洞室围岩稳定性研究及支护方案建议

合集下载

地下厂房洞室群围岩稳定性方法研究

地下厂房洞室群围岩稳定性方法研究

地下厂房洞室群围岩稳定性方法研究地下厂房洞室群围岩稳定性是指地下厂房洞室周围岩体的稳定性问题。

地下厂房洞室通常是为了满足人们的生产、生活和储存需求,因此洞室群围岩的稳定性对于地下厂房的长期运行、人员安全和资产保障至关重要。

在研究地下厂房洞室群围岩稳定性时,需要考虑以下几个方面的问题:首先,需要分析洞室群围岩的物理力学特性,包括岩石的强度、变形特性和破坏模式。

通过适当的岩石力学试验和野外观测,可以获取岩石的力学参数,如抗压强度、抗拉强度、抗剪强度等。

这些参数对于稳定性分析和设计起着重要的作用。

其次,需要考虑工程参数的影响,如洞室尺寸、埋深和周边岩性的条件。

洞室尺寸对岩体稳定性有直接影响,尤其是高宽比较大的洞室,容易导致岩体的变形和破坏。

洞室的埋深也会影响岩体的应力状态,从而影响岩体的稳定性。

周边岩性的条件决定了岩体的强度和变形特性,需要对周边岩性进行综合分析。

此外,岩体的结构面、节理和隐伏断层等地质构造的影响也需要考虑。

岩体中存在的结构面和节理体,会导致岩体的开裂和滑动,对岩体的稳定性产生不利影响。

隐伏断层的活动可能导致岩体的滑动和破坏,需要对其进行综合分析和评估。

最后,需要进行数值模拟和力学分析,包括有限元分析、离散元分析和解析方法等。

通过数值模拟可以模拟地下厂房洞室群围岩的应力-应变状态,预测岩体的破坏形态和稳定性。

数值模拟还可以进行灵敏度分析,评估不同参数对岩体稳定性的影响,为优化设计和工程措施提供依据。

综上所述,地下厂房洞室群围岩稳定性的研究是一项复杂的工作,需要考虑岩石力学特性、洞室尺寸与周边岩性、地质构造和数值模拟等多个方面的问题。

通过综合分析和评估,可以为地下厂房洞室的设计和建设提供科学依据,保障其长期稳定和安全运行。

地下洞室群施工方案优化及围岩稳定性分析(DOC)

地下洞室群施工方案优化及围岩稳定性分析(DOC)

地下洞室群施工方案优化及围岩稳定性分析吴杉(中国水利水电第七工程局有限公司四川省成都市 610000)【摘要】:本文首先介绍了动态施工力学的基本概念和原理,在此基础上简单介绍了运用动态规划优化地下洞室群施工方案,随后运用具体实例分析,发现优化施工顺序能够有效提高围岩稳定效果,这对地下洞室群施工具有重要的参考价值。

【关键词】:地下洞室群;围岩稳定性;施工方案0.引言:影响地下洞室群稳定性的因素有很多,其中也存在很多的不确定因素,通过有限元分析法能够有效反映工程开挖过程中的围岩位移、破坏区分布和应力随开挖的变化规律,从而确定最合适的施工方案。

1.岩体非静态建设施工力学原理针对地下洞室施工所涉及到的力学的特点来看,整个施工程序能够被想象为一种非可逆、没有规律可循的演变程序,对于其最后的评价也是众说纷纭,会受到多种因素的制约,与应力路径和应力历史相关.对于小洞室群施工来说,也很少会有全断面一次成洞,大多情况下都要根据施工工期、岩体特性和碴运输洞布置情况等条件,合理选择分期开挖方案,换句话说,地下洞室群施工必然存在一个施工方案的优化问题,其目标函数应当是在保证工程安全性的前提下实现经济效益的最大化。

现阶段,岩体力学已逐渐向更有前景的发展方向延伸,就是广为人知的岩体动态建设力学,其施工的要点有以下几点:①项目的稳定性不但受到外界环境的影响,而且也和项目自身的施工特点紧密相连;②对比较冗杂的石块进行施工时,对周围岩石的稳定性进行讨论的过程本质是非线性的力学,应力路径和应力历史对围岩稳定性有着直接的影响;③地下洞室群施工需要根据工程特点和岩体特性,采取有针对性的开挖和支护手段,保证施工全过程都做好围岩体的稳定性控制;④对于复杂的地下洞室群施工,在施工开始前,需要进行动态施工力学的优化分析,尽可能的寻找优良的施工方案,为施工决策提供可靠依据;⑤为了保证施工方案的合理性,在施工前期,需要做好围岩动态响应的观察和监测工作,并且根据监测结果适当的对施工方案进行调整和改进;⑥施工方案的选择和优化必须保证地质监测、施工计划、建设监管以及研究项目四道工序联系密切与协调发展,确保全部的施工工序拥有足够的灵活性。

