考研高数知识点总结
高数部分知识点总结
![高数部分知识点总结](https://img.taocdn.com/s3/m/52ec45843186bceb19e8bb79.png)
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/9be88cf5f424ccbff121dd36a32d7375a517c615.png)
考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。
高数考研知识点总结
![高数考研知识点总结](https://img.taocdn.com/s3/m/ee14fa173a3567ec102de2bd960590c69ec3d8f8.png)
高数考研知识点总结一、微积分微积分是一门研究变化的学问。
微积分包括微分学和积分学两个部分。
微分学主要包括导数的概念和性质、高阶导数、隐函数及参数方程求导,微分中值定理,泰勒公式及其应用,不定积分和定积分的概念,不定积分和定积分的计算方法,微分方程的基本概念和初等解法,以及常见微分方程的应用等知识点。
积分学主要包括定积分的概念和性质,定积分的计算方法,换元积分法,分部积分法,定积分的几何应用,定积分的物理应用,不定积分和定积分的基本定理,微分方程的解法和应用,广义积分,数列的敛散,函数项级数的一致收敛性等知识点。
二、级数级数是指由一列数按照一定规律相加而得到的一种算术运算。
级数分为数列和级数的概念,各种级数的审敛性的判别法,幂级数,傅里叶级数,函数项级数的一致收敛性,泰勒级数和洛朗级数等知识点。
三、空间解析几何空间解析几何是指研究空间内点、直线、平面、曲线、曲面及它们之间的相互位置关系等问题的一门数学学科。
空间解析几何主要包括三维空间中的向量及其运算,直线和平面的向量方程和参数方程,空间曲线的方程和参数方程,空间曲面的方程和参数方程,以及常见空间曲线和曲面的性质及应用等知识点。
四、常微分方程常微分方程是指自变量只有一个的微分方程,它是描述动力系统中的基本方程。
常微分方程包括一阶常微分方程的基本概念和解法,高阶常微分方程的概念和求解方法,常系数线性微分方程的解法,解微分方程的初值问题,二阶常微分方程常见的特殊解法,欧拉方程,伯努利方程,克莱罗方程,常见的非齐次线性微分方程的解法等知识点。
五、多元函数微分学多元函数微分学是研究多变量函数的导数、偏导数及其应用的一门数学学科。
多元函数微分学包括二元函数的概念及性质,多元函数的极值及其应用,隐函数存在定理,非线性方程组的解法,多元函数的泰勒公式,梯度、散度、旋度及拉普拉斯算子,二元函数积分学,重积分的概念和性质,重积分的计算方法,重积分的几何物理应用,累次积分的计算次序等知识点。
考研用到的高数基础知识
![考研用到的高数基础知识](https://img.taocdn.com/s3/m/c27ea26ce418964bcf84b9d528ea81c758f52eef.png)
考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。
考研高数每章总结知识点
![考研高数每章总结知识点](https://img.taocdn.com/s3/m/0fd834898ad63186bceb19e8b8f67c1cfad6ee38.png)
考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
考研高数知识点超强归纳
![考研高数知识点超强归纳](https://img.taocdn.com/s3/m/6f73ba2a4b73f242336c5f15.png)
(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
1− x2
1− x2
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′[ϕ(x)]ϕ ′(x)dx
由于公式 dy = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方
考研数一归纳知识点
![考研数一归纳知识点](https://img.taocdn.com/s3/m/e56560484531b90d6c85ec3a87c24028915f8588.png)
