、脆性、发光等现象,因此对“表面”的研究,不仅是一种基础理论工作,而且其潜在的实际应用价值也很大。 由于被分析的深度和侧向范围是如此浅薄和细微,被检测信号来自极小的采样体积,信息强度十分微弱,重复性差,对分析系统的灵敏度要求也很高。所以,直到六十年代前后,随着超高真空和电子技术的突破,才使表面分析技术迅速发展起来。

射线光电子能谱分析

X射线光电子能谱分析 一、固体表面的分析 固体不同于气体、液体,不具有流动性,在一定应力的作用下也不会发生明显的形状改变。固体的表面也与液体表面不同,不存在理想的平滑表面。固体表面厚度定义为5倍于原子或分子的直径:对于原子结构的固体物质,铁、硅,表面约为1 nm;对于分子结构的固体物质,如聚合物,其表面是5倍单体的厚度,约为5~10 nm;实际测样中,有时指1个或几个原子层,有时指厚度达微米级的表层。 大多数固体表面,在组分上或结构上都是和体内不一样的。(1)组分不同。对很多合金,某些元素会在表面富集,称为表面偏析或分凝,掺杂生长的晶体也有这种现象。Cu-Ni合金中,在表面20个原子层中Cu的含量是体内的5倍。表面还可以吸附外界的原子,而这些外来原子与体内不同,不仅能在表面形成吸附层,还可以在表面生成化合物。(2)表面的排列与体内不同。晶体中的原子处于有规律的周期性排列状态,而在表面这种周期突然中断,表面出现重构和驰豫现象。重构指的是表面最外层原子的排列与体内不同。而驰豫指的是表面原子所处的力场与体内原子不同,因此表面原子会发生相对于正常位置的上移或下移,以此来降低体系能量的现象。晶体表面原子周期性的突然中断还会使表面出现各种缺陷,例如台阶、弯折、重位、凸沿等等,而这些缺陷往往是吸附活性点,对催化等非常重要。(3)表面的电子结构与体内原子结构不同。每个原子/离子在体内的都是有规律地排布,从空间上讲是电子处于一种平衡状态,而表面原子从空间分布上至少是缺一个方向的平衡(面、棱、角),电子云的分布也不相同。因此,表面的原子比体内原子活性更大。 由于表面和体内具有上述不同之点,使得表面许多物理、化学性质,如光学、电学、磁学、热学、机械、化学活动性等性质与体内不同。对于表面的这些性质的研究能揭露一些表面现象的本质。例如催化与表面吸附层和表面原子结构的关系等。其他还有表面钝化、活化、腐蚀、脆性、发光等现象,因此对“表面”的研究,不仅是一种基础理论工作,而且其潜在的实际应用价值也很大。 由于被分析的深度和侧向范围是如此浅薄和细微,被检测信号来自极小的采样体积,信息强度十分微弱,重复性差,对分析系统的灵敏度要求也很高。所以,直到六十年代前后,随着超高真空和电子技术的突破,才使表面分析技术迅速发展起来。 用一束“粒子” 作为探针来探测样品表面,探针可以是电子、离子、光子、中性粒子、电场、磁场、热或声波,在探针作用下,从样品表面发射或散射粒子或波,它们可以是电子、离子、光子、中性粒子、电场、磁场、热或声波。检测

