二次函数与直线一元二次方程的关系
初中数学一元二次方程与二次函数的关系
一元二次方程与二次函数的关系方程与函数有着密切的联系,我们可以利用方程(组)解决函数问题,也可以利用函数解决方程(组)问题.我们知道,二次函数的一般形式是,而一元二次方程的一般形式是.显然当二次函数中时就能得到一元二次方程,所以一元二次方程与二次函数是特殊与一般的关系.一、知识链接透彻理解数学概念,提升你的数学内涵!1.利用一元二次方程解决二次函数问题:(1)对于二次函数来说,当时,就得一元二次方程,因此我们可以利用一元二次方程求二次函数图像与轴的交点坐标.进一步我们还可以探讨一元二次方程的取值与二次函数图像与轴的交点坐标的情况之间的关系:①当时,一元二次方程有两个不相等的实数根,抛物线与轴有两个交点;②当时,一元二次方程有两个相等的实数根,抛物线与轴有唯一交点(这个唯一交点就是抛物线的顶点);③当时,一元二次方程没有实数根,抛物线与轴没有交点(抛物线要不全部在轴上方,要不全部在轴下方).c bx ax y ++=2)0(≠a 02=++c bx ax )0(≠a c bx ax y ++=2)0(≠a 0=y 02=++c bx ax )0(≠a c bx ax y ++=2)0(≠a 0=y 02=++c bx ax )0(≠a x ac b 42-=∆x 042>-=∆ac b 02=++c bx ax c bx ax y ++=2x 042=-=∆ac b 02=++c bx ax c bx ax y ++=2x 042<-=∆ac b 02=++c bx ax c bx ax y ++=2x x x(2)我们还可以利用一元二次方程根与系数的关系解决有关二次函数图像与轴交点横坐标的有关求值问题:当一元二次方程有两个不相等的实数根、时,抛物线与轴交于两点A(,0)、B(,0),此时有,·.此时抛物线与轴两交点的距离为: AB==(公式①). (3)推广:我们可以利用一元二次方程来研究抛物线与与直线(当时为一次函数的图像,当时为平行于轴或与轴重合的一条直线)的交点情况.2.利用二次函数解决一元二次方程问题一方面,反过来,我们可以根据抛物线与x 轴的交点情况去判断一元二次方程的根的情况.另一方面,我们还可以利用二次函数图像比较直观地去解决有关一元二次方程的解的问题以及有关系数的值的问题.二、典例精讲参与数学解题过程,品味数学内在魅力! 例1(福州市中考题)已知二次函数的图象如图10-1所示,则下列结论正确的是()A .a >0B .c <0C .b 2-4ac <0D .a +b +c >0 x 02=++c bx ax 1x 2x c bx ax y ++=2x 1x 2x a bx x -=+211x ac x =2x 21x x -221)(x x -212214)(x x x x -+=224a ac b -=a ∆=c bx ax y ++=2b kx y +=0≠k 0=k x x b y =c bx ax y ++=202=++c bx ax c bx ax y ++=2分析:a决定抛物线的开口方向,c决定抛物线与y轴的交点情况,抛物线的对称轴由a、b共同决定,b2-4ac决定抛物线与x轴的交点情况.本题中,由于抛物线开口方向向下,因此a<0;抛物线与y轴的交点(0,c)在x轴上方,因此c>0;由于抛物线对称轴在y轴右侧,所以x=-b2a>0,所以b>0;由于抛物线与x轴有两个交点,所以b2-4ac>0.a+b+c是x=1时的函数值,而图像上点(1,a+b+c)在x轴上方,所以a+b+c>0.答案:D.技巧提升:本题是二次函数图像信息探究问题.解决这类问题就应熟练掌握a、b、c、x=-b2a、a+b+c、b2-4ac等与抛物线的位置特征之间的关系.例2(徐州市中考题)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2008)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位分析:因为二次函数y=(x-2009)(x-2008)的图象与x轴交于点(2008,0)和(2009,0),这两点间的距离为1,而二次函数y=(x-2009)(x-2008)的图象可由二次函数y=(x-2009)(x-2008)+4的图象向下平移4个单位得到. 答案:B .技巧提升:本题也可以倒过来想,容易知道抛物线y=(x-2009)(x-2008)+4经过点(2009,4)、(2008,4),这两点的距离围为1,要将这两点平移到x 轴上,应将图像向下平移4个单位.研究抛物线平移问题,一般我们要抓住特征对应点来分析.例3(镇江市中考题)已知实数x ,y 满足x 2+3x +y -3=0,则x +y 的最大值为.分析:可以利用二次函数最值方法来求,由x 2+3x +y -3=0得,x +y =-x 2-2x +3=-(x +1)2+4,所以当x =-1时,x +y 最大值为4;也可以尝试用换元法解决,设,则原方程可化为,因为这个关于必有实数根,所以,解得,所以(即x +y )的最大值为4.答案:4.技巧提升:第一种分析方法,由等式是一个关于x 的二次方程,也是关于y 的一次方程,所以可以联想到把式子转化为“x +y ”关于x 的二次函数,利用函数知识求解;第二种分析方法将问题转化为求关于x 的一元二次方程的参数的取k y x =+0322=-++k x x x 0)3(44≥--=∆k 4≤k k k值范围问题来解决,有异曲同工之效.例4(日照市中考题)如图10-2,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A(3,0),则由图象可知,不等式ax 2+bx+c <0的解集是.分析:由于已知了抛物线与x 轴的一交点为A (3,0),且与对称轴x =1的距离为2,所以根据抛物线的轴对称性可知抛物线与x 轴的另一交点应在对称轴左侧,且与直线x =1的距离也为2,其坐标应为(-1,0).观察图像可知,当-1<x <3时,抛物线在x 轴下方,所以不等式ax 2+bx +c <0的解集是-1<x <3答案:-1<x <3.技巧提升:不等式ax 2+bx +c >0(或<0)的解集就是二次函数y =ax 2+bx+c 的图象在x 轴上(下)方的点所对应的x 的取值范围,因此不等式ax 2+bx +c >0(或<0)的解集与抛物线与x 轴的交点的横坐标有关,所以解决一般这类问题要先利用一元二次方程求出抛物线与x 轴的交点坐标. 例5(咸宁市中考题)已知二次函数的图象与轴两交点的坐标分别为(,0),(,0)().(1)证明;(2)若该函数图象的对称轴为直线,试求二次函数的最小值. 分析:本题是二次函数问题,可借助一元二次方程与二次函2y x bx c =+-x m 3m -0m ≠243c b =1x =数的关系来解决.解:(1)证明:法一:依题意,,是一元二次方程的两根. 根据一元二次方程根与系数的关系,得,. ∴,,∴.法二:由题意得,①—②得,因为,所以.代入①得,所以,所以,,所以.法三:由抛物线的轴对称性可知其对称轴为,可得(下同法二).(2)解:法一:依题意,,∴. 由(1)得. ∴.∴二次函数的最小值为.法二:因为函数图象与轴两交点的坐标分别为(,0),(,0),所以由抛物线的轴对称性可知抛物线的对称轴是直线, 所以,所以,故抛物线与x 轴的两交点为、,所以抛物线的解析式为,当时,,∴二次函数的最小值为.技巧提升:本题两小题都给出了不同的解法,应注意体会不同解法的异同.一题多解,多中选优,平时解题的思考会带来解题能力的提升.例6(杭州市中考题)定义[]为函数的特征数,m 3m -20x bx c +-=(3)m m b +-=-(3)m m c ⨯-=-2b m =23c m =224312c b m ==⎩⎨⎧=--=-+039022c bm m c bm m 0482=+-bm m 0m ≠m b 2=0222=-+c m m 23m c =2124m c =22123m b =243b c =2)3(2m m b x -+=-=m b 2=12b -=2b =-2233(2)344c b ==⨯-=2223(1)4y x x x =--=--4-x m 3m -m x -=1=-m 1-=m )0,1(-)0,3(32)3)(1(2--=-+=x x x x y 1=x 4321-=--=最小y 4-,,a b c 2y ax bx c =++下面给出特征数为[2m,1-m,-1–m]的函数的一些结论:①当m =-3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x 轴所得的线段长度大于;③当m<0时,函数在x>时,y 随x 的增大而减小;④当m ≠0时,函数图象经过同一个点.