考研数一归纳知识点考研数学一(高等数学)是考研数学中难度较大的科目,它涵盖了高等数学的多个重要领域。
以下是考研数学一的归纳知识点:1. 函数、极限与连续性:- 函数的概念、性质和分类。
- 极限的定义、性质和求法。
- 函数的连续性及其判断方法。
2. 导数与微分:- 导数的定义、几何意义和物理意义。
- 基本导数公式和导数的运算法则。
- 高阶导数的概念和求法。
- 微分的概念和微分中值定理。
3. 积分学:- 不定积分和定积分的概念、性质和计算方法。
- 换元积分法和分部积分法。
- 定积分的应用,如面积、体积和物理量的计算。
4. 级数:- 级数的概念、收敛性判断。
- 正项级数的收敛性判断方法,如比较判别法和比值判别法。
- 幂级数和泰勒级数。
5. 多元函数微分学:- 多元函数的概念、偏导数和全微分。
- 多元函数的极值问题和条件极值问题。
6. 重积分与曲线积分:- 二重积分和三重积分的概念和计算方法。
- 对坐标的曲线积分和曲面积分。
7. 常微分方程:- 一阶微分方程的解法,如可分离变量方程、线性微分方程等。
- 高阶微分方程的解法,如常系数线性微分方程。
8. 解析几何:- 空间直线和平面的方程。
- 空间曲线和曲面的方程。
9. 线性代数:- 矩阵的运算、行列式、特征值和特征向量。
- 线性空间和线性变换的概念。
- 线性方程组的解法。
10. 概率论与数理统计:- 随机事件的概率、条件概率和独立性。
- 随机变量及其分布,包括离散型和连续型随机变量。
- 数理统计中的参数估计和假设检验。
结束语:考研数学一的知识点广泛且深入,要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。
因此,考生在复习过程中需要注重理解、练习和总结,以提高解题能力和应试技巧。
希望以上的归纳能够帮助考生更好地准备考研数学一的考试。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/97f5c366b5daa58da0116c175f0e7cd18525184e.png)
【引言概述】考研高数是考研数学中的重点科目之一,它不仅涵盖了高等数学的基本概念和理论,还包括了各种常见的数学方法和技巧。
为了帮助考生更好地备考高数,本文将围绕考研高数的知识点展开详细的总结和解读。
【正文内容】一、函数与极限1.函数的概念与性质a.函数的定义b.函数的分类c.函数的性质及图像d.函数的运算与复合2.极限的概念与性质a.极限的定义b.极限的性质及运算法则c.极限存在准则d.极限的计算方法二、微分与导数1.导数的定义与性质a.导数的几何意义b.导数的物理意义c.导数的计算方法d.导数的性质及运算法则2.微分的概念与性质a.微分的定义b.微分的计算方法c.微分的性质及运算法则d.高阶导数与高阶微分三、积分与定积分1.定积分的概念与性质a.定积分的定义b.定积分的计算方法c.定积分的性质及运算法则d.定积分与不定积分的关系2.积分的应用a.曲线长度与曲面面积b.弧长的计算c.曲线的平均值与中值定理d.牛顿莱布尼茨公式四、级数与幂级数1.级数的概念与性质a.级数的定义与收敛、发散性质b.级数收敛的判定方法c.级数的运算法则d.级数的收敛域与和函数2.幂级数的概念与性质a.幂级数的定义与收敛性质b.幂级数的计算法则c.幂级数的收敛域与和函数d.幂级数的应用与展开式五、微分方程与线性代数1.一阶微分方程a.一阶微分方程的概念与分类b.一阶微分方程的解法及应用c.高阶微分方程的解法及应用d.常系数线性微分方程的解法及应用2.线性代数a.线性代数的基本概念与性质b.线性方程组的解法及应用c.矩阵的运算与特征值特征向量d.线性空间的概念与性质【总结】通过对考研高数知识点的详细总结,可以发现高数知识点的内容广泛且深入,需要考生掌握扎实的基础知识和灵活运用的能力。
在备考过程中,考生应该注重对各个知识点的理解和记忆,并结合实际问题进行练习和应用。
只有通过不断的积累与实践,才能在考试中取得理想的成绩。
希望本文对考生备考高数提供了一定的参考和指导,祝愿考生能够取得优异的成绩!。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/b460d5600622192e453610661ed9ad51f01d54ef.png)
