大学物理第14章-习题ppt课件
合集下载
《大学物理》第14章 振动
速度超前位移 /2 vmax = A = (k/m)1/2A
a = - 2A cos (t + ) = 2A cos (t + + )
加速度超前位移 amax = 2A = (k/m)A
上页 下页 返回 退出
相位和初相
相位 (t 0 ) :决定简谐运动状态的物理量。
其中v为物体 m 距平衡位置 x 处的速度。 忽略摩擦,总机械能 E 保持不变。随着 物体来回振动,势能和动能交替变化。
上页 下页 返回 退出
§ 14-3简谐振动的能量
在x = A 和 x = - A处,v = 0,
E = m(0)2/2 + kA2/2 = kA2/2 (14-10a) 简谐振子的总机械能正比于振幅的平方。
dx/dt = - A sin (t + ) d2x/dt2 = - 2 A cos (t + ) = - 2 x
0 = d2x/dt2 + (k/m) x = - 2 x + (k/m) x
(k/m - 2) x = 0 只有当 (k/m - 2) = 0 时,x不为零。因此
a = - (410 m/s2) cos(1650t). (c) 在t = 1.0010-3 s 时刻
x = A cos t
= (1.510-4 m) cos[(1650 rad/s)(1.0010-3 s)]
= (1.510-4 m) cos(1.650 rad/s) = -1.210-5 m.
上页 下页 返回 退出
§ 14-1 弹簧的振动
例题 14-1 汽车弹簧。当一个质量为200公斤的 一家四口步入一辆总质量为1200公斤的汽车 里,汽车的弹簧压缩了3厘米。(a) 假设汽车 里的弹簧可视为单个弹簧,弹簧劲度系数为 多少? (b) 如果承载了300公斤而不是200公 斤,则汽车将下降多少厘米?
a = - 2A cos (t + ) = 2A cos (t + + )
加速度超前位移 amax = 2A = (k/m)A
上页 下页 返回 退出
相位和初相
相位 (t 0 ) :决定简谐运动状态的物理量。
其中v为物体 m 距平衡位置 x 处的速度。 忽略摩擦,总机械能 E 保持不变。随着 物体来回振动,势能和动能交替变化。
上页 下页 返回 退出
§ 14-3简谐振动的能量
在x = A 和 x = - A处,v = 0,
E = m(0)2/2 + kA2/2 = kA2/2 (14-10a) 简谐振子的总机械能正比于振幅的平方。
dx/dt = - A sin (t + ) d2x/dt2 = - 2 A cos (t + ) = - 2 x
0 = d2x/dt2 + (k/m) x = - 2 x + (k/m) x
(k/m - 2) x = 0 只有当 (k/m - 2) = 0 时,x不为零。因此
a = - (410 m/s2) cos(1650t). (c) 在t = 1.0010-3 s 时刻
x = A cos t
= (1.510-4 m) cos[(1650 rad/s)(1.0010-3 s)]
= (1.510-4 m) cos(1.650 rad/s) = -1.210-5 m.
上页 下页 返回 退出
§ 14-1 弹簧的振动
例题 14-1 汽车弹簧。当一个质量为200公斤的 一家四口步入一辆总质量为1200公斤的汽车 里,汽车的弹簧压缩了3厘米。(a) 假设汽车 里的弹簧可视为单个弹簧,弹簧劲度系数为 多少? (b) 如果承载了300公斤而不是200公 斤,则汽车将下降多少厘米?
大学物理课件 第14章光的干涉习题答案
A.有一凹陷的槽,深入 / 4B. 有一凹陷的槽,深入 / 2
C.有一凸起的埂,深入 / D4 . 有一凸起的埂,深入
天道酬勤
4
6.一束白光以30度的入射角照射平静的湖水(水的折射 率为4/3)表面的一层透明液体(折射率为 10)2 的薄膜, 若反射光中波长为600nm的光显得特别明亮,则该透 明液体薄膜的最小厚度为( )
r1' r1 x sin
r2 r2' x sin
x
sin sin
天道酬勤
10
2.在1题基础上,考虑使用激光测速仪测量微粒运动速度 问题。在激光测速仪里两列交叉的相干激光束照射运 动微粒,…求微粒运动速度大小。
解:利用1题结论,粒子走过的路程
为λ/(sinθ+sinφ),其中θ、φ分
别为30度。
距D=1.0m,若第二级明条纹离屏中心的距离为
6.0mm,此单色6光00的n波长 相邻两明条纹间的3距m离
为.