其中正确的结论有()A .①②③④B .①②④C .①③④D .②④分析:把m =-3代入[2m ,1–m,–1–m],得a =-6,b =4,c =2,函数解析式为y =-6x 2+4x+2,易求出其图像顶点为(,),故①正确;当a=2m 、b=1-m 、c=-1-m 时,△=b 2-4ac =(1-m)2-4×2m ×(-1-m)=(3m+1)2,根据公式①可知函数图象截x 轴所得的线段长度为=,当m >0时,=>,故②正确;∵m <0,∴抛物线开口向下.∵抛物线对称轴为x =-==,∴在对称轴左侧,即当时,y 随x 的增大而增大,对称轴右侧,即当时,y 随x 的增大而减小.在∵<,所以当x>时,图像有可能一部分在对称轴左侧,一部分在对称轴右侧,故③不正确;对于抛物线31382341313821x x -a ∆=m m 2)13(2+=m m 213+21x x -m m m 2123213+=+322b a 122m m--⨯1144m -m x 4141-<m x 4141->141144m -41y=2mx 2+(1-m)x-1-m 时,当x=1时,y=2m+1-m+(-1-m)=0,∴当m ≠0时,抛物线一定经过(1,0)这个点,故④正确. 答案:B.技巧提升:本题综合考查了二次函数的各个方面的知识,比如二次函数图像顶点公式、二次函数的增减性、函数图像上的顶点问题、抛物线与x 轴交点之间的距离等.其中第③个问题体现了一元二次方程与二次函数关系的核心知识,应引起重视.例7(2008年扬州市中考题改编)若关于x 的一元二次方程的两根在1与2之间(不含1和2),则a 的取值范围是.分析:这是一个一元二次方程问题,如果直接用一元二次方程的根来列不等式组,需要列5个不等式,也就是:、、、 、,这样将会很麻烦.那么如何解才能比较简单呢?如果我们利用二次函数图像来帮助分析,0522=++ax x 0402>-=∆a 04402>-+-a a 14402<-+-a a 04402>---a a 14402<---a a解法将简单得多.令,如图10-3我们可以画出这个函数的大致图像.根据图像对称轴在y 轴右侧,可知,解得.再根据可得.根据图像特征可知图像上横坐标为1和2的两个点的纵坐标都是正数,所以可得,可解得.这样就能得到a 的取值范围是.答案:.技巧提升:利用一元二次方程解决二次函数问题,这种题型比较多,也容易想到.而反过来,利用二次函数解决一元二次方程问题,这种题型就比较少了,遇到的时候也不容易想到.以后遇到一元二次方程问题,用方程知识不好解决时,可以尝试用用二次函数.例8(潍坊市中考题)已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图10-4,若y 1<y 2,则自变量x 的取值范围是()A .-12 <x <2B .x >2或x <-32C .-2<x <32D .x <-2或x >32分析:当y 1<y 2时,在图象中反映的是直线在抛物线的上方,522++=ax x y 04>-a 0<a 0402>-=∆a 102-<a ⎩⎨⎧>+⋅+⨯>+⋅+⨯052220511222a a 213->a 102213-<<-a 102213-<<-a也就是两函数图像两个交点之间的部分,所以我们要求出这两个函数图像的交点.由解得、,因此满足要求的自变量x 的取值范围应该是-2<x <32. 答案:C .技巧提升:作为选择题,解答本题时,也可以不解方程组.先根据直线在抛物线的上方排除答案B 、D ,再根据两函数图像的右交点更靠近对称轴(y 轴)可排除答案A .例9(2007年“《数学周报》杯”全国初中数学竞赛试题)已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数的图象与线段AB 恰有一个交点,则的取值范围是.分析:要注意抛物线与线段AB 恰有一个交点应包含两种情况:⑴抛物线与x 轴只有一个交点,这个交点恰好在线段AB 上.由判别式解得.当时,,不合题意;当时,,符合题意.⑵抛物线与x 轴有两个交点,其中只有一个在线段AB上.设抛物线与x 轴的两个交点为C ()、D (),则.若只有点D 在线段AB 上,则,,显然,不合题意;若只有点C 在线段AB 上,则⎪⎩⎪⎨⎧+-==3212x y x y ⎩⎨⎧=-=4211y x ⎪⎩⎪⎨⎧==492322y x ()233y x a x =+-+a ()233y x a x =+-+()233y x a x =+-+012)3(2=--=∆a 0∆=323a =±323a =+123x x ==-323a =-123x x ==()233y x a x =+-+0,1x )0,(2x 21x x <321=x x 101<<x 212≤≤x 321<x x,.当点D 与点A 、B 都不重合时,函数如图10-5所示,从图像可以看出,图像上横坐标为1的点在x 轴上方,横坐标为2的点在x 轴下方,所以,解得.当当点D 与点A 重合时,由,得,此时,,符合题意;当点D 与点B 都重合时,由,得,此时,,不符合题意.综上所述,的取值范围是≤,或者.答案:≤,或者技巧提升:本题中要注意对不同情况进行分类讨论,既要考虑到一般情况,还要考虑到特殊情况.例10(全国初中数学联合竞赛试题)设是大于2的质数,k 为正整数.若函数的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.分析:函数图象与x 轴两交点的横坐标就是方程的两根,可考虑利用一元二次方程根与系数的关系来解决.解:由题意知,方程的两根中至少有一个为整数.由根与系数的关系可得,从而有①211≤≤x 22>x ⎩⎨⎧<+-+>+-+03)3(2403)3(1a a 112a -<<-031)3(12=+⨯-+a 1a =-11=x 32=x 032)3(22=+⨯-+a 12a =-21=x 232=x a 1-12a <-3a =-1-12a <-3a =-p 4)1(2-+++=p k px x y 04)1(2=-+++p k px x 04)1(2=-+++p k px x 21,x x 4)1(,2121-+=-=+p k x x p x x p k x x x x x x )1(4)(2)2)(2(212121-=+++=++(1)若,则方程为,它有两个整数根和.(2)若,则.因为为整数,如果中至少有一个为整数,则都是整数.又因为为质数,由①式知或.不妨设,则可设(其中m 为非零整数),则由①式可得,故,即.又,所以,即② 如果m 为正整数,则,,从而,与②式矛盾. 如果m 为负整数,则,,从而,与②式矛盾.因此,时,方程不可能有整数根. 综上所述,.技巧提升:由于方程两根之和为质数,所以只要有一个根是整数,则另一个根也必然是整数.我们也可以从方程根的1k =0)2(22=-++p px x 2-2p -1k >01>-k 12x x p +=-21,x x 21,x x p 2|1+x p 2|2+x p 2|1+x p 12x mp +=212k x m-+=121(2)(2)k x x mp m-+++=+1214k x x mp m-++=+12x x p +=-14k p mp m--+=+41)1(=-++mk p m (1)(11)36m p +≥+⨯=10k m->1(1)6k m p m-++>(1)0m p +<10k m-<1(1)0k m p m-++<1>k 04)1(2=-+++p k px x 1=k p特征来分析.根据一元二次方程求根公式可知方程的根应为,要使得其根为整数,根的判别式的值必须是完全平方数.由于是质数,因此当的值是完全平方数时,关于的二次三项式必然等于(为非负整数),也就是说应成为关于的一个完全平方式,因此可得其,可解得,(舍去).三.学力训练检测自己能力,体验成功乐趣! 1.选择题:(1)(天津市中考题)已知二次函数()的图象如图10-6所示,有下列结论:①;②;③;④.