X射线光电子能谱仪

X射线光电子能谱分析 1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成

材料现代分析与测试 第五章 光电子能谱分析

第五章光电子能谱分析 一、教学目的 理解掌握光电子能谱分析的基本原理,掌握光电子能谱实验技术,了解光电子能谱仪,了解俄歇电子能谱分析。 二、重点、难点 重点:光电子能谱分析原理、光电子能谱实验技术及应用。 难点:光电子能谱分析原理。 第一节概述 电子能谱是近十多年才发展起来的一种研究物质表面的性质和状态的新型物理方法。这里所谓的表面是指固体最外层的l~10个原子的表面层和吸附在它上面的原子、分子、离子或其他覆盖层,它的深度从小于1到几个nm,或者包括采取剥离技术将表面层沿纵向深度暴露出新的表面。用特殊的手段对这类表面进行分析已形成一门新兴的测试方法,即表面分析法,它在理论上和实际应用上都有广泛的研究领域。表面分析方法在无机非金属材料学科中的应用,例如:研究玻璃表面的刻蚀作用、水泥矿物硅酸钙的水化作用、陶瓷表面和界面、高温超导材料表面的作用等均有重要意义。 一、表面分析可以得到的信息 表面分析是借助于各种表面分析仪,对物体10 nrn以内的表面层进行分析,可得到的信息有: (1)物质表面层(包括吸附层)的化学成分,除氢元素以外的元素都可以从表面分析法获得定性和定量的结果,而X射线能谱分析一般只能分析到原子序数为11以上的元素(最好的仪器可以分析原子序数为4的Be元素)。定量分析也只能达到半定量程度。 (2)物质表面层元素所处的状态或与其他元素间的结合状态和结构,即元素所处的原子状态、价态、分子结构等信息。 (3)表面层物质的状态,如表面层的分子和吸附层分子状态、氧化态、腐蚀状态、表面反应生成物等。 (4)物质表面层的物理性质,这在一般表面分析中虽不是研究的主要内容,但可以得到与表面的元素、价态、结构等信息的关系。 在做表面分析工作时,不仅在制备样品时要求在高真空和超净条件下进行,而且在测试过程中也要注意仪器中的条件,以防止因污染而引起测试误差。 二、表面分析法的特点

同步辐射原理与应用简介

第十五章 同步辐射原理与应用简介§ 周映雪 张新夷 目 录 1. 前言 2.同步辐射原理 2.1 同步辐射基本原理 2.2 同步辐射装置:电子储存环 2.3 同步辐射装置:光束线、实验站 2.4 第四代同步辐射光源 2.4.1自由电子激光(FEL) 2.4.2能量回收直线加速器(ERL)同步光源 3. 同步辐射应用研究 3.1 概述 3.2 真空紫外(VUV)光谱 3.3 X射线吸收精细结构(XAFS) 3.4 在生命科学中的应用 3.5 同步辐射的工业应用 3.6 第四代同步辐射光源的应用 4.结束语 参考文献 §《发光学与发光材料》(主编:徐叙瑢、苏勉曾)中的第15章:”同步辐射原理与应用 简介”,作者:周映雪、张新夷,出版社:化学工业出版社 材料科学与工程出版中心;出版日期:2004年10月。

1. 前言 同步辐射因具有高亮度、光谱连续、频谱范围宽、高度偏振性、准直性好、有时间结构等一系列优异特性,已成为自X光和激光诞生以来的又一种对科学技术发展和人类社会进步带来革命性影响的重要光源,它的应用可追溯到上世纪六十年代。1947年,美国通用电器公司的一个研究小组在70MeV的同步加速器上做实验时,在环形加速管的管壁,首次迎着电流方向,用一片镜子观测到在电子束轨道面上的亮点,而且发现,随加速管中电子能量的变化,该亮点的发光颜色也不同。后来知道这就是高能电子以接近光速在作弯曲轨道运动时,在电子运动轨道的切线方向产生的一种电磁辐射。图1是当时看到亮点的电子同步加速器的照片,图中的箭头指出亮点所在位置。那时,科学家还没有意识到这种同步辐射其实是一种性能无比优越的光源,高能物理学家抱怨,因为存在电磁辐射,同步加速器中电子能量的增加受到了限制。大约过了二十年的漫长时间,科学家(非高能物理学家)才真正认识到它的用处,但当时还只是少数科学家利用同步辐射光子能量在很大范围内可调,且亮度极高等特性,对固体材料的表面开展光电子能谱的研究。随着同步辐射光源和实验技术的不断发展,越来越多的科学家加入到同步辐射应用研究的行列中来,同步辐射的优异特性得到了充分的展示,尤其是在红外、真空紫外和X射线波段的性能,非其他光源可比,很多以往用普通X光、激光、红外光源等常规光源不能开展的研究工作,有了同步辐射光源后才得以实现。到上世纪九十年代,同步辐射已经在物理学、化学、生命科学、医学、药学、材料科学、信息科学和环境科学等领域,当然也包括发光学的基础和应用基础研究,得到了极为广泛的应用。目前,无论在世界各国的哪一个同步辐射装置上,对生命科学和材料科学的研究都具