m
m
10.在不同的均匀媒质中,若单色光通过的光程相等时,
其几何路程
同不,其所需时间
相同。
11.两光相干除了满足干涉的三个必要条件,即频率相同、 振动方向相同、相位相等或相位差恒定之外,还必须满足 两个附加条件 两相干光的振幅不可相差太大 , 两 相干光的光程差不能太大 。
6
二、填空题
1.真空中的波长为 的单色光在折射率为n的媒质中由
A点传到B点时,周相改变量为3,则光程的改变量
为 3λ/,2 光从A传到B所走过的几何路程为 3。λ/2n
2.如图所示,在杨氏双缝实验中,若用红光做实验,则 相邻干涉条纹间距比用紫光做实验时相邻干涉条纹间
距 ,大若在光源S2右侧光路上放置一薄玻璃片,则中
C.有一凸起的埂,深入 / D4 . 有一凸起的埂,深入
天道酬勤
4
6.一束白光以30度的入射角照射平静的湖水(水的折射 率为4/3)表面的一层透明液体(折射率为 10)2 的薄膜, 若反射光中波长为600nm的光显得特别明亮,则该透 明液体薄膜的最小厚度为( )
r1' r1 x sin
r2 r2' x sin
x
sin sin
天道酬勤
10
2.在1题基础上,考虑使用激光测速仪测量微粒运动速度 问题。在激光测速仪里两列交叉的相干激光束照射运 动微粒,…求微粒运动速度大小。
解:利用1题结论,粒子走过的路程
为λ/(sinθ+sinφ),其中θ、φ分
别为30度。
距D=1.0m,若第二级明条纹离屏中心的距离为
6.0mm,此单色6光00的n波长 相邻两明条纹间的3距m离
为.
m
m
10.在不同的均匀媒质中,若单色光通过的光程相等时,
其几何路程
同不,其所需时间
相同。
11.两光相干除了满足干涉的三个必要条件,即频率相同、 振动方向相同、相位相等或相位差恒定之外,还必须满足 两个附加条件 两相干光的振幅不可相差太大 , 两 相干光的光程差不能太大 。
6
二、填空题
1.真空中的波长为 的单色光在折射率为n的媒质中由
A点传到B点时,周相改变量为3,则光程的改变量
为 3λ/,2 光从A传到B所走过的几何路程为 3。λ/2n
2.如图所示,在杨氏双缝实验中,若用红光做实验,则 相邻干涉条纹间距比用紫光做实验时相邻干涉条纹间
距 ,大若在光源S2右侧光路上放置一薄玻璃片,则中
大学物理 光的偏振
成α角。由于只有平行于偏振化方向的振动A//才能透过,由图可知:
A//
A cos 0
而光强 I A2
I // IO
A/2/ A0 2
( Ao
c os a) 2 A0 2
I I0 cos2 a
AM 0
A
N
A//
o
14
如果入射到检偏片的线偏振光是穿过起偏器的光,则公式
一串光波列是横波。但从宏观上看,光源发出的光中包含了所有方向的光振动, 振动面可以分布在一切可能的方位,任何方向光矢量对时间的平均值是相等的。
所以自然光的光振动对光的传播方向是轴对称而又均匀分布的。
x E
c z
y
S
5
光振动的振幅在垂直于光波的传播方向上,既有时间分布的均匀性,又有空间分 布的均匀性,具有这种特性的光就叫自然光 。 ( 或者说,具有各个方向的光振动, 且又无固定的位相关系的光)。
9
§14-2 起偏和检偏 马吕斯定律
一、偏振片的起偏、检偏
起偏: 把自然光变成偏振光。
1、偏振器:把自然光变成为全偏振光的仪器。 有些晶体(例如硫酸金鸡钠硷)对互相垂直的两个分振动
光矢量具有选择性吸收,这种现象称作晶体的二向色性。 自然光通过这种晶体薄片后,只剩下一个方向的振动,而
另一个方向的振动则被吸收。这种晶体薄片就可做偏振片。
n sin i0 1.73