其中,正确结论的个数是() A .1B .2C .3D .4(图10-6)(图10-7)(图10-8)(2)(百色市中考题)二次函数y=-x2+bx +c的图象如图10-7所示,下列几个结论:①对称轴为x=2;②当y≤0时,x <0或x >4;③函数解析式为y =-x(x -4);④当04)1(2=-+++p k pxx216)1(42++-±-=p k p p x 16)1(42++-p k p p 16)1(42++-p k p p 16)1(42++-p k p 2)(n p ±n 16)1(42++-p k p p 064)1(162=-+=∆k 11=k 32-=k 2y ax bx c =++0a ≠240bac ->0abc >80a c +>930a b c ++<x ≤0时,y 随x 的增大而增大.其中正确的结论有() A .①②③④ B .①②③ C .①③④ D .①③(3)(“《数学周报》杯”2008年全国初中数学竞赛试题)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数的图象与x 轴有两个不同交点的概率是()A .B .C .D .(4)(2008年全国初中数学竞赛浙江赛区初赛试题)在平面直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次函数y =-x2+6x -274的图象与x 轴所围成的封闭图形染成红色,则在此红色区域内部及其边界上的整点的个数是( ) A .5B .6 C .7 D .82.填空题:(1)(新疆维吾尔自治区中考题)抛物线y =-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_______.(2)(玉溪市中考题)如图10-9是二次函数在平面直角坐标系中的图象,根据图形判断①>0;②++<0;③2-<0;④2+8>4中正确的是(填写序号).(3)(2006年全国初中数学联合竞赛辽宁卷)函数y =x 2-2006|x |+2008的图象与x 轴交点的横坐标之和等于2y x mx n =++51249173612)0(2≠++=a c bx ax y c a b c a b b a a c__________.(4)(全国初中数学联合竞赛题)二次函数的图象与轴正方向交于A ,B 两点,与轴正方向交于点C .已知,,则.3.(佛山市中考题)(1)请在坐标系中画出二次函数的大致图象;(2)根据方程的根与函数图象的关系,将方程的根在图上近似的表示出来(描点); (3)观察图象,直接写出方程的根.(精确到0.1)(图10-10)4.(长沙市中考题)已知:二次函数的图象过点(1,0),一次函数图象经过原点和点(1,-b ),其中a>b>0且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点; (3)设(2)中的两个交点的横坐标分别为、,求的范围.c bx x y ++=2x y AC AB 3=︒=∠30CAO c =xx y 22-=122=-x x 122=-x x22y ax bx =+-1x 2x 12||x x -5.(肇庆市中考题)已知二次函数的图象过点(2,1).(1)求证:; (2)求的最大值;(3)若二次函数的图象与轴交于点,,,,的面积是,求.6.(2007年全国初中数学联合竞赛试题)设为正整数,且,二次函数的图象与轴的两个交点间的距离为,二次函数的图象与轴的两个交点间的距离为.如果对一切实数恒成立,求的值.7.(2009年“《数学周报》杯”全国初中数学竞赛试题)已知抛物线与动直线有公共点,,且.(1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值. 8.(全国初中数学联合竞赛试题)已知二次函数的图象经过两点P ,Q .(1)如果都是整数,且,求的值. (2)设二次函数的图象与轴的交点为A 、B ,与轴的交点为C.如果关于的方程的两个根都是整12+++=c bx x y P 42--=b c bc x 1(x A )02(x B )0ABP ∆43b n m ,2≠m mt x mt x y 3)3(2--+=x 1d nt x n t x y 2)2(2+-+-=x 2d 21d d ≥t n m ,2y x =c x t y --=)12(),(11y x ),(22y x 3222221-+=+t t x x 2y x bx c =+-(1,)a (2,10)a ,,a b c 8c b a <<,,a b c 2y x bx c =+-x y x 20x bx c +-=数,求△ABC 的面积.第10讲.一元二次方程与二次函数的关系参考答案 1.选择题:(1)D ;(2)C ;(3)C ;(4)C ;2.填空题:(1)-3<x <1;(2)②、④;(3)0;(4).3.解:(1)如图所示;(2)如图所示,抛物线与直线y=1的两个交点的横坐标就是方程的两根,也就是x 轴上点C 、点D 所表示的数; (3)方程的根为-0.4、 2.4.4.解:(1)设一次函数的表达式为y =kx(k 为常数,k ≠0).∵一次函数图象经过原点和点(1,-b ),∴把点(1,-b ),代入y =kx ,得-b =k,即k =-b . ∴一次函数的表达式为y =-bx . (2)∵y=ax 2+bx -2过(1,0)即a+b=2 由得①∵△=19x x y 22-=122=-x x 122=-x x≈1x ≈2x 2(2)2y bxy b x bx =-⎧⎨=-+-⎩22(2)20ax a x +--=224(2)84(1)120a a a -+=-+>∴方程①有两个不相等的实数根,∴方程组有两组不同的解, ∴两函数有两个不同的交点.(3)∵两交点的横坐标x 1、x 2分别是方程①的解 ∴ ∴或由求根公式得出∵a>b>0,a+b=2,∴2>a>1 令函数,∵在1<a<2时y 随a 增大而减小, ∴,∴. 5.解:(1)∵的图象过点(2,1) ∴ ∴(2) 当时,此时, ∴当时,有最大值,最大值为2。
九年级二次函数与一元二次方程的联系和区别
二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。
当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。
⑤常数项c 决定抛物线与y 轴交点。
抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。
对称轴为直线 x =2ab-,。
对称轴与抛物线唯一的交点为抛物线的顶点P 。
特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。
当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。
2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。
Δ= b2-4ac=0时,抛物线与x 轴有1个交点。
Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。
④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。
二次函数与一元二次方程的关系
(5)a+b+c的符号:因为x=1时,y=a+b+c,所以 a+b+c的符号由x=1时,对应的y值决定。 当x=1时,y>0,则a+b+c>0 当x=1时,y<0,则a+b+c<0 当x=1时,y=0,则a+b+c=0 (6)a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c 的符号由x=-1时,对应的y值决定。 当x=-1,y>0,则a-b+c>0 当x=-1,y<0,则a-b+c<0 当x=-1,y=0,则a-b+c=0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
x
b 2、>0 2a
3、△=b² -4ac=0 4、C>0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
b 2、=0 2a
x
3、△=b² -4ac=0 4、C=0
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
例(1)如果关于x的一元二次方程 x2-2x+m=0有两个 1 相等的实数根,则m=____ ,此时抛物线 y=x21 2x+m与x轴有 8x +c的顶点在 x轴 16 上,则c=____ .