同步辐射光源简介

第20卷第2期2006年3月 常熟理工学院学报 Journal of Changshu Institute of Technology Vol.20No.2 Mar.2006同步辐射光源简介 谭伟石1,蔡宏灵2,吴小山2 (1.南京理工大学理学院应用物理系,江苏南京 210094; 2.南京大学固体微结构实验室,江苏南京 210093) 摘 要:简要介绍了同步辐射概念、同步辐射光源的特点及我国同步辐射光源发展的现状。 关键词:同步辐射光源;同步辐射特点;发展现状 中图分类号:TL8O43 文献标识码:A 文章编号:1008-2794(2006)02-0097-05 著名的物理学家杨福家先生概括了人类文明史上影响人类生活的光源的进展,分为四类[1]:第一类光源是1879年美国发明家爱迪生发明的电光源。不言而喻,人类现在的生活与文明离不开电光源,它使人类战胜了黑暗。 第二类光源是1895年德国科学家伦琴发现的X射线源。“X”是“未知”的符号,但是这种神秘莫测的、肉眼看不见的X光从被发现的时候就展现了它的魅力和对人类的巨大影响。 第三类光源是20世纪60年代美国与前苏联一批科学家创造的激光光源。目前激光的应用已经进入千家万户。如我们家庭中的激光唱片,超市的收款机所用的激光扫描器等,当然也有用于激光核聚变的大功率激光设备等,对人类的生活带来了巨大变化。 第四类光源就是同步辐射光源。1947年在美国纽约州Schenectady市通用电气公司实验室的一台能量为70Me V的同步加速器上,首次观察到一种强烈的辐射,这种辐射便被称为“同步辐射”。同步辐射是速度接近光速的带电粒子在磁场中沿弧形轨道运动时放出的电磁辐射。由于同步辐射消耗了能量,妨碍了高能粒子能量的提高,所以当时一直被认为是个祸害,没有得到重视。但是,人们很快便了解到同步辐射是具有从远红外到X光范围内的连续光谱、高强度、高度准直、高度极化、特性可精确控制等优异性能的脉冲光源,可用于其它光源无法实现的许多前沿科学技术研究。而现在同步辐射已经成为一个重要的科学研究平台,它的应用领域已经覆盖了物理、化学、生物、材料、医药、地质等众多领域,已经成为衡量一个国家科研水平的重要标准。 1 同步辐射特点 同步辐射的主要设备,包括储存环、光束线和实验站。储存环使高能电子在其中持续运转,是产生同步辐射的光源;光束线利用各种光学元件将同步辐射引出到实验大厅,并“裁剪”成所需的状态,如单色、聚焦,等;实验站则是各种同步辐射实验开展的场所。同步辐射光源是人类发现的第四代光源。与前三种光源相比,它具有诸多优点: 1.1 频谱分布宽广  收稿日期:2005-10-15 作者简介:谭伟石(1970—),男,湖南安化人,副教授。 DOI:10.16101/https://www.360docs.net/doc/1919160584.html, https://www.360docs.net/doc/1919160584.html,32-1749/z.2006.02.020