sin 0
或者,由
将i0=600代入,得
tan i0
n2 n1
n2
n=1.73
26
§14-4 光的双折射现象 一、光的双折射
当一束光投射到两种媒质的交界处,一般只能看到一束折射光,折射定律为:
A//
A cos 0
而光强 I A2
I // IO
A/2/ A0 2
( Ao
c os a) 2 A0 2
I I0 cos2 a
AM 0
A
N
A//
o
14
如果入射到检偏片的线偏振光是穿过起偏器的光,则公式
一串光波列是横波。但从宏观上看,光源发出的光中包含了所有方向的光振动, 振动面可以分布在一切可能的方位,任何方向光矢量对时间的平均值是相等的。
所以自然光的光振动对光的传播方向是轴对称而又均匀分布的。
x E
c z
y
S
5
光振动的振幅在垂直于光波的传播方向上,既有时间分布的均匀性,又有空间分 布的均匀性,具有这种特性的光就叫自然光 。 ( 或者说,具有各个方向的光振动, 且又无固定的位相关系的光)。
9
§14-2 起偏和检偏 马吕斯定律
一、偏振片的起偏、检偏
起偏: 把自然光变成偏振光。
1、偏振器:把自然光变成为全偏振光的仪器。 有些晶体(例如硫酸金鸡钠硷)对互相垂直的两个分振动
光矢量具有选择性吸收,这种现象称作晶体的二向色性。 自然光通过这种晶体薄片后,只剩下一个方向的振动,而
另一个方向的振动则被吸收。这种晶体薄片就可做偏振片。
n sin i0 1.73
sin 0
或者,由
将i0=600代入,得
tan i0
n2 n1
n2
n=1.73
26
§14-4 光的双折射现象 一、光的双折射
当一束光投射到两种媒质的交界处,一般只能看到一束折射光,折射定律为:
大学物理-第十四章-波动光学
其投射到介面上的A点的光线,
一部分反射回原介质即光线a1, 另一部分折入另一介质,其中一 部分又在C点反射到B点然后又 折回原介质,即光线a2。因a1,a2是
从同一光线S1A分出的两束,故
满足相干条件。
S
S1
a
a1
iD
e
A
B
C
a2
n1
n2
n1
31
2 薄膜干涉的光程差
n2 n1
CDAD
sin i n2
跃迁 基态
自发辐射
原子能级及发光跃迁
E h
普通光源发光特 点: 原子发光是断续
的,每次发光形成一
长度有限的波列, 各 原子各次发光相互独
立,各波列互不相干.
10
3.相干光的获得:
①原则:将同一光源同一点发出的光波列,即某个原子某次 发出的光波列分成两束,使其经历不同的路程之后相遇叠加。
S2
r2
P
20
为计算方便,引入光程和光程差的概念。
2、光程
光在真空中的速度 光在介质中的速度
c 1 00
u 1
u1 cn
介质的 折射率
真空
u n c
介质中的波长
n
n
n n
21
介质中的波长
n
n
s1 *
r1
P
波程差 r r2 r1
k 0,1,2,
x
d
'
d
(2k
1)
k 0,1,2,
暗纹
d
2
k=0,谓之中央明纹,其它各级明(暗)纹相对0点对称分布
一部分反射回原介质即光线a1, 另一部分折入另一介质,其中一 部分又在C点反射到B点然后又 折回原介质,即光线a2。因a1,a2是
从同一光线S1A分出的两束,故
满足相干条件。
S
S1
a
a1
iD
e
A
B
C
a2
n1
n2
n1
31
2 薄膜干涉的光程差
n2 n1
CDAD
sin i n2
跃迁 基态
自发辐射
原子能级及发光跃迁
E h
普通光源发光特 点: 原子发光是断续
的,每次发光形成一
长度有限的波列, 各 原子各次发光相互独
立,各波列互不相干.