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
二次函数与一元二次方程的关系
(2)取3和4的中间数3.5代入表达式 中试值.
当x=3.5时,y=3.52-2×3.5- 6=-0.75<0;
当x=4时,y>0,在3.5<x<4 范围内,
y随x的增大而增大,∴3.5<x2 <4.
• (3)取3.5和4的中间数3.75代入表达式 中试值.
• 当x=3.75时,y=3.752-2×3.75-6 =0.562 5>0; • 当x=3.5时,y<0.在3.5<x<3.75范 围内,
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
二次函数y=ax2+bx+c与x轴交点的横坐标就是 方程ax2+bx+c=0的根。
1 (中考·柳州)小兰画了一个函数y=x2+ax+b的图象 如图,则关于x的方程x2+ax+b=0的解是( D ) A.无解 B.x=1 C.x=-4 D.x=-1或x=4
• 2.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A (﹣1,p),B(4,q)两点,则关于x的不等式mx+n >ax2+bx+c的解集是 x<-1或x>4 .
• 3.二次函数y=x2+bx的图象如图,对称轴为直 线x=1,若关于x的一元二次方程x2+bx﹣t=0 (t为实数)在﹣1<x<4的范围内有解,则t的取
知识点 1 二次函数与一元二次方程的关系
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
浅谈二次函数与一元二次方程的联系
浅谈二次函数与一元二次方程的联系摘要:二次函数与一元二次方程的解答方法都需要学生进行独立的分析和总结,才能有效地加深学生对方程的学习和理解。
函数与方程是初中数学中两个最基本的概念,形式虽然不同,但它们之间有着密切的关系。
探索二次函数的图象的作法和性质的过程,能够利用描点法作出函数的图象,并能根据图象认识和理解二次函数的性质。
通过学生之间的交流互动,进行图象与图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系。
一元二次方程与二次函数之间的密切关系还有很多巧妙的用处,更多的地方需要在实践中去慢慢体会,并理解函数的意义,记住函数的几个表达形式,注意区分。
关于一元二次方程的学习任务,并要求学生们独立完成,从而让学生有针对性地进行课程学习,最终提高学生的学习效率和质量。
完善初中数学课程评价标准,从而提高数学课堂的教学质量,老师要根据每一位学生的心理特点、学习能力以及成果进行综合评价,并根据最终的评价结果给予学生适当的鼓励和支持,以增强学生的学习自信心。
关键词:动手实践自主探索合作交流自身思维营造高效一元二次方程与二次函数它们在形式上几乎相同,差别只是一元二次方程的表达式等于0,而二次函数的表达式等于y。
这种形式上的类似使得它们之间的关系格外密切,方程中的很多知识点可以运用在函数中。
函数与方程是初中数学中两个最基本的概念,形式虽然不同,但它们之间有着密切的关系。
它们在形式上几乎相同,二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
二次函数与一元二次方程的解答方法都需要学生进行独立的分析和总结,才能有效地加深学生对方程的学习和理解。
初中数学课程标准指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
二次函数与一元二次方程的关系
从以上可以看出, 已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解, 例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值. 一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则 抛物线 y=ax2+bx+c与x轴的交点坐标是 (x1,0),(x2,0)
y=x 2 -3x-4
答案: (1)A(-1,0),B(4,0); (2)x=-1或4; (3) x=-1或4; (4)方程的解就是二次函数的交点的横坐标。
变式训练
观察下列图象,分别说出一元二次方程x2 6 x 9 0, x2 x 3 0的根的情况。
y=x 6 x 9
(4)球从飞出到落地需要用多少时间?
y (m )
20· 5
20
15
(2,20)
0
1
2
3
4
x t) (
解:(1)解方程 (3)解方程 h 15=20t-5t² 20.5=20t-5t² t² -4t+3=0 t² -4t+4.1=0 t 1 =1, t 2 =3. ∵(-4)² -4*4.1<0, 当球飞行1s和2s时, ∴方程无实数根 它的高度为15m。 (4)解方程 (2)解方程 0=20t-5t² 20=20t-5t² t² -4t=0 t² -4t+4=0 t 1 =0, t2 =4. t 1 = t 2 =2. 当球飞行0s和4s时, 当球飞行2s时, 它的高度为20m。 它的高度为0m,即0s飞 出,4s时落回地面。
二次函数与一元二次方程
二次函数与一元二次方程【知识梳理】(一)二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。
抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)即:一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。
(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即:为顶点(2b a -,0)一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a ==-240b ac -=(3)抛物线y =ax 2+bx +c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac <0.(二)二次函数关系式的确定⑴设一般式:y =ax 2+bx +c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.⑵设顶点式:y =a(x -h)2+k(a≠0).若已知条件是图象顶点及另一点,则设顶点式y =a (x -h )2+k (a ≠0).,将已知条件代人,求解并化为一般形式.:⑶设交点式(或两点式):y =a(x -x 1)(x -x 2)(a ≠0).若已知条件是图象与x 轴的两个交点及另一点,则设交点式y =a (x -x 1)(x -x 2)(a ≠0).将已知条件代人,求解并化为一般形式.【考点剖析】考点一 二次函数与方程例1.小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2+ax+b=0的解是( )A . 无解B .x=1C .x=-4D .x=-1或x=4例2.已知抛物线y=x 2﹣4x +m ﹣1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y=2x ﹣m 只有一个交点,求m 的值.例3.如图,二次函数y=x 2﹣6x+5的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 .例3图 变1图【变式练习】1.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。
二次函数和一元二次方程的关系教案
二次函数和一元二次方程的关系教案二次函数和一元二次方程的关系精品教案教学设计一教学设计思路通过小球飞行高度问题展示二次函数与一元二次方程的联系。
然后进一步举例说明,从而得出二次函数与一元二次方程的关系。
最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。
二教学目标1 知识与技能(1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.(2).会利用图象法求一元二次方程的近似解。
2 过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.三情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想.四教学重点和难点重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。
难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
五教学方法讨论探索法六教学过程设计(一)问题的提出与解决问题如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。
如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t5t2。
考虑以下问题(1)球的`飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2。