同步辐射光电子能谱对的研究

第20卷第7期半 导 体 学 报V o l.20,N o.7  1999年7月CH I N ESE JOU RNAL O F SE M I CONDU CTOR S Ju ly,1999 同步辐射光电子能谱对 IT O表面的研究3 来 冰 丁训民 袁泽亮 周 翔 廖良生 张胜坤 袁 帅 侯晓远 (复旦大学应用表面物理国家重点实验室 上海 200433) 陆尔东 徐彭寿 张新夷 (中国科学技术大学同步辐射实验室 合肥 230019) 摘要 首次利用同步辐射光电子能谱(SR PES)研究了铟锡氧化物(ITO)薄膜表面的化学状态. 发现ITO表面的铟和锡分别具有多种价态.对比真空退火前后ITO样品的电阻率与透射率,结 合对ITO导电机理的分析讨论,可以认为In2O3-x与Sn3O4的含量变化是影响ITO的导电与透 光性能的主要原因. PACC:7960,7360F,7865 1 引言 铟锡氧化物(ITO)薄膜是一种具有较高电导率并且在可见光范围透明的材料,它可用真空淀积等方法涂覆于玻璃表面.这种既透光又导电的特殊性能使ITO被广泛用作多种光电子器件的电极材料,包括有机电致发光器件[1,2],太阳能电池(so lar cell)[3,4],液晶显示器等.仅以有机电致发光器件为例,人们在镀有ITO薄膜的玻璃上淀积有机发光层或空穴传输层,利用ITO作阳极为复合发光提供空穴,发光层产生的光从ITO玻璃一侧透射出来.不同的ITO表面处理会对器件的发光效率和寿命产生影响.对此类器件的失效研究发现,热效应带来的ITO 有机物界面受损和有机电致发光器件的失效有密切的关系[5].ITO膜的性质往往直接影响着上述器件的工作性能. 对ITO的研究早期工作的重点主要在膜的制备上.近年来,随着有机发光器件逐渐成为研究的热点,人们开始关注ITO衬底的特性与器件性能间的关系.一些研究人员发现,对ITO表面进行适当处理能有效地改善有机发光器件的性能[6~8].但ITO表面的性质究竟如何影响它在器件中的应用仍是一个不十分清楚的问题. 迄今为止,对ITO表面化学成分的研究多用常规X射线光电子能谱(XPS)[9]或俄歇电  3国家自然科学基金资助课题(69776034) 来 冰 女,1973年出生,硕士研究生,从事凝聚态表面物理研究 丁训民 男,副教授,长期从事光电子能谱研究 1998208211收到,1999202203定稿

X射线光电子能谱的原理和应用

【转帖】X射线光电子能谱的原理及应用(XPS) 来源:转载网络作者: tof-sims (一)X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示: hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek, 式(103)又可表示为:hn=Ek+Eb+Φ (10.4)Eb= hn- Ek-Φ (10.5) 仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。 (二)电子能谱法的特点 ( 1 )可以分析除H 和He 以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。 ( 2 )从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。 ( 3 )是一种无损分析。 ( 4 )是一种高灵敏超微量表面分析技术。分析所需试样约10 -8 g 即可,绝对灵敏度高达10 -18 g ,样品分析深度约2nm 。 (三) X 射线光电子能谱法的应用 ( 1 )元素定性分析 各种元素都有它的特征的电子结合能,因此在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除H 和He 以外的所有元素。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素。

X射线光电子能谱(XPS)谱图分析

一、X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质 发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用 下式表示: hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的 反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真 空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为: hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样, 如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的 轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以 了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小 可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 二、电子能谱法的特点 (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电 发射电子的能量分布,且直接得到电子能级结构的信息。(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称 作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层 电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定 性的标识性强。 (3)是一种无损分析。 (4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏

同步辐射知识总结

合肥同步辐射:https://www.360docs.net/doc/1919160584.html,/AboutUS/jieshao/现有光刻、红外与远红外、高空间分辨X射线成像、X射线衍射与散射、扩展X光吸收精细结构、燃烧、X射线显微术、原子与分子物理、真空紫外分析、表面物理、软X射线磁性圆二色、光电子能谱、真空紫外光谱、光声与真空紫外圆二色光谱、光谱辐射标准与计量共15条实验站投入运行并面向国内外用户开放。 同步辐射仍然是X-RAY,只是强度比普通的CCD大一些,对一些数据较弱的晶体,晶体数据肯定会有改善。 中子衍射用的是中子流,不是X-RAY,它的优点是可以观测到氢原子。 同步辐射一般是很牛很亮的X ray,中子衍射用的是中子流。产生同步辐射的是加速器,产生中子流的是反应堆。 同步辐射的x ray能做XRD看结构,能做XAFS看原子的环境。 中子衍射跟XRD的原理差不多,和XRD不一样的是,X-ray是被晶体里面原子的外层电子scatter的,中子是被原子核和原子的magnetic moment scatter的,中子衍射和原子的外层电子数也就是原子序数是没有关系的,所以适合看一些轻的原子,比如CHON之类的,而且可以分辨出near-neighbouring elements 和isotopes,另外还适合看一些有磁性的物质的结构。 中子散射 科技名词定义 中文名称:中子散射 英文名称:neutron scattering 定义:中子与原子核发生碰撞后,原子核的同位素成分不发生变化,而中子的能量和运动方向在大多数情况下发生改变的现象。有弹性散射和非弹性散射两种类型。 应用学科:电力(一级学科);核电(二级学科) 中子衍射 科技名词定义 中文名称:中子衍射 英文名称:neutron diffraction 定义:中子在晶体样品中散射时发生的散射波相互干涉的现象。可借以研究生物大分子的空间结构。