10
3.相干光的获得:
①原则:将同一光源同一点发出的光波列,即某个原子某次 发出的光波列分成两束,使其经历不同的路程之后相遇叠加。
S2
r2
P
20
为计算方便,引入光程和光程差的概念。
2、光程
光在真空中的速度 光在介质中的速度
c 1 00
u 1
u1 cn
介质的 折射率
真空
u n c
介质中的波长
n
n
n n
21
介质中的波长
n
n
s1 *
r1
P
波程差 r r2 r1
k 0,1,2,
x
d
'
d
(2k
1)
k 0,1,2,
暗纹
d
2
k=0,谓之中央明纹,其它各级明(暗)纹相对0点对称分布
高考物理(全国通用)大一轮复习讲义课件:第十四章 机械振动与机械波 光 第1讲
(2)简谐运动的图象
①从 平衡位置 开始计时,函数表达式为x=Asin ωt,图象如 图甲所示 . 最大位移 ②从 处开始计时,函数表达式为x=Acos ωt,图象如 图乙所示.
4.受迫振动和共振 (1)受迫振动
系统在驱动力 作用下的振动.做受迫振动的物体,它做受迫振 动的周期( 或频率 ) 等于 的周期 ( 或频率 ) ,而与物体的 驱动力 固有周期 ( 或频率 ) 无关 .
√ A.1 Hz
C.4 Hz
答案
解析
受迫振动的频率等于驱动力的频率,
把手转动的频率为1 Hz,
选项A正确.
2.有一弹簧振子,振幅为0.8 cm,周期为0.5 s,初始时具有负方
向的最大加速度,则它的振动方程是
答案 解析
-3 A. x = 8 × 10 sin √
π 4πt+ 2 π 4πt- 2 3π πt+ 2 π π t + 2 4
图象,在所画曲线的范围内回答下列问题.
(1)哪些时刻物体的回复力与0.4 s时刻的回复力相同?
答案 0.6 s、1.2 s、1.4 s
(2)哪些时刻物体的速度与0.4 s时刻的速度相同? 答案 0.2 s、1.0 s、1.2 s (3)哪些时刻的动能与0.4 s时刻的动能相同?
答案 0、0.2 s、0.6 s、0.8 s、1.0 s、1.2 s和1.4 s
(2)共振
做受迫振动的物体,它的驱动力的频率与固有
频率越接近,其振幅就越大,当二者 相等 所示. 时, 振幅达到最大,这就是共振现象.共振曲线如图
基础题组自
测 1.如图所示的装置,弹簧振子的固有频率是 4 Hz.
现匀速转动把手,给弹簧振子以周期性的驱动力,
大学物理第14章习题课选讲例题
2 nb
2 b
7
L
n
b
m
3
n
5 . 89 10 2 8 10
5
2 . 4 10
1 . 53 m
例 用氦氖激光器发出的波长为633nm的单色光做 牛顿环实验,测得第个 k 暗环的半径为5.63mm , 第 k+5 暗环的半径为7.96mm,求平凸透镜的曲率半径R. 解
k 2,
k 3,
n1 d 552 nm
2 3 n 1 d 368 nm
绿色
(2) 透射光的光程差 Δ t 2 dn 1
k 1,
k 2,
k 3,
/2
2 n1 d 11/ 2
2 n1 d 2 1/ 2
2 n1 d 3 1/ 2
暗条纹
r 2 n 2 e ( 2 k 1)
n1 n2
n3
2
e (4 1 )
k 0 ,1, 2 ,
第 5 条暗条纹
k = 4
2 2n2
例
在单缝的夫琅和费衍射实验中,屏上第三
6 个半波带,
级暗纹对应的单缝处波面可划分为
若将缝宽缩小一半,原来第三级暗纹处将是
__________ 第一级亮纹
rk kR
rk 5 (k 5) R
5 R rk 5 rk
2
2
2
R
r
2 k 5
r
2 k
5
( 7 . 96 mm ) ( 5 . 63 mm )