所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。
解:(1)解方程 15=20t5t2。
九年级数学第二章二次函数与一元二次方程
用函数观点看一元二次方程【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x 轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac =-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>00a >抛物线2(0)y ax bx c a =++≠与x轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b ac x a-±-=0a <△=00a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-0a <△<00a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)0a <要点进阶:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点进阶:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点进阶: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0). 要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点进阶:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点例1. 已知抛物线22(1)423y k x kx k =+++-.求:(1)k 为何值时,抛物线与x 轴有两个交点; (2)k 为何值时,抛物线与x 轴有唯一交点;(3)k 为何值时,抛物线与x 轴没有交点.举一反三:【变式】二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax 2+bx+c=0的两个根; (2)写出不等式ax 2+bx+c >0的解集; (3)求y 的取值范围.类型二、利用图象法求一元二次方程的解例2. 利用函数的图象,求方程组的解.类型三、二次函数与一元二次方程的综合运用例3. 已知关于x 的二次函数22(21)34y x m x m m =--+++.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数为2,1,0.(2)设二次函数y 的图象与x 轴的交点为A(1x ,0),B(2x ,0),且22125x x +=与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.举一反三:【变式】已知抛物线)(2442是常数m m mx mx y -+-=.(1)求抛物线的顶点坐标;(2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.例4.如图,二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围;(3)若直线与y 轴的交点为E ,连结AD 、AE ,求△ADE 的面积.【巩固练习】 一、选择题1. 若二次函数241y ax x a =++-的最大值为2,则a 的值是( )A.4B.-1C.3D.4或-12.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k <0B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠33.方程2123x x x++=的实数根的个数是( ) A. 1 B. 2 C. 3 D. 44.如图所示的二次函数2y ax bx c =++(a ≠0)的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)1c >;(3)20a b -<;(4)0a b c ++<.你认为其中错误的有( )A .2个B .3个C .4个D .1个5.方程2252x x x-++=的正根的个数为( ) A .3个 B .2个 C .1个 D .0个6.“如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A .m <a <b <n B . a <m <n <b C . a <m <b <n D .m <a <n <b二、填空题7. 已知二次函数22(21)44y x m x m m =--+++的图象的顶点在x 轴上,则m 的值为 .8.如图所示,函数y =(k-8)x 2-6x+k 的图象与x 轴只有一个公共点,则该公共点的坐标为 .第8题 第9题9.已知二次函数2y ax bx c =++(a ≠0)的顶点坐标为(-1,-3.2)及部分图象(如图所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别为1 1.3x =和2x =________.10.已知二次函数222(1)2y x m x m m =-+-+-的图象关于y 轴对称,则此图象的顶点A 和图象与x 轴的两个交点B 、C 构成的△ABC 的面积是________.11.抛物线2y ax bx c =++(a ≠ 0)满足条件:(1)40a b -=;(2)0a b c -+>;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①0a <;②0c >;③0a b c ++<;④43c ca <<,其中所有正确结论的序号是 .12.如图是二次函数和一次函数y 2=kx+t 的图象,当y 1≥y 2时,x 的取值范围是 .三、解答题 13.已知抛物线212y x x k =-+与x 轴有两个不同的交点. (1)求k 的取值范围;(2)设抛物线与x 轴交于A 、B 两点,且点A 在点B 的左侧,点D 是抛物线的顶点,如果△ABC 是等腰直角三角形,求抛物线的解析式.14.如图所示,已知直线12y x =-与抛物线2164y x =-+交于A 、B 两点.(1)求A、B两点的坐标;(2)如图所示,取一根橡皮筋,端点分别固定在A、B两处,用铅笔拉着这根橡皮筋使笔尖在直线AB上方的抛物线上移动,动点P将与A、B两点构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,指出此时P点的坐标;如果不存在,请简要说明理由.15.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?。
二次函数和一元二次方程的关系
培训学科教师辅导讲义学生姓名:年级:课时数:3辅导科目:数学辅导教师:辅导内容:二次函数与一元二次方程的关系辅导日期:教学目标: 1.探索二次函数与一元二次方程关系的过程,体会方程与函数之间的联系;2.理解抛物线与x 轴公共点的个数与相应的一元二次方程根的对应关系;3.会求抛物线与坐标轴的交点坐标.【同步知识讲解】知识点1:抛物线与x 轴的交点知识点梳理:对于任何一个一元二次方程02=++c bx ax ,我们可以通过的值判断方程的根的情况如下:当>0时,方程有实数根;当=0时,方程有实数根;当<0时,方程实数根.例题1:抛物线y =x 2+3x ﹣10与x 轴的交点坐标为.【分析】抛物线与x 轴交点的纵坐标为0,代入解析式即可求出横坐标.例题2:已知抛物线y =x 2﹣6x +m 与x 轴仅有一个公共点,则m 的值为.【分析】根据抛物线y =x2﹣6x+m 与x 轴仅有一个公共点,可知(﹣6)2﹣4×1×m =0,从而可以求得m 的值,本题得以解决.例题3:已知抛物线y =ax 2﹣2ax +3与x 轴的一个交点是(﹣1,0),则该抛物线与x 轴的另一个交点坐标为【分析】利用配方法找出抛物线的对称轴,结合抛物线与x 轴的一个交点横坐标可求出另一交点的横坐标,此题得解.变式1:二次函数y =x 2+2x ﹣3与x 轴两交点之间的距离为.【分析】先解方程x2+2x ﹣3=0得抛物线与x 轴的两交点坐标,然后计算两点之间的距离即可.变式2:若二次函数y =x 2﹣2x +m 的图象与x 轴没有交点,则m 的取值范围是.【分析】由题意可得二次方程无实根,得出判别式小于0,解不等式即可得到所求范围变式3:已知抛物线y =mx 2+2x ﹣1与x 轴有两个交点,则m 的取值范围是.【分析】根据二次函数的定义及抛物线与x 轴有两个交点,即可得出关于m 的一元一次不等式组,解之即专题1:二次函数与=﹣(2019•南岸区模拟)究请补充完整以下探索过程,≠,,点.已知抛物线)(1.答案是:.解得﹣AB=;)()(=>;,时,=<制作人:徐春香审核人:尹王冠。
二次函数与二次方程二次不等式的关系
二次函数与二次方程、二次不等式的关系一、知识要点知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数y=ax2+bx+c(a丰0)的函数值y=0时,就是一元二次方程,当沪0时,就是二次不等式。