X射线光电子能谱(XPS)

X射线光电子能谱(XPS) X射线光电子能谱是利用波长在X射线范围的高能光子照射被测样品,测量由此引起的光电子能量分布的一种谱学方法。样品在X射线作用下,各种轨道电子都有可能从原子中激发成为光电子,由于各种原子、分子的轨道电子的结合能是一定的,因此可用来测定固体表面的电子结构和表面组分的化学成分。在后一种用途时,一般又称为化学分析光电子能谱法(Electron Spectroscopy for Chemical Analysis,简称)。与紫外光源相比,X射线的线宽在以上,因此不能分辨出分子、离子的振动能级。此外,在实验时样品表面受辐照损伤小,能检测周期表中除和以外所有的元素,并具有很高的绝对灵敏度。因此是目前表面分析中使用最广的谱仪之一。 7.3.1 谱图特征 图7.3.1为表面被氧化且有部分碳污染的金属铝的典型的图谱。其中图(a)是宽能量范围扫描的全谱,主要由一系列尖锐的谱线组成;图(b)则是图(a)低结合能端的放大谱,显示了谱线的精细结构。从图我们可得到如下信息: 1.图中除了和谱线外,和两条谱线的存在表明金属铝的表面已被部分氧化并受有机物的污染。谱图的横坐标是轨道电子结合能。由于X射线能量大,而价带电子对X射线的光电效应截面远小于内层电子,所以主要研究原子的内层电子结合能。由于内层电子不参与化学反应,保留了原子轨道特征,因此其电子结合能具有特定值。如图所示,每条谱线的位置和相应元素原子内层电子的结合能有一一对应关系,不同元素原子产生了彼此完全分离的电子谱线,所以相邻元素的识别不会发生混淆。这样对样品进行一次宽能量范围的扫描,就可确定样品表面的元素组成。 2.从图7.3.1(b)可见,在和谱线高结合能一侧都有一个肩峰。如图所标示,主峰分别对应纯金属铝的和轨道电子,相邻的肩峰则分别对应于中铝的和轨道电子。这是由于纯铝和中的铝所处的化学环境不同引起内层轨道电子结合能向高能方向偏移造成的。这种由于化学环境不同而引起内壳层电子结合能位移的现象叫化学位移。研究表明,大多数非金属原子的化学状态和金属的氧化状态在很多情况下是可以区分的,这样,我们就可根据内壳

X射线光电子能谱的原理和应用

【转帖】X射线光电子能谱的原理及应用(XPS) 来源:转载网络作者:tof-sims (一)X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用, 可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示: hn=Ek+Eb+Er 其中:hn : X光子的能量;Ek :光电子的能量;Eb :电子的结合能; Er: 原子的反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb ,由费米能级进入真空成为自由电子所需 的能量为功函数①,剩余的能量成为自由电子的动能Ek, 式(103)又可表示为:hn=Ek+Eb-e (10.4 ) Eb= hn- Ek-①(10.5) 仪器材料的功函数①是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek ,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。 因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 (二)电子能谱法的特点 (1 )可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。 (2 )从能量范围看,如果把红外光谱提供的信息称之为分子指纹”,那么电子能谱提供的信 息可称作原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道 能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。 (3 )是一种无损分析。 (4 )是一种高灵敏超微量表面分析技术。分析所需试样约10 -8 g即可,绝对灵敏度高达10 -18 g,样品分析深度约2nm 。 (三)X射线光电子能谱法的应用 (1 )元素定性分析 各种元素都有它的特征的电子结合能,因此在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除H和He以外的所有元素。通过对样品进行全