第十四章理论力学PPT教学课件
2、运动分析:
虚位移(按虚
速度对应法分析);
rrBA
BP AP
3、建立动力学关系:虚位移原理;
F A δrAF B δrB0
4、求解:
FAFBtan
2020/12/12
13
例14-2
已知:如图所示曲柄压榨机构中,M=50Nm,
OA=r,
BD=DC=ED=l, ; A
若杆重均不计、
B
忽略各处摩擦, E
W F r
(2)集中力偶的虚功: W M
2)约束力:
(1)光滑面、光滑铰链、固定端等约束力的功:
2020/12/12
s
F
做功均为零;
8
(2)滑动摩擦力的功: A、静滑动摩擦力的功:为零; 如:只滚不滑;
Fs
B、动滑动摩擦力的功:不为零; 4、理想约束:
1)做功为零的约束称为理想约束:光滑面、光滑铰 链、静滑动摩擦力等;
且机构在图示 求位:置求平压衡榨.力 P。
o M
D C
P
2020/12/12
14
PPT教学课件
谢谢观看
Thank You For Watching
15
第十四章 虚位移原理
虚位移原理 一种用动力学的原理求解静 力学问题的方法;
§14-1 约束 · 虚位移 · 虚功
一、几个基本概念:
1、自由度:空间物体在三维空间内自由运 动的程度;
2、完全自由的物体在三维空间内的自由度:
2020/12/12
1
完全自由的物体在空间可以沿三根独立的坐标
轴做移动运动、同时还可以绕三根坐标轴做转动运
故,非完全自由的物体的自由度为:6-约 束方程的个数。
上海交通大学大学物理课件 电磁感应
o b
o a
[例14-2]
均匀 B ,线圈半径R,以
Ek
v 平动。
(1)分析电动势分布
(2)指出 a,c 两点
vB b d
a v dl
(3)求 b,d 两点电势差 解: (1) d v B dl
c
( 2) ( 3)
Eir
解:
Eiz S2
S3
z
S1
o a
z
b S
l
c
S1 S2 S3 构成闭合曲面 Ei dS Ei dS Eir dS 0 Eir 0 S S1 S1 B dS 0 对于矩形闭合回路 abcd Ei dl l S t b
q
t2
t1
1 Idt R
2
1
1 d 2 1 R
§14.2 动生电动势
一、洛伦兹力产生动生电动势
导线运动! 设稳恒磁场 B , b dl v 如 q>0 载流子受力 F qv B B a F Ek v B q b b Ek dl (v B) dl 如 0, // dl
产生感生电动势的 非静电力是什么?
Ii l
G
1.
F q(E v B) v 0, B 0 f m 0
B(t )
2.
F
q
产生感生电动势的非静电力一定不是洛仑兹力。
麦克斯韦提出感应电场概念:当空间中的磁场 发生变化时,就在周围空间激起感应电场 , 在导体中产生感生电动势,并形成感应电流。
大学物理第十四章ppt
各质点振幅都与波源的振幅相等。
2. 平面简谐波的表达式(波函数)
y y ( x, t )
各质点相对平 衡位置的位移
波线上各质点 平衡位置
求解波函数就是求解任意一点的振动表达式 •建立波函数的依据 波的空间、时间周期性 沿波传播方向各质点振动状态(相位)相 继落后(滞后效应)
已知一列波以波速u向右传播,波线上点O的振动方程 为 y A cos(t 0 ) ,求该平面简谐波波函数。
(2)根据传播方向与振动方向的关系 横波:质点振动方向与波的传播方向相垂直的波.
(仅在固体中传播 )
特征:具有交替出现的波峰和波谷.
纵波:质点振动方向与波的传播方向互相平行的波. (可在固体、液体和气体中传播)
特征:具有交替出现的密部和疏部.