知识点2、二次函数的图象与 x轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。
研究二次函2 . . 2数y=ax + bx + c图象与x轴交点问题从而就转化为研究一元二次方程ax + bx + c=0的根的变式训练:1、函数y=ax2— bx + c的图象过(一1, 0),贝U b c c a a b的值是___________________ 2、已知二次函数 y=x2 + mx + m— 2 •求证:无论 m取何实数,抛物线总与 x轴有两个交点.3 .已知二次函数 y=x2— 2kx + k2 + k— 2 •(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?5 .已知抛物线 y=mx2 +( 3 — 2m) x + m — 2 ( m^O)与x轴有两个不同的交点.(1 )求m的取值范围;(2)判断点P (1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点 Q及P点关于抛物线的对称轴对称的点P'的坐标,并过P'、Q、P三点,画岀抛物线草图.2例2、(本题满分12分)二次函数y ax bx 6(a 0)的图像交y轴于C点,交x轴于A,B△ =b2— 4ac △ > 0 △ =0△ < 0二次函数y=ax2+bx+c(a > 0)的图像一元二次方程ax2+bx+c=0(a > 0)的根无实数根一元二次不等式ax2+bx+c> 0(a > 0)的解集x < x1或x > x2(% < x2)x为全体实数一元二次不等ax2+bx+c< 0(a > 0)的解集x1<x < x2(x1< x2)无解无解问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。
【特荐】九年级上册数学 人教版 二次函数与一元二次方程的关系(知识点+练习题)
课题:二次函数与一元二次方程的关系(一)二次函数与坐标轴的交点 环节一、求函数与坐标轴的交点坐标1、求一次函数36y x =+与x 轴、y 轴的交点坐标. 解:当x=0时,y=∴函数36y x =+与 轴的交点坐标是( , ) 当y=0时,得方程 解得∴函数36y x =+与 轴的交点坐标是( , ) 2、求二次函数y=x 2-4x+3与x 轴,y 轴的交点坐标. 解:当x=0时,y=∴函数与 轴的交点坐标是( , ); 当y=0时,得方程 解得∴函数与 轴的交点坐标是( , )与( , ).3、求二次函数962++=x x y 与x 轴,y 轴的交点坐标解:4、求二次函数322+-=x x y 与x 轴,y 轴的交点坐标解:环节二:两个函数的交点坐标1、如图,已知直线x y =与直线3+-=x y 相交 于点A , 则交点A 的坐标是即方程组⎩⎨⎧+-==3x y xy 的解是直线x y =与直线3+-=x y 的交点坐标(x ,y )是方程组⎩⎨⎧+-==3x y xy 的 .5、求二次函数y=x 2和y=21x+3的交点坐标. 解:依题意,得方程组⎩⎨⎧解得⎩⎨⎧∴二次函数y=x 2和y=21x+3的交点坐标是 . 3、由上题还可知:方程x 2=21x+3的解是 .归纳总结:1、二次函数与一元二次方程的关系:抛物线2(0)y ax bx c a =++≠与x 轴的交点的横坐标12,x x 是一元二次方程 的根.2、(1)当24b ac - 0 时,方程20(0)ax bx c a ++=≠有两个不相等的实数根,二次函数2(0)y ax bx c a =++≠与x 轴有 个不同的交点;(2)当24b ac -=0 时,方程20(0)ax bx c a ++=≠有 根,二次函数2(0)y ax bx c a =++≠与x 轴有 个交点;(3)当24b ac - 0 时,方程20(0)ax bx c a ++=≠没有实数根,二次函数2(0)y ax bx c a =++≠与x 轴 交点;环节三、巩固练习 A 组1、抛物线y=x 2-5x-6 与y 轴的交点坐标( , );与x 轴交点的坐标( , )和( , ).2、抛物线y=--2x 2+3x+2 与y 轴的交点坐标( , );与x 轴交点的坐标( , )和( , ).3、已知方程2x 2-3x+5=0的两个根是25,-1,则二次函数y=2x 2-3x-5与x 轴两个交点坐标( , )和( , ),两交点间距离为 .4、不论m 为何实数时,抛物线y=x 2-mx -1与x 轴的交点( ).A.有0个B.有1个C.有2个D.无法确定5、已知直线y=-2x+3与抛物线y=x 2相交于A 、B 两点,求A 、B 两点的坐标.6、已知:二次函数y=2x 2-4x-6,求:(1)函数图象的开口方向、对称轴和顶点坐标,(2)求函数图象与y 轴交点、与x 轴交点坐标,并画出草图 ※(3)以此函数与x 轴,y 轴交点为顶点的三角形的面积 解:(二)、二次函数与一元二次不等式之间的关系 环节一、例题学习例1、已知:二次函数y=x 2-3x-4的图象(如图)(1)方程x 2-3x-4=0的解是 ,则二次函数与x 轴交点的坐标是( , )和( , );图象与y 轴交点坐标是( , );(2)看图得:当x 或x 时,y>0;此时不等式x 2-3x-4>0 的解集为(3)看图得:当 <x< 时,y<0;此时不等式x 2-3x-4<0的解集为 例2、已知y=x 2+4x-12,当x 取何值时y>0, 当x 取何值时y <0?解:函数2412y x x =+-,开口向 ,对称轴 ,顶点坐标 ;函数y= x 2+4x-12与x 轴交点坐标( , )和( , ) 根据开口方向、顶点坐标和对称轴与x 轴交点坐标,画出函数草图: 看图回答:不等式x 2+4x-12>0的解集由上图,可得,不等式x 2+4x-12<0的解集是 .小结:二次函数2(0)y ax bx c a =++≠与x 轴的交点为()()0,0,21x x : ① 0>a当 时,0>y 即ax 2+bx+c>0;当 时,0<y 即ax 2+bx+c<0; ② 0<a当 时,0>y 即ax 2+bx+c>0;当 时,0<y 即ax 2+bx+c<0. 环节二、巩固练习 A 组1、抛物线如图所示:①当x 时,y=0; ②当x= 时,y 有最 值.③当x<-1或x>3时,y 0;当-1<x<3时,y 0; -11 2 3xyO —1 —22、抛物线y=x 2-2x-8开口 ,对称轴 ,顶点坐标 , 与y 轴的交点坐标( , )与x 轴交点的坐标( , )和( , )。
九年级数学-二次函数与一元二次方程
第7讲 二次函数与一元二次方程【板块一】二次函数与一元二次方程的关系方法技巧(1)二次函数的图象与x 轴的交点横坐标,对应一元二次方程的根; (2)二次函数的图象与x 轴的交点个数,对应一元二次方程根的情况.题型一:二次函数的图象与a ,b ,c 之间的联系例1:如图是y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a (c -n );①一元ニ次方程ax 2+bx +c =n -1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【解析】∵抛物线与x 轴的一个交点在(3,0)和(4,0)之间,由对称性知另一交点在(-2,0)和(-1,0)之间,当x =-1时,y >0,a -b +c >0,故①正确;由对称轴12=-ab,b =-2a ,3a +b =3a -2a =a <0故②不正确:顶点(1,n ),∴n =ab ac 442-,∴b 2=4ac -4an =4a (-m )故③正确;∵抛物线与直线y =n只有一个公共点,∴抛物线与直线y =n =1有两个交点,∴一元二次方程a 2+bx +c =n -1有两个不相等的实数根,故④正确,选C .题型二:方程的解与交点横坐标的对应【例2】如图,抛物线y =ax 2+bx +c 与直线y =kx +m 交于A ,B 两点.(1)方程ax 2+bx +c =kx +m 的解为 ;(2)不等式ax 2+bx +c ≤kx +m 的解集为 .【解析】(1)方程的解就是两图象交点的横坐标,即x 1=-1,x 2=2; 结合图象,根据增减性可知,解集为≤-1或x ≥2.题型三:二次三项式的值恒为正(或负)的条件【例3】无论x 为何值,二次三项式a 2+2(a +1)x +a +21的値恒为负数,则a 的取值范固是( ) A .32<<0a B .0<<32a - C . 32<-a D .32-≤a【解析】设y =a 2+2(a +1)x +a +21,值恒为负,则⎩⎨⎧0<0<△a ,即()⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-+0<214140<2a a a a ,解得32<-a ,选C .针对练习11.二次函数y =a 2+2(a +1)x +a +21(a ≠0)的图象如图所示,下列结论:①abc <0;②b <a +c ;③4a +2b +c >0;④b 2-4ac >0.其中正确结论有( B )A .①②③B .①②①C .①③①D .②③④ 答案:B第2题图2.