北京同步辐射实验室4B9B 束线和光电子能谱实验站

北京正负电子对撞机国家实验室 HANDBOOK OF BEIJING SYNCHROTRON RADIATION FACILITY
北京同步辐射装置 操作手册
(修订稿)
4B9B 束线和光电子能谱实验站
北京正负电子对撞机国家实验室办公室编印 2008 年 02 月

4B9B束线和光电子能谱实验站
一、光源及光子能量分布
图 1.1 BEPCII 下同步辐射专用光( 2.5GeV,250mA ) 、兼用光 (1.89GeV, 900mA) 与改造前 (2006 年年底前, 2.2GeV, 100mA), 在各自的标准工作流强下, 能量为10-1100eV之间的光子在0.1%带宽每秒通过数量按其能 量分布情况的比较。
图1.1表示正负电子对撞机加速器改造前和改造后,在不同运行模式下,4B9B前端区,亦 即光电子能谱实验站光束线光子通量随光子能量的分布。由于在前端区这是一个连续光谱的 白光,而做光电子能谱实验所需要的是特定能量的光子。为此,具有上述强度分布的光子经 过4B9B光束线光学元器件的反射和衍射等过程,最终到达光电子能谱实验装置的是单色化的 光子。此图所示光子数随能量的分布曲线代表在图2.1中到达前置镜前的情形。 二、光束线、实验装置及功能 A、光束线:光电子能谱实验站利用4B9B光束线提供的同步光,其能量范围为10eV-1000eV 的光子。通过表面和界面光电子能谱测量手段对物质电子结构进行实验研究。在图2.1中示意 光电子能谱实验站光路输运线(4B9B光束线)核心光学部件名称及所在位置。

光电子能谱分析法基本原理

第十四章X- 射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy ,简称为XPS ,经常又被称为化 学分析用电子谱(Electron Spectroscopy for Chemical Analysis ,简称为 ESCA,是一种最 主要的表面分析工具。自19 世纪60 年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS 发展到今天,除了常规XPS 外,还出现了包含有Mono XPS (Mo no chromated XPS,单色化XPS X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源),SAXP& Small Area XPSor Selected Area XPS, 小面积或选区XPS X射线的束斑直径微型化到6卩m)和iXPS (imaging XPS,成像XPS的现 代XPS目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨 率低于1 毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS 拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化 学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体 表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点 和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92 的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材

同步辐射光电子能谱

同步辐射光电子能谱文献阅读报告 参考文献:Shrikrishna D. Sartale, Hong-Wan Shiu, Ming-Han Ten, Won-Ru Lin, Meng-Fan luo, Yin-Chang Lin, Yao-Jane Hsu. Adsorption and Decomposition of Methanol on Gold Nanoclusters Supported on a ThinFilm of Al2O3/NiAl(100). J. Phys. Chem. C 2008, 112, 2066-2073 本文主要实验:单晶NiAl(100)通过反复的氩刻退火得到清洁表面的NiAl(100)面,通氧条件下进行退火,得到Al2O3/ NiAl(100)薄膜,继续在薄膜上蒸镀金,使用STM观察不同衬底温度和覆盖度对金团簇的影响。在蒸镀金的样品表面上吸附甲醇,用同步辐射光电子能谱研究甲醇的吸附和分解情况。 STM扫描结果显示:在低覆盖度(小于0.1ML)情况下,Au团簇呈现二维生长;在高覆盖度(2.9ML)情况下,衬底温度300K时,Au团簇呈现三维生长,衬底温度450K和570K时,Au团簇呈现二维生长和三维生长共存。如图-1,衬底温度分别为300K,450K和570K时蒸镀2.9ML的金的STM图像。图-1a显示:衬底 温度300K时,Au团簇的半径和高度 呈正态分布。图-1b,c显示:衬底温 度450K和570K时,Au团簇的半径 和高度呈双峰分布。在图-1c中将较 大的Au团簇标记为1,较小的Au团 簇标记为2。.衬底温度300K时,几 乎没有较小的Au团簇。.衬底温度 450K时,20%-30%为较小的Au团 簇。衬底温度570K时,约50%为较 小的Au团簇。 如图-2所示,STM的I-V曲线显 示,较小的Au团簇的I-V曲线与 Al2O3薄膜十分相似,二者费米能级 附近的电子密度近似,较小的Au团 簇表现非金属性,而较大的Au团簇 的I-V曲线在相同的偏压下有较大 的隧道电流,较大的Au团簇表现金 属性。 图-2 图-1