2. 波动的特征 (1)波动具有一定传播速度,并伴随着能量的传播。 (2)波动具有可叠加性,在空间同一区域可同时经历两个或两 个以上的波,因而波可以叠加。 (3)波动具有时空周期性,固定空间一点来看,振动随时间的 变化具有时间周期性;而固定一个时刻来看,空间各点的振动 分布也具有空间周期性。 3. 机械波的形成 1)波源 条件: 2)媒质 注意 波是运动状态的传播,介质的质点并不随波传播, 在各自的平衡位置附近作振动. 沿着波的传播方向,相位逐次落后。
流体:纵波 u K 弹性模量
杨氏模量E 切变模量G 体变模量K
波速只决定于媒质 的性质!u弹性 Nhomakorabea量 介质密度
应力 E 应变 F S FL L L SL
G
应力 应变
K
应力 应变
F S FD d D S d
-
P V V
6、波形曲线
描述某时刻,波线上各点位移(广义)分布
2. 平面简谐波的表达式(波函数)
y y ( x, t )
各质点相对平 衡位置的位移
波线上各质点 平衡位置
求解波函数就是求解任意一点的振动表达式 •建立波函数的依据 波的空间、时间周期性 沿波传播方向各质点振动状态(相位)相 继落后(滞后效应)
已知一列波以波速u向右传播,波线上点O的振动方程 为 y A cos(t 0 ) ,求该平面简谐波波函数。
(2)根据传播方向与振动方向的关系 横波:质点振动方向与波的传播方向相垂直的波.
(仅在固体中传播 )
特征:具有交替出现的波峰和波谷.
纵波:质点振动方向与波的传播方向互相平行的波. (可在固体、液体和气体中传播)
特征:具有交替出现的密部和疏部.
2. 波动的特征 (1)波动具有一定传播速度,并伴随着能量的传播。 (2)波动具有可叠加性,在空间同一区域可同时经历两个或两 个以上的波,因而波可以叠加。 (3)波动具有时空周期性,固定空间一点来看,振动随时间的 变化具有时间周期性;而固定一个时刻来看,空间各点的振动 分布也具有空间周期性。 3. 机械波的形成 1)波源 条件: 2)媒质 注意 波是运动状态的传播,介质的质点并不随波传播, 在各自的平衡位置附近作振动. 沿着波的传播方向,相位逐次落后。
流体:纵波 u K 弹性模量
杨氏模量E 切变模量G 体变模量K
波速只决定于媒质 的性质!u弹性 Nhomakorabea量 介质密度
应力 E 应变 F S FL L L SL
G
应力 应变
K
应力 应变
F S FD d D S d
-
P V V
6、波形曲线
描述某时刻,波线上各点位移(广义)分布
中国矿业大学(北京)《大学物理》课件 第14章 力学相对性原理
二、狭义相对论的两个基本假设
1905年,爱因斯坦提出了狭义相对论的两 条基本假设。
假设Ⅰ 在所有惯性系中,一切物理学定律都相 同,即具有相同的数学表达形式。或者说,对于 描述一切物理现象的规律来说,所有惯性系都是 等价的。这也称为狭义相对论的相对性原理。
假设Ⅱ 在所有惯性系中,真空中光沿各个方向 传播的速率都等于同一个恒量 c,与光源和观察者 的运动状态无关。这也称为光速不变原理。
第14章 狭义相对论力学基础
14.1 力学相对性原理 伽利略坐标变换式
14.2 狭义相对论的两个基本假设 14.3 狭义相对论的时空观 14.4 洛伦兹变换 14.5 狭义相对论质点动力学简介
§14.1 力学相对性原理 伽利略坐标变换式
一、力学相对性原理
在彼此作匀速 直线运动的所有惯 性系中,物体运动 所遵循的力学规律 是完全相同的,应 具有相同的数学表 达式。
对于描述力学现象而言,所有惯性系都 是等价的。
二、绝对时空观 “绝对的、真正的和数学的时间自身在
流逝着,而且由于其本性在均匀地、与任何 其他外界事物无关地流逝着。”
“绝对空间就其本质而言,是与任何外 界事物无关,而且永远是相同的和不动的。”
以上是牛顿对时间和空间的描述,即经 典力学的时空观,也称绝对时空观。
只有在S´系中同一地点又同时发生的两件 事件,在 S 系看来两事件才是同时发生的。
二、时间延缓
s ys' y'u
o o'
d
12