抛物线y =ax 2+bx +c 与直线y =mx +n 的图象如图所示:(1)方程ax 2+bx +c =mx +n 的解为: .(2)不等式ax 2+(b -m )x +c -n <0的解集为: . 答案:(1)x 1=-2,x 2=1 (2) -2<x <13.二次函数y =(m -1)x 2+2mx -1的图象都在x 轴的下方,求m 的取值范围. 答案:解:⎩⎨⎧0<0<1-△m ,()⎩⎨⎧-+0<1440<1-2m m m 解得251<<251+-+-m 4.无论x 为何值,二次根式()3212++-+m mx x m 恒有意义,求m 的取值范围.答案:解:设y =(m +1)x 2-2mx +m +3,则y 恒为非负数,∴⎩⎨⎧≤+00>1△m ,即()()()⎪⎩⎪⎨⎧≤++---031421>2m m m m 解得m ≥43-板块二:函数图象的交点与解方程 方法技巧联立两函数的解析式,求图象交点的坐标;交点的个数与方程的判别式有关. 少题型一二次函数的图象与x 轴的交点【例1】已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4 C .k <4且k ≠3 D .k ≤4且k ≠3【解析】当k -3=0时,该函数为一次函数y =2x +1,其图象与x 轴有交点,当k -3≠0时,该函数为二次函数,△≥0.22-4(k -3)=0,即k ≤4且k ≠3,综上,当k ≤4时,函数图象与x 轴有交点,故选B .题型二:二次函数的图象与直线y =k (k ≠0)的交点 例2:已知一元二次方程1-(x -3)(x +2)=0有两个实数根x 1,x 2,(x 1<x 2),则下列判断正确的是( ) A .-2<x 1<x 2<3 D .x 1<-2<3<x 2 C .-2<x 1<3<x 2 D .x 1<-2<x 2<3【解析】画出直线y =1与ニ次函教y =(x -3)(x +2)的图象,由图象可知:x 1<-2<3<x 2,故选B .【注】方程ax 2+bx +c -k =0的解,即函数y =ax 2+bx +c 的图象与函数y =k 的图象的交点的横坐标.题型三:二次函数的图象与直线y =kx +b (k ≠0)的交点【例3】直线AB :y =x +4与抛物线y =x 2-2mx +m 2+m +4交于A ,B 两点,试判断AB 的长是否发生变化?若不变,求出其值;若变化,求出其取值范围.【解析】联立⎩⎨⎧+++-=+=42422m m mx x y x y ,∴x 2-(2m +1)x +m 2+m =0. ∴(x -m )(x -m -1)=0,∴x A =m ,x B =m +1∴BH =x A -x B =1,AH =y B - y A =(x B +4)-(x A +4)=1在R △AHB 中,AB =22BH AH +=2,即AB 的长不发生支化,其长为2.题型四:分段函数与交点【例4】若函数y =b 的图象与函数y =x 2-31-x -4x -3的图象恰有三个交点,则b 的值是6或425. 【解析】当x ≥1时,y =x 2-7x ,当x <1时,y =x 2-x -6,结合图象知b =一6或425-.题型五:抛物线与直线在定区间有唯一公共点【例5】已知抛物线y =x 2-mx -3与直线y =2x +3m 在一2<x <2之间有且只有一个公共点,则m 的取值范围是 .【解析】∵x 2-mx -3=2x +3m ,,x 2-2x -3=m (x +3),即直线y =m (x +3)与抛物线y =x 2-2x -3,在一2<x <2有唯一公共点,把(一2,5)代入y =m (x +3),得m =5,把(2,-3)代入y =m (x +3),得m =53-,∴53-≤m <5,x 2-(m +2)x -3-3m =0,△=(m +2)2+12+12m =0,解得m =-8-34(舍去),m =-8+34,综上,53-≤m <5或m =-8+34.针对练习21.已知抛物线y =(m -1)x 2-2mx +m +1(m >1). (1)求抛物线与x 轴的交点坐标;(2)若一次函数y =kx -k 的图象与抛物线始终只有一个公共点,求一次函数的解析式. 答案:(1)y =0时,(m -1)x 2-2mx +m +1=0,∴(x -1)[(m -1)x -(m +1)]=0,∴x 1=1,x 2=11-+m m ,∴抛物线与x 轴的交点空为(1,0),(11-+m m ,0). (2) 联立()⎩⎨⎧++--=-=1212m mx x m y k kx y ,∴(m -1)x 2-(2m +k )x +m +1+k =0, △=(2m +k )2-4(m -1)(m +1+k )=k 2+4k +4=(k +2)2=0,∴ k =-2,∴一次函数的解析式为y =-2x +2.2.将二次函邮y =2x 2+4x -6的图象在x 轴下方的部分沿x 轴翻折,图象其余部分保持不变,得到一个新的图象,当直线y =21x +b 与此图象有两个公共点时,求b 的取值范围. 答案:解:A (3,0),B (1,0),当直线过A 点时,b =23,1322b -<<当直线经过B 点时,b =21-. ∴1322b -<<,联立224612y x x y x b ⎧=--+⎪⎨=+⎪⎩得292602x x b ++-= 29=()8(3)02b ∆--=,273=32b ,综上,1322b -<<或27332b >,有两个公共点.3.若直线y =2x -5m 与抛物线y =x 2-mx -3在0≤x ≤4之间有且只有一个公共点,求m 的取值范围. 答案:联立2253y x m y x mx =-⎧⎨=--⎩得2235x x mx m --=-,即223y x x =--与直线(5)y m x =-在0≤x ≤4有唯一公共点.①把(0,-3)代入(5)y m x =-得35m =,把(4,5)代入(5)y m x =-得m =-5, ∴-5≤m <35.②当直线与抛物线“相切”时,2(2)530x m x m -++-=,0∆=,∴2(2)4(53)0m m +--=,得8m =-8m =+(舍),综上,-5≤m <35或8m =-4.已知关于x 的二次函数22(1)y ax a x a =+--的图象与x 轴的一个交点坐标为(m ,0),若2<m <3,则a 的取值范围是____ ___. 答案:当y =0时,22(1)=0ax a x a +--,∴(ax -1)(x +a )=0,∴11x a =,2x a =-,当123a <<时,1132a <<,当2<-a <3时,-3<a <-2,即1132a <<或-3<a <-2.【板块三】二次函数与根与系数的关系方法技巧(1)若二次函数y =ax 2+bx +c 交x 轴于(x 1,0),(x 2,0),则1212,b c x x x x a a+=-=.(2)12||x x -=. 题型一 抛物线截水平线段的长【例1】若点P (1x ,c ),点Q (2x ,c )在函数243y x x =-+的图象上,且x 1<x 2,PQ =2a ,则21261x ax a -++的值为( C )A .-2B .3C .5D .6【解析】∵对称轴为x =2,P (1x ,c ),Q (2x ,c )关于直线x =2对称,PQ =2a ,∴12x a =-,22x a =+,∴221261(2)(2)615x ax a a a a a -++=--+++=,故选C .yx【例2】抛物线1121()()4y x x x x =--交x 轴于两点A (1x ,0)B (2x ,0)两点(x 1<x 2),直线22y x t=+经过点A ,若函数y =y 1+y 2的图象与x 轴有且只有一个公共点,则线段AB 的长为( B ) A .4 B .8 C .12 D .16【解析】22y x t =+经过点A (1x ,0),∴012x t =+,12t x =-,121211211()()22()(8)44y y y x x x x x x x x x x =+=--+-=--+.∵与x 轴有且只有一个公共点,∴有等根,∴128x x =-,∴218x x -=,∴AB =8,选B . 题型二 抛物线斜线段【例3】抛物线21344y x x =-+与x 轴交于A ,B 两点,直线34y kx k =-+与抛物线交于C ,D 两点,求△BCD 面积的最小值.【解析】直线34(3)4y kx k k x =-+=-+,经过定点E (3,4),又B (3,0),∴E B x x =,∴BE ∥y 轴,∴1||2||2BCD BCE BDED C D C S S S BE x x x x =+=-=-△△△,联立2341344y kx k y x x =-+⎧⎪⎨=-+⎪⎩得2(44)12130x k x k -++-=,∴44C D x x k +=+,1213C D x x k =-,∴22221()()416166816()642D C D C C D x x x x x x k k k -=+-=-+=-+≥64,∴||D C x x -的最小值为8,∴BCD S △的最小值为16.。
二次函数与一元二次方程的关系
解:(1)-1 x 3.
(2)设y=x2 -1,则y是x的二次函数.
a=1 0,抛物线开口向上.
又 当y=0时,x2 -1=0,
∴
>0
∴△>0,
∴无论 m取何值,抛物线总与x轴有两个交点.