第五章课后习题答案

第五章课后习题答案 1.以CH4为例,讨论定域分子轨道和离域分子轨道间的区别和联系。 答:杂化轨道理论将CH4分子中的C原子进行了sp杂化,每个杂化轨道和1个H原子的1s杂化形成一个定域分子轨道,在此成键轨道中的一对电子形成定域键C-H,四个C-H键轨道能量等同。离域分子轨道处理CH4分子所得的能级图说明4个轨道能量高低不同。定域分子和离域分子两种模型是等价的,只是反应的物理图像有所区别。 4.共轭分子的分子图上标出哪些物理量?有何应用? 答:物理量有:电荷密度, 键级,自由价; 应用:(1)从各原子的电荷密度可大致判断反应中各个原子的活性大小,即能大体估计最容易与带电基起反应的位置;(2)从各个原子的电荷密度估计分子中各键的极性和偶极距;(3)从键级可以反映出各个键的相对强弱,键长的相对大小和Π键成分的多少;(4)从自由价可反映分子中各碳原子剩余成键能力的相对大小,大致判断自由基反应中各原子活性的大小,即反应发生在哪些原子的位置上。 6.核磁共振和电子自旋磁共振发生的条件是什么?它们含有那些结构信息? 答:(1)核磁共振发生的条件:①原子核必须具有核磁性质,即必须是磁性核②需要有外加磁场,磁性核在外加磁场作用下发生核自旋能级的分裂,产生不同能量的核自旋能级,才能吸收能量发生跃迁③只有那些能量与核自旋能级能量相同的电磁辐射才能被共振吸收。电子自旋磁共振需要满足类似上述三个条件才能发生,但电子本身存在固有的自旋运动。(2)核磁共振条件随核外化学环境变化而移动的现象为化学位移,其包含了有关结构的信息。因化学位移的大小是由核外电子云密度决定的。就1H-NMR来说,分子中影响1H核外电子密度的所有因素都将影响化学位移。①最重要的因素是相邻的、具有较大电负性的原子或基团的诱导效应。②反磁各向异性效应。③核的自旋-自旋耦合效应。由高分辨率的共振仪测得的NMR共振峰通常具有精细结构,为多重峰。在1H-NMR谱中,共振峰的面积与此类质子数目成正比。对于电子自旋磁共振,化合物的g因子即包含了有关未成对电子的信息,也包含了有关化学键的信息,可用于鉴别、分析未知样品的分子结构。主要用以用以研究自由基的结构和存在、过渡金属离子及稀土离子的电子结构和配位环境、催化剂活性中心位置等。 7、为什么光电子能谱峰可用原子轨道和分子轨道标记?从X射线和紫外光电子能谱可分别得到哪些结构信息? 答:因为光电子能谱峰与电子原所在的轨道间存在一一对应关系,所以可用原子轨道和分子轨道标记。紫外光电子能谱的光源可使样品分子中的价电子电离而不能使内层电子电离,故USP可测定外层MO的电离能,用于研究分子的成键情况。从USP谱带的形状和能量信息可以判断分子内有关MO的性质和能级次序。X射线光电子能谱主要用于研究内层电子的性质,可用于样品的定性、定量分析,可定性分析样品表面的元素组成,也可用于了解原子的价态和化学环境。 8、试解释为什么平面型分子的分子轨道能量通常有如下次序:σ<π<π*<σ* 答;因为σ轨道重叠度最大,是轴对称的,该轨道无节面,能量最低,σ*轨道有节面,能量最高,π-MO能级高低与轨道节点数成正比,节点数少的是成键π轨道,能量低,节点多的是反键π轨道,能量高,故平面型分子的分子轨道能量通常次序为:σ<π<π*<σ*。

相关文档
最新文档