地下洞室围岩稳定性

地下洞室围岩稳定性

北京地铁王府井车站
广州地铁东(山口)~杨(箕)区间隧道
3 地下洞室围岩稳定性分析
3.2 岩体中的天然应力
开挖前存在于岩体中的应力,称天然应力或初始应力。是 岩体在建造或改造过程中,各种地质作用综合作用形成的。
主要包括自重应力和构造应力。
岩体内任何一点的初始应力状态(常称为原岩应力)通常可 以垂直正应力(通常为主应力)通常以垂直正应力和水平正应 力来表示:
围岩应力重分布特征
径向应力随着向自由表面的接近而逐渐减小,至洞壁 处变为零。
切向应力在一些部位愈接近自由表面切向应力愈大, 并于洞壁达最高值,即产生所谓压应力集中,在另一些部 分,愈接近自由表面切向应力愈低,有时甚至于洞壁附近 出现拉应力,即产生所谓拉应力集中。
这样,地下洞宝的开挖就将于围岩内引起强烈的主应 力分异现象,使围岩内的应力差愈接近自由表面愈增大, 至洞室周边达最大值。
从这类变形、破坏的发生机制和发育特点中可 以看出,在现代地应力或构造剩余应力较高的薄 层状岩层内修建这类地下洞室,围岩的稳定性与 洞室轴向相对于区域最大主应力方位有密切关系。 通常.轴向垂直于最大主应力方向的洞室,其稳 定性远低于平行于最大主应力方向者。
这是因为:在洞轴垂直于水平最大主应力的条 件下,当洞体平行或近于平行地通过陡倾岩层时 强烈的卸荷回弹会使垂直于最大主应力方向的洞 壁发生严重的弯折内鼓,而当洞体通过平缓岩层 时,高度的应力集中又会使平行于最大主应力的 洞室顶底板,特别是顶拱,因弯折内鼓的发展而 严重坍塌。
2 张裂塌落
张裂塌落通常发生于厚层状或块体状岩体内的洞室 顶拱。当那里产生拉应力集中,且其值超过围岩的抗 拉强度时,顶拱围岩就将发生张裂破坏,尤其是当那 里发育有近垂直的构造裂隙时、即使产生的拉应力很 小也可使岩体拉开产生垂直的张性裂缝。被垂直裂缝 切割的岩体在自重作用下变得很不稳定,特别是当有 近水平方向的软弱结构面发育,岩体在垂直方向的抗 拉强度较低时,往往造成顶供的塌落。但是在N0的 情况下,顶拱坍塌引起的洞室宽高比的减小全使顶拱 处的拉应力集中也随之而减小,甚至变为压应力。当 项拱处的拉应力减小至小于岩体的抗拉强度时.顶拱 因岩韶趋于稳定。

地下洞室围岩稳定性分析

地下洞室围岩稳定性分析

地下洞室围岩稳定性分析在进行地下洞室围岩稳定性分析时,一般需要考虑以下几个主要因素:1.岩层的力学性质:岩层的力学性质是岩石稳定性的基础。

要进行稳定性分析,首先需要获取岩层的力学参数,如岩石的强度、弹性模量和剪胀性等。

通常可以通过室内试验、现场调查和实测等方法获得这些参数,或者借助已有的类似工程的资料进行评估。

2.地下水:地下水是地下洞室稳定性分析中重要的一项因素。

地下水对围岩的稳定性产生的主要影响是增加孔隙水压,降低岩层的有效应力,促使岩体产生破坏。

因此,需要充分考虑地下水对岩层的影响,包括水位高度、水质状况、渗流特性等。

3.岩体结构:岩体的结构对于岩层稳定性具有重要影响。

岩体的结构主要表现为节理、裂隙、岩体层理等。

这些结构特征对洞室的稳定性有直接影响,形成控制洞室稳定的主要因素之一、因此,在进行稳定性分析时,需要对岩体的结构特征进行详细调查和分析,选择合适的建模方法进行模拟。