考研高数知识点总结高等数学是考研数学的一个重要组成部分,考研高数考察的内容涉及广泛,难度较大。
要想在考研高数中取得好成绩,必须深入了解各种知识点,并且掌握适当的解题方法。
下面就对考研高数的知识点进行总结,以供考生参考。
一、函数与极限1.1 函数的基本概念函数是一种特殊的关系,即每个自变量对应且只对应一个因变量。
1.2 极限的概念极限是函数在自变量趋于某个值时,相应因变量的趋势。
1.3 极限的性质极限具有唯一性、局部有界性等性质。
1.4 极限的计算利用夹逼定理、洛必达法则等方法来计算极限。
二、导数与微分2.1 导数的概念导数表示函数在某一点的瞬时变化率。
2.2 导数的计算利用极限定义、导数的四则运算等方法来计算导数。
2.3 导数的应用利用导数求函数的单调性、凹凸性、极值等。
2.4 微分的概念微分是导数的几何意义。
三、积分与定积分3.1 不定积分不定积分是积分的基本形式,可以求出函数的原函数。
3.2 定积分定积分可以表示函数在某一区间上的总变化量。
3.3 定积分的计算利用牛顿—莱布尼茨公式、换元积分法、分部积分法等方法来计算定积分。
四、级数4.1 级数的概念级数是无穷项数列部分和的极限。
4.2 级数收敛与发散讨论级数的收敛性是比较重要的知识点。
4.3 常见级数如调和级数、等比级数、幂级数等。
五、常微分方程5.1 常微分方程的基本概念包括常微分方程的解、初值问题等内容。
5.2 一阶常微分方程一阶微分方程的解法包括可分离变量法、齐次方程、一阶线性微分方程等。
5.3 高阶常微分方程高阶微分方程的解法包括常系数线性齐次微分方程、常系数线性非齐次微分方程等。
总结:考研高数是数学中一个重要的分支,需要考生深入理解各种知识点,并且熟练掌握解题方法。
希望以上内容能够帮助考生更好地备考考研高数。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/5a80967d0812a21614791711cc7931b764ce7b79.png)
考研高数知识点总结一、导数与微分导数是研究函数局部性质的重要工具,是高数中一个极其重要的概念。
导数的定义是函数的变化率,它反映了函数在某一点的局部性质。
导数的大小表示函数在某一点的斜率,而导数的正负则表示函数在某一点的单调性。
导数的计算包括求导公式、复合函数的导数、隐函数的导数等。
微分是导数的线性近似,它在近似计算中有重要作用。
微分的定义是函数改变量的线性部分,它反映了函数在某一点的局部变化率。
微分的大小表示函数在某一点的斜率的变化率,而微分的正负则表示函数在某一点的单调性的变化。
微分的计算也包括求微分公式、复合函数的微分、隐函数的微分等。
二、中值定理与不定积分中值定理是微分学中的基本定理,它表明在闭区间上的连续函数至少有一个值等于其最大值和最小值之间的某个值。
这个定理有许多重要的推论,例如拉格朗日中值定理和柯西中值定理。
不定积分是微积分的一个重要部分,它是求一个函数的原函数或反导数的过程。
不定积分的结果是一个函数族,这些函数的导数等于被积函数。
不定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。
三、定积分与定积分的几何意义定积分是微积分的一个重要部分,它是求一个函数在某个区间上的总值的过程。
定积分的几何意义是求一个曲线与坐标轴围成的图形的面积。
定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。
四、级数与反常积分级数是无穷序列的和,它可以分为收敛级数和发散级数。
收敛级数的和是一个有限的数,而发散级数的和是无穷大。
级数的计算包括求和公式、幂级数展开等。
反常积分是瑕积分和反常积分的总称,它们是处理不连续函数或具有奇点的函数的重要工具。
反常积分的计算包括运用积分公式、换元积分法等方法。
以上是考研高数知识点的大致总结。
高数是一门非常深奥的学科,需要我们在学习的过程中不断深入理解并多加练习。
希望这篇文章能对大家的学习有所帮助。
高数知识点总结高等数学是大学数学教育的基础课程,对于很多理工科专业来说,它的重要性不言而喻。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/8a2bbb617275a417866fb84ae45c3b3567ecdd38.png)