9 6 3 x'
B
x
s'系同一地点 B 发生两事件
发射光信号 ( x ', t '1 ) 接受光信号 ( x ', t '2 ) 时间间隔 Δt t2 t1 2d c
大学物理第十四章波动光学习题+答案
D k 0,1, 2 明纹中心位置
暗纹中心位置
k 1, 2,3
D 相邻两明纹(或暗纹)中心间距离: Δx d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne
2
相邻明纹(暗纹)间的厚度差: e
C R
2n 相邻明纹(暗纹)中心间距离: l 2n
牛顿环
r 2Re
(2) 屏幕上主极大位置由光栅公式决定
(a b)sin k
(3) 缺级现象 (a b)sin k
k 0,1, 2, 3 ——主极大
k 1, 2, 3
k 1, 2, 3
干涉明纹 衍射暗纹
a sin k
ab k k k 1, 2, 3 a (4) 重级现象 k11 k2 2
波 动 光 学 习 题 课
一、基本概念
1、相干光的获得 把由光源上同一点发出的光设法分成两部分,再叠 加起来。
分波阵面法
分振幅法
2、光程与光程差
n2 r2 n1r1
3、半波损失
2 2 (n2 r2 n1r1 )
当光从光疏媒质射向光密媒质时,反射光有位相 的突变,相当于 的附加光程差,叫半波损失。
x tan 5 103 f
a sin 0.2 5 10 mm 1000 nm 4 2
3
a
x
f
暗纹,4个半波带
4-5 某元素的特征光谱中含有波长分别为1=450nm 和2=750nm的光谱线。在光栅光谱中,这两种波长的 谱线有重叠现象,重叠处2的谱线的级数将是 (A) 2,3,4,5…… (C) 2,4,6,8……
大学物理第14章
aboa a b o
ab
ab 0 0 hL dB 2 dt
例3 如图所示,在均匀磁场中有一金属框架aOba, ab边可无摩擦自由滑动,已知∠aOb=, ab⊥Ox, 磁场随时间变化规律为B(t)= t 2/2。若 t=0时,ab边 由 x = 0处开始以速率v 作平行于x轴的匀速滑动。 试求任意时刻 t 金属框中感应电动势的大小和方向。 解由于B 随时间变化,同 a B 时ab导线切割磁场线,故回 路中既存在感生电动势,又 v l 存在动生电动势。 x O b t时刻金属框中感应电 动势的大小为
棒内电子所受洛伦兹力
+ + + + + +
+ + + + + + + v+ + + + +
若运动导体构成回路,则
(v B) dl
讨论: (1)洛伦兹力恒与电荷运动方向垂直,因而不做 功,而动生电动势是由于洛伦兹力移动单位正电荷产 生的,似乎又做功。如何解释这对矛盾?
E dl 0
静电场为有源场
dΦB Er dl 0 dt
感生电场为无源场
E dS
S
q
0
S
E r dS 0
4、感生电动势的计算
计算感生电动势有两种方法 1). 用法拉第电磁感应定律,重点掌握添辅助线 的方法; 2).先求涡旋电场强度,再求感生电动势,这种方 法仅适用于磁场分布具有高度对称性的情况。 例1 圆形均匀分布的磁场半径 为R,磁场随时间均匀增加, 求空间的感生电场的分布情况。
ab
ab 0 0 hL dB 2 dt
例3 如图所示,在均匀磁场中有一金属框架aOba, ab边可无摩擦自由滑动,已知∠aOb=, ab⊥Ox, 磁场随时间变化规律为B(t)= t 2/2。若 t=0时,ab边 由 x = 0处开始以速率v 作平行于x轴的匀速滑动。 试求任意时刻 t 金属框中感应电动势的大小和方向。 解由于B 随时间变化,同 a B 时ab导线切割磁场线,故回 路中既存在感生电动势,又 v l 存在动生电动势。 x O b t时刻金属框中感应电 动势的大小为
棒内电子所受洛伦兹力
+ + + + + +
+ + + + + + + v+ + + + +
若运动导体构成回路,则
(v B) dl
讨论: (1)洛伦兹力恒与电荷运动方向垂直,因而不做 功,而动生电动势是由于洛伦兹力移动单位正电荷产 生的,似乎又做功。如何解释这对矛盾?