4.洞室开挖方式和支护措施:洞室的开挖过程和支护措施对围岩稳定性有着直接的影响。

开挖过程中,洞室周围会受到剪切应力和变形等影响,进而对围岩稳定性产生影响。

因此,在稳定性分析中需要考虑洞室开挖方式和支护措施的影响,选择合适的岩体应力场和支护材料。

在进行地下洞室围岩稳定性分析时,常用的方法包括力学分析法、数值模拟法和现场监测法等。

力学分析法通过分析力学参数和地质参数,计算岩体的稳定系数,从而评估围岩的稳定性。

数值模拟法通过建立数学模型,采用有限元或边界元方法,模拟洞室周围围岩的变形和破坏过程,预测洞室的稳定性。

现场监测法是指通过安装监测点,对洞室周围的围岩变形和破坏进行实时监测,从而评估围岩的稳定性。

综上所述,地下洞室围岩稳定性分析是一个复杂的工程问题,需要考虑多个因素的综合影响。

只有充分了解地下洞室周围的地质和力学条件,选择合适的分析方法和模型,才能有效评估围岩的稳定性,并制定出合理的支护措施,确保地下洞室的安全和持续稳定。

隧道施工中的围岩处理与稳定

隧道施工中的围岩处理与稳定

隧道施工中的围岩处理与稳定一、引言隧道施工是现代交通建设的重要组成部分,为了确保隧道的安全运营,围岩处理与稳定是必不可少的环节。

本文将讨论隧道施工中围岩处理与稳定的几个关键问题。

二、隧道围岩的分类隧道施工中常见的围岩可分为软岩、半硬岩和硬岩。

不同类型的围岩具有不同的物理力学性质,因此在处理和稳定上需要采取不同的措施。

三、围岩处理的方法1. 预处理在隧道施工之前,对围岩进行预处理是十分重要的。

这包括对围岩进行地质勘探和工程地质评价,确定围岩的强度、透水性和稳定性等参数,以便制定合理的处理方案。

2. 支护结构对于软岩和半硬岩地层,常采用支护结构来确保施工的安全进行。

常见的支护结构包括钢筋混凝土衬砌、钢拱架和锚杆等。

这些支护结构能够增加地层的强度和稳定性,从而保证隧道的施工和使用安全。

3. 卸压爆破在施工过程中,围岩中的应力分布是一个重要的问题。

过大的围岩应力可能导致围岩破裂和坍塌。

为了减小围岩应力,常采用卸压爆破的方法。

通过控制爆破参数,可以在一定程度上减小围岩应力,提高施工的安全性。

四、围岩稳定性的分析与评估在隧道施工过程中,对围岩的稳定性进行分析和评估至关重要。

常用的方法包括岩体划分、应力分析和稳定性计算等。

通过这些方法,可以评估围岩的稳定性,为后续的支护结构设计提供参考。

五、围岩处理与环境保护在隧道施工过程中,不仅要关注围岩的处理与稳定,还需要注重环境保护。

施工过程中产生的岩屑和废弃物需要进行合理处理,以减少对周边环境的影响。

同时,还需要合理利用施工过程中产生的废弃物,例如可利用岩屑进行填充,以减少资源浪费。

六、国内外典型案例分析通过对国内外典型隧道施工案例的分析,可以总结出一些经验和教训。

例如,在某一案例中,通过采用特殊的围岩处理和支护结构,成功解决了围岩塌方的问题。

这些案例不仅可以为隧道施工提供借鉴,也对围岩处理与稳定的研究和应用提供了参考。

七、未来的挑战和发展方向随着交通建设的不断发展,隧道施工面临着新的挑战。

探讨水平岩层隧道围岩稳定性及施工措施

探讨水平岩层隧道围岩稳定性及施工措施

探讨水平岩层隧道围岩稳定性及施工措施1、引言在公路隧道施工作业中,薄板状水平岩层是经常遇到的一种地质构造,在隧道开挖过程中,经常出现拱顶大面积平顶、落石、塌顶等现象,不但直接影响隧道的爆破效果,还会影响裸洞的围岩稳定性,增加初期支护喷射混凝土的使用量,导致施工成本不可控。

虽然光面爆破、预裂爆破等控制爆破技术日益成熟,且已成为山岭隧道开挖爆破的常规方法,但受钻爆人员技术水平参差不齐,以及施工管理水平高低等其他因素影响,在薄板状水平岩层公路隧道开挖施工时易造成拱顶落石、片帮、崩塌等现象,给施工安全带来极大的隐患和困难。

另外在薄板状水平岩层中,岩体通常都较为破碎,节理发育,粘着性差,完整程度不高,围岩稳定性较差。

由此,对薄板状水平岩层隧道围岩进行稳定性分析,预先考虑及采取防止围岩失稳垮塌的措施,对薄板状水平岩层隧道的安全施工以及成本控制等有着较大的积极意义。

2、工程概况瓦店子隧道在重庆万州区境内,隧道左线起讫桩号:ZK10+990~ZK14+246,长3256m;右线起讫桩号:K11+000~K14+280,长3280m,单线合计长度6536m。