考研高数知识点总结一、极限与连续1.1 函数的极限1.1.1 函数的极限定义1.1.2 函数极限的性质1.1.3 函数的无穷极限1.1.4 无穷小与无穷大1.2 极限运算法则1.2.1 两个重要极限1.2.2 无穷大与无穷小的比较1.3 一元函数的连续1.3.1 连续函数的定义1.3.2 连续函数的性质1.3.3 初等函数的连续性1.4 中值定理1.4.1 Rolle定理1.4.2 拉格朗日中值定理1.4.3 柯西中值定理1.5 L'Hospital法则二、导数与微分2.1 函数的导数2.1.1 导数的定义2.1.2 导数的几何意义2.1.3 导数的物理意义2.1.4 函数的可导性2.2 导数的运算法则2.2.1 基本初等函数的导数2.2.2 复合函数的求导法则2.2.3 反函数的导数2.2.4 隐函数的导数2.3 高阶导数2.4 微分2.4.1 微分的概念2.4.2 微分的运算法则2.4.3 隐函数的微分2.4.4 高阶微分三、不定积分3.1 不定积分的概念3.2 不定积分的运算法则3.2.1 基本初等函数的积分3.2.2 第一换元法3.2.3 第二换元法3.2.4 分部积分法3.3 不定积分的应用3.3.1 函数的原函数3.3.2 定积分与不定积分的关系3.3.3 牛顿-莱布尼茨公式四、定积分与定积分的应用4.1 定积分的概念4.2 定积分的运算法则4.2.1 定积分与不定积分的关系4.2.2 定积分的性质4.2.3 定积分中值定理4.3 定积分的应用4.3.1 几何应用4.3.2 物理应用4.3.3 概率应用4.3.4 广义积分五、微分方程5.1 微分方程的概念5.2 微分方程的解5.2.1 变量分离法5.2.2 齐次方程5.2.3 一阶线性微分方程5.2.4 一阶齐次线性微分方程5.2.5 可降阶的高阶微分方程5.3 微分方程的应用5.3.1 函数图形的性质5.3.2 物理模型5.3.3 生物模型5.3.4 经济模型六、无穷级数6.1 级数的概念6.2 收敛级数的判别法6.2.1 正项级数6.2.2 任意项级数6.2.3 幂级数6.3 级数的应用6.3.1 函数展开成级数6.3.2 物理应用6.3.3 工程应用七、多元函数微分学7.1 多元函数的概念7.2 偏导数7.2.1 偏导数的定义7.2.2 偏导数的几何意义7.2.3 高阶偏导数7.3 方向导数7.3.1 方向导数的概念7.3.2 方向导数的计算7.3.3 方向导数与梯度7.4 多元函数的极值7.4.1 极值的判别法则7.4.2 拉格朗日乘数法7.5 多元函数的微分学应用7.5.1 向量值函数的导数7.5.2 隐函数的偏导数这些是考研高数知识点的一些主要内容,希望对大家的学习有所帮助。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/7224df22793e0912a21614791711cc7931b77802.png)
考研高数知识点总结引言随着我国研究生教育水平的提高,考研成为越来越多学子追求的目标。
高数是考研数学的重要组成部分,掌握高数知识不仅对考研学子而言至关重要,也是提高数学素养的关键。
本文将从高数的基本概念、常见定理、解题技巧等方面进行总结,帮助考研学子系统地了解高数知识点。
一、导数与微分1.1 基本概念导数是函数在某点处的瞬时变化率,可以用极限的概念来定义。
微分是导数概念的一种应用,代表函数在某点处的局部线性化。
在考研高数中,导数与微分是非常重要的概念,常被用于函数的研究和问题的解决。
1.2 常见导数公式常见的导数公式包括:幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数等。
考研学子需要掌握这些导数公式,并能熟练地进行推导和运用。
1.3 微分的应用微分在几何、物理等领域都有广泛的应用,如切线方程的求解、极值问题的研究、函数图像的描绘等。
在考研高数中,学子需理解微分的应用,掌握相关的解题技巧。
二、定积分2.1 定积分的概念定积分是对函数在一定区间上的积分,可以看作是曲线下面积的一种衡量。
在考研高数中,定积分是解决面积、体积、物理问题等的重要工具,学子需要深刻理解定积分的概念和性质。
2.2 定积分的计算定积分的计算方法包括:牛顿-莱布尼茨公式、定积分的性质、换元积分法、分部积分法等。