E dl 0
静电场为有源场
dΦB Er dl 0 dt
感生电场为无源场
E dS
S
q
0
S
E r dS 0
4、感生电动势的计算
计算感生电动势有两种方法 1). 用法拉第电磁感应定律,重点掌握添辅助线 的方法; 2).先求涡旋电场强度,再求感生电动势,这种方 法仅适用于磁场分布具有高度对称性的情况。 例1 圆形均匀分布的磁场半径 为R,磁场随时间均匀增加, 求空间的感生电场的分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴运动,且在t = t' = 0时,x = x'=0 .
(1)有一事件,在s系 中发生于t = 510-7s ,
s x=50m处,则该事件在 系中发生于何时刻?
s (2)若另有一事件发生于 系中t = 310-7s ,
x=10m处,在 s系中测得这两个事件的时间
间隔为多少?
第十四章 相对论
2
物理学
9
物理学
第五版
第十四章 习题
10 在电子的湮没过程中,一个电子和一个 正电子相碰撞而消失,并产生电磁辐射,假 定正负电子在湮没前均静止,由此计算总能 量E .
第十四章 相对论
10
物理学
第五版
第十四章 习题
11 如果将电子由静止加速到速率为0.10c, 需对它作多少功?
如将电子由速率为0.8c加速到0.9c,又 需对它作多少功?
第五版
第十四章 习题
3 一列火车长0.3km(火车上的观察者测 得),以100公里每小时的速度行驶,地面 上的观察者发现有两个闪电同时击中火车前 后两端,问火车上的观察者测得两闪电击中 火车前后两端的事件间隔为多少?
第十四章 相对论
3
物理学
第五版
第十四章 习题
4 设在正负电子对撞机中,电子和正电子 以速度0.9c相向飞行,它们之间的相对速度 是多少?
第十四章 相对论
4
物理学
第五版
第十四章 习题
5 设想地球上有一观察者测得一宇宙 飞船以0.60c的速率向东飞行,5秒后该飞 船将与一个以0.80c的速率向西飞行的彗 星相碰撞,试问:
(1)飞船中的人测得彗星将以多大的速 率向它运动?
(2)从飞船中的时钟来看,还有多少时 间容许它离开航线,以避免与彗星相撞?
第十四章 相对论
11
第十四章 相对论5物Fra bibliotek学第五版
第十四章 习题
6 在惯性系 s中,有两个事件同时发生在
xx'轴上相距为1.0103m的两处,从惯性参考
系 观s测到这两个事件相距为2.0103m , 试问由 s 系测得这两个事件的时间间隔为多
少?
第十四章 相对论
6
物理学
第五版
第十四章 习题
7一固有长度为4.0m的物体,若以速率 0.60c沿x轴相对于某惯性系运动,试问从该 惯性系来测量,此物体的长度是多少?
物理学
第五版
第十四章 习题
1 有一细棒固定在 s系中,它与Ox′ 轴的夹角为60o,如果 s系以速度u沿Ox
方向相对于S系运动,S系中观察者测得 细棒与Ox轴的夹角( ) .
(A)等于60o (B)大于60o
(C) 小于60o
第十四章 相对论
1
物理学
第五版
第十四章 习题
2 设 s系以速率v = 0.60c 相对于s系沿xx'
第十四章 相对论
7
物理学
第五版
第十四章 习题
8 若一电子的总能量为 5.0MeV,求该电 子的静能、动能、动量和速率.
第十四章 相对论
8
物理学
第五版
第十四章 习题
9 一被加速器加速的电子,其能量为 3.0109eV,试问: (1)这个电子的质量是其静质量的多少倍? (2)这个电子的速率是多少?
第十四章 相对论