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
能力提升
5.已知二次函数 y kx2 6x 7 的图像与X轴
ห้องสมุดไป่ตู้
有两个不同的交点.
(1) 求k的取值范围
(2) 当k为何值时,这两个交点横坐标的平方和等
可由一元二次方程的根的判别式来判定二次函数图象与x 轴的交点的情况,由根与系数的关系来解决相关问题。
在函数问题中,往往需要解方程:反过来也可以利用函 数图象解方程。
课后练习
1.已知抛物线y x2 6x a与x轴有两个交点,则a的取值范围是多少? 2.已知抛物线y=x2 px q与x轴的两个交点为(2, 0), (3, 0),则p、q的 值分别是多少? 3.已知二次函数y x2 kx k 2. (1)判别上述抛物线与x轴的交点情况; (2)设抛物线与x轴交点之间的距离为2 5,求k的值. 4.设二次函数的图象与x轴交于A, B两点,与y轴交点点C,线段OA与OB 的长的积等于60(点O是坐标原点), 求m的值.
解得x =-1,x =1.
1
2
由此得抛物线的大致图象如图所示:
观察函数图象可知:
当x -1或x 1时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与直线、一元二次方程的关系
一、二次函数与直线的关系
(1)抛物线2y ax bx c =++与y 轴的交点是()0,c ;
(2)抛物线2y ax bx c =++与x 轴的交点,因为x 轴上的点的纵坐标都为0,
所以令0y =,代入得2
0ax bx c ++=,解这个一元二次方程得x =,所
以抛物线与x 轴的交点坐标是2b a ⎛⎫--
⎪ ⎪⎝⎭和2b a ⎛⎫
-+ ⎪ ⎪⎝⎭
; (3)一次函数()0y kx b k =+≠的图象与二次函数()20y ax bx c a =++≠的图象
的交点的个数,由方程组2
y kx b
y ax bx c
=+⎧⎨=++⎩的解的数目确定: ①方程组有两组不同的解⇔两函数图象有两个交点; ②方程组只有一组解⇔两函数图象只有一个交点; ③方程组无解⇔两函数图象没有交点。
例1、已知:抛物线的解析式为()2
2
21y x m x m m =--+-。
(1)求证:此抛物线与x 轴必有两个不同的交点;
(2)若此抛物线与直线34y x m =-+的一个交点在y 轴上,求m 的值。
变式1-1、在直角坐标平面中,O 为坐标原点,二次函数()2
14y x k x =-+-+的图象与y 轴交于点A ,
与x 轴的负半轴交于点B ,且6OAB S ∆=。
(1)求点A 与点B 的坐标;
(2)求此二次函数的解析式;
(3)如果点P 在x 轴上,且ABP ∆是等腰三角形,求点P 的坐标。
二、二次函数与一元二次方程的关系
方程20ax bx c ++=的两个实数根为12x x 、,与x 轴的交点为A B 、,如下表: 判别式的情况
抛物线2y ax bx c
=++与x 轴的交点 有两个交点
有一个交点 无交点
二次方程
20ax bx c ++=的实根
有两个不相等的实根1212,x x AB x x =-、
有两个相等的实
根12x x =
无实根
例2、(2011•潍坊)已知一元二次方程()2
00ax bx c a ++=>的两个实数根12x x 、满足124
x x +=和123x x •=,那么二次函数()2
0y ax bx c a =++>的图象有可能是( )。
变式2-1、(2011•呼和浩特)已知一元二次方程2
30x bx +-=的一根为3-,在二次函数
23y x bx =+-的图象上有三点123451,,,546y y y ⎛⎫⎛⎫⎛⎫
-- ⎪
⎪ ⎪⎝⎭⎝⎭⎝⎭
、、,则123y y y 、、的大小关系是 。
例3、如图所示,抛物线()2213y x m x m =-++++与x 轴交于A B 、两点,则:3:1OB OA =,则m = 。
变式3-1、设函数()()2145y x k x k =-+-+的图象如图所示,它与x 轴交
于A B 、两点,且线段OA 与OB 的长的比为1:4,则k = 。
例4、已知抛物线()221423y k x kx k =+++-。
求: (1)k 为何值时,抛物线与x 轴相交于两点;
(2)k 为何值时,抛物线与x 轴的两个交点分别在原点的两侧? 变式4-1、已知抛物线2
5y x mx m =++-。
(1)求证:不论m 为何实数,抛物线与x 轴都有两个不同的交点? (2)当m 为何值时,抛物线与x 轴的交点分别都在原点左侧? (3)当m 为何值时,抛物线与x 轴的交点分别在()1,0两侧?
例5、已知二次函数2y ax bx c =++的图象经过点()2,3--,对称轴是直线2x =,在x 轴上截得的
线段长为210,求这个二次函数的解析式。
变式5-1、已知二次函数2
y ax bx c =++的顶点为()1,4-,且抛物线在x 轴上截得的线段长为4,求
抛物线的解析式。
变式5-2、如图,二次函数的图象经过点70,
39D ⎛
⎫
⎪⎝⎭
,且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P ,使PA PD +最小,求出点P 的坐标。
例6、关于x 的一元二次方程()
()2212210m x m x ---+=。
(1)当m 为何值时,方程有两个不相等的实数根; (2)点()1,1A
--是抛物线()()221221y m x m x =---+上的点,求抛物线的解析式;
(3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由。
思考:
1、函数2
31y ax ax x =-++的图象与x 轴有且只有一个交点,求a 的值和交点坐标。
2、已知抛物线2
234
y x kx k =+-
(k 为常数,且0k >)。
(1)证明:此抛物线与x 轴总有两个交点;
(2)设抛物线与x 轴交于M N 、两点,若这两点到原点的距离分别为OM ON 、,且1123
ON
OM
-
=
,
求k 的值。
二次函数与直线、一元二次方程的关系习题练习
1、在二次函数2
y ax bx c =++中,若a 与c 异号,则其图象与x 轴的交点个数为 。
2、不论m 为何实数,抛物线2
2y x mx m =-+-( )。
.A 在x 轴上方 .B 与x 轴只有一个交点 .C 与x 轴有两个交点 .D 在x 轴下方
3、若抛物线2
21y kx x =-+与x 轴有两个交点,则k 的取值范围是 。
4、已知函数2
77y kx x =--的图象和x 轴有交点,则k 的取值范围是 。
5、如果一个二次函数的图象经过点()6,10A ,与x 轴交于B C 、两点,点B C 、的横坐标分别为
12x x 、,且12126,5x x x x +==,求这个二次函数的解析式。
6、已知关于x 的方程()222120x m x m ++++=有两个不相等的实数根,试判断直线
()2347y m x m =--+能否经过点()2,4A -,并说明理由。
7、如图所示,已知抛物线()2:0P y ax bx c a =++≠与x 轴交于A B 、两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F G 、分别在线段BC AC 、上,抛物线P 上的部分点的横坐标对应的纵坐标如下。
(
1)求
A B C 、、三点的坐
标;
(2)若点D 的坐标为(),0m ,矩形DEFG 的面积为S ,求S 与m 的函数关系式,并指出m 的取值范围;
(3)当矩形DEFG 的面积S 最大时,连接DF 并延长至点M ,使FM k DF =•,若点M 不在抛物线P 上,求k 的取值范围;
(4)若点D 的坐标为()1,0,求矩形DEFG 的面积。
… 1 2 …
…
…。