通过对这些计算方法的掌握,考研学子能够灵活地解决各种定积分计算题目。
2.3 定积分的应用定积分在几何、物理、经济等领域都有广泛的应用,如求曲线下面积、求旋转体的体积、求物体的质量和重心等。
考研学子需要理解定积分的应用,并掌握相关的解题技巧。
三、无穷级数3.1 级数的概念与性质级数是指一列数的和,无穷级数是指该列数的和在n趋于无穷时的性质。
在考研高数中,学子需要理解级数的概念、收敛与发散性质,以及级数收敛的判别法则等。
3.2 常见级数常见的级数包括:等比级数、调和级数、幂级数、泰勒级数等。
考研学子需要掌握这些常见级数的性质和收敛条件,以便能够快速判断级数的收敛性。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/99dec393b8f3f90f76c66137ee06eff9aff84975.png)
考研高数知识点总结高等数学是研究数与其变化规律的一门基础课程,是理工科学生学习的重要课程之一。
在考研数学中,高等数学是必考科目之一,占有较大比重。
下面就考研高等数学知识点进行总结,希望对考生们有所帮助。
一、函数与极限1. 基本概念:函数、反函数、复合函数、有界函数、周期函数等。
2. 极限的定义:数列极限的定义、函数极限的定义等。
3. 极限的性质:极限的唯一性、有界性、局部有界原理等。
4. 极限运算法则:加减乘除、复合函数的极限等相关运算法则。
5. 无穷大与无穷小:无穷大和无穷小的概念、性质及相关推论。
二、导数与微分1. 导数的定义:函数在某一点的导数、导数的几何意义、物理意义等。
2. 基本导数公式:多项式函数、三角函数、指数函数、对数函数等基本函数的导数。
3. 高阶导数:二阶导数、高阶导数及其相关概念。
4. 微分中值定理:拉格朗日中值定理、柯西中值定理等。
5. 隐函数与参数方程的导数:隐函数的导数、参数方程的导数等相关内容。
三、微分中的应用1. 函数的极值与最值:函数的极值点的判定、极值、最值等相关概念。
2. 函数的单调性与凹凸性:函数的单调区间、凹凸区间等相关概念。
3. 泰勒公式与泰勒展开:泰勒公式的表达形式、泰勒展开的求解方法及应用。
4. 微分的应用:函数的近似计算、误差估计、最优化问题等。
四、不定积分1. 不定积分的概念:定义、性质及运算法则。
2. 基本不定积分公式:多项式函数、三角函数、指数函数、对数函数等基本函数的不定积分公式。
3. 换元积分法:第一类换元法、第二类换元法及其应用。
4. 分部积分法:分部积分法的原理、应用条件及相关例题。
5. 有理函数积分法:有理函数积分的基本思路及方法。
五、定积分及其应用1. 定积分的定义:定积分的严格定义及其几何意义。
2. 定积分的性质:定积分的线性性、定积分的区间可加性等性质。
3. 定积分的基本定理:牛顿-莱布尼茨公式及其几何意义。
4. 定积分的应用:面积、定积分表示的物理量、定积分的几何应用等。
考研高数知识点总结
![考研高数知识点总结](https://img.taocdn.com/s3/m/8c6e375efd4ffe4733687e21af45b307e871f916.png)
考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。
下面是对高等数学知识点的总结,希望对考研学生有所帮助。
一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。
金融类考研高数知识点总结
![金融类考研高数知识点总结](https://img.taocdn.com/s3/m/49db1beab1717fd5360cba1aa8114431b90d8e21.png)
金融类考研高数知识点总结一、极限与连续1. 极限的概念极限是描述函数在某一点附近的变化趋势的重要概念。
如果当自变量接近某一值时,函数值无限接近于某一常数,那么这个常数便是函数在该点的极限。
数学上通常用极限运算符号表示为lim。
2. 极限的性质(1)极限的唯一性:如果函数f(x)在x=a的某个邻域内有定义,则它的极限如果存在,那么该极限唯一确定。
(2)函数的极限运算法则:若lim(x->a)u(x)=A,lim(x->a)v(x)=B,那么lim(x->a)(u(x)±v(x))=A±B,lim(x->a)(u(x)v(x))=A*B,lim(x->a)(u(x)/v(x))=A/B(B≠0)。
3. 连续的概念函数f(x)在区间[a, b]上连续,即f(x)在[a, b]上每一点x0处连续。
其中,函数f(x)在x0处连续,指f(x)在x0处有定义、极限存在且等于f(x0)。
4. 连续函数的性质若函数f(x)在区间[a, b]上连续,则f(x)在[a, b]上有界、在闭区间[a, b]上连续函数一定能取得最大值和最小值。
5. 数列极限与函数极限的关系极限是函数概念的推广,函数的极限与数列的极限有密切的联系。
函数的极限可以通过数列的极限的方式来定义。
6. 中值定理(1)拉格朗日中值定理:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则必存在一点c∈(a, b),使得f'(c)=(f(b)-f(a))/(b-a)。
(2)柯西中值定理:若函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,且g'(x)≠0,则必存在一点c∈(a, b),使得(f(b)-f(a))/(g(b)-g(a))=(f'(c))/(g'(c))。
7. 隐函数与参数方程当函数难以用解析式直接给出时,可以通过隐函数方程或参数方程来描述函数的性质。
考研必看考研数学基础知识点梳理(高数篇)
![考研必看考研数学基础知识点梳理(高数篇)](https://img.taocdn.com/s3/m/34186109a45177232f60a296.png)
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研高等数学基本知识点大全
![考研高等数学基本知识点大全](https://img.taocdn.com/s3/m/c374e082a98271fe900ef96c.png)
高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研高数知识点总结
高等数学是考研数学的重中之重,也是考生们比较头疼的一门科目。
为了帮助考生更好地应对考研高数,下面将对一些重要的高数知识点
进行总结和归纳。
1. 三角函数
三角函数是高数中的一个基础概念,对于考研来说尤为重要。
需要
重点掌握的有三角函数的性质、基本公式、常用变换等。
在解题过程中,可以通过化简、利用三角函数的周期性等方法,简化计算步骤,
提高解题效率。
2. 极限与连续
极限与连续是高等数学的核心概念,也是考研中经常涉及的知识点。
要掌握极限的定义、基本性质和常见的求法,特别是在极限存在性的
判断上需要注意。
连续性的理解需要从图像、定义和性质等多个角度
进行学习,通过掌握变量趋于某一点时的极限和函数各点的连续性等
知识,可以更好地应对考试中的相关题目。
3. 导数与微分
导数与微分是高数中最重要的概念之一,也是数学分析的基础。
需
要熟练掌握导数的定义、基本求导法则以及高阶导数等知识点。
在解
题时,可以通过利用导数性质、运用极值条件等方法,快速求解问题。
另外,微分的应用也是考试中常见的题型,需要注意多种情况下的微
分运算和结果的解释。
4. 不定积分与定积分
不定积分与定积分是高数的重点内容之一。
掌握不定积分的基本性质、基本积分法及常见的基本积分公式是至关重要的。
在解答定积分题目时,需要熟悉定积分的几何和物理意义,并能够通过换元积分、分部积分等方法进行解题。
5. 二元函数与多元函数
二元函数与多元函数是高等数学中较为复杂的内容。
需要了解二元函数和多元函数的性质、连续性的定义以及偏导数等知识点。
在偏导数的运用上,要熟练掌握求偏导数的方法,并能够运用偏导数来求极值、判断函数的单调性等。
此外,在考研高数中还会涉及到一些概率与统计、常微分方程等相关内容,需要考生们在复习过程中进行系统的学习和总结。
同时,要切实加强对基础知识的掌握,理解概念的内涵,熟练掌握基本运算和常用公式,并能够将所学知识运用到解决实际问题中。
练习题目的多做多练,是确保考研高数顺利过关的关键。
综上所述,高等数学是考研数学中不可或缺的重要部分。
对于备战考研的学生来说,理解和熟练掌握高数知识点非常重要。
要注重基础的打牢、知识点的串联,通过大量的练习和总结,以达到在考试中灵活运用知识的目标。
只有夯实了高数基础,才能更好地应对考研数学的挑战。