瓦店子隧道进口前线路跨越长江,隧址区属丘陵地貌,隧道地表高程在260~575m之间。

洞身段属丘陵地貌区,高程575~347m,相对高差228m。

出口段位于槽谷山脊斜坡,高程265~320m,相对高差55m,斜坡坡度8~56°。

沿线地形起伏较大,属中低山地貌。

隧道位于万州区向斜近轴部,为单斜构造。

岩层产状340°∠4~8°,产状稳定构造简单。

穿越地层主要为侏罗系上统上遂宁组砂岩、泥岩,围岩岩性主要为泥岩、砂岩为主。

地层为水平岩层或近水平岩层,呈层状结构,层间结合力较差,地下水以基岩裂隙水为主,空间分布不均,整体水量较小。

3、薄板状水平岩层稳定性分析瓦店子隧道主要是以薄层~中厚层水平岩层或近水平岩层为主,岩层倾角较缓(4°~8°)。

隧道建设中围岩稳定性与支护结构分析研究

隧道建设中围岩稳定性与支护结构分析研究

隧道建设中围岩稳定性与支护结构分析研究隧道建设是一项复杂的工程,其中一个重要的问题是如何保证围岩的稳定性,并设计出合适的支护结构。

隧道穿越山脉和地下,需要克服围岩多变、地质构造复杂、地下水渗漏等困难,所以在隧道建设中,设计和施工要保证安全、经济,也要保证工期。

本文将探讨隧道围岩稳定性和支护结构的分析与研究,希望对相关工程师有所帮助。

1. 围岩的分类和特点根据构成岩石的不同,围岩可分为岩性岩石、软弱地层、岩层间填充杂物等。

这些围岩的特点是多变的,例如,硬岩易于开挖,但裂隙和节理和天然岩体断裂在开挖和运输过程中容易露头,而软弱地层则易于塌方和破坏。

此外,地下水也是设计和施工的一个重要考虑因素,它会影响开挖过程中的支撑结构和稳定性。

2. 围岩的稳定性分析方法为保证隧道的稳定性,需要进行围岩的稳定性分析。

围岩的稳定性主要由支护结构和围岩本身两部分构成,设计时需要考虑到两者的相互作用。

主要的稳定性分析方法包括数值模拟、物理模拟和经验公式。

其中,数值模拟是应用最多的方法之一,它能够考虑到复杂的地质情况和设计模式,提供最准确的结果。

3. 支护结构设计原则支护结构是保证隧道稳定的关键,它的设计需要遵循几个基本原则。

首先是根据地质条件和隧道剖面,确定适当的支护形式。

例如,对于高压水力隧道,需要采用防水措施;对于断层带,需要采用一定的加建支护结构等。

其次是根据隧道的功能、使用年限和工程造价,选择经济、合理的支护结构组合。

例如,可以使用钢支撑、喷锚和预应力支撑等技术,以确保支撑效果最佳、成本最小。

4. 支护结构的设计实例支护结构的设计除了从理论上制定方案,实际应用时也要考虑到实际的围岩情况,尤其是地下水的影响。

以下是常见的支护结构设计实例:4.1. 巨型控水型隧道支护结构设计该隧道全长54km,地下水位50-65m,采用了压力门式护拱、喷锚杆和泥浆墙等支护措施。

在设计中,考虑到地下水的渗漏,特别增加了一道泥浆墙,在地面上使用了高压注入仪和监测设备,确保了隧道的安全。

地下洞室工程围岩特征及其支护措施

地下洞室工程围岩特征及其支护措施

地下洞室工程围岩特征及其支护措施地下洞室工程是指在地下进行的洞穴开挖和地下结构施工的一种工程。

在地下洞室工程中,围岩是指洞室周围的地质岩体,包括岩层、岩性、岩体强度、岩体稳定性等一系列特征。

围岩的性质和特征对地下洞室的安全和稳定性起到至关重要的作用。

在地下洞室工程中,围岩的特征包括以下几个方面:1.地质结构特征:围岩的地质结构特征包括岩层倾角、岩层的发育程度、岩层的厚度等。

不同的地质结构会对围岩的稳定性和施工难度产生影响。

2.岩性特征:围岩的岩性特征包括岩石的种类、岩石的密度、岩石的坚硬程度等。

不同的岩性会对围岩的稳定性和施工难度产生影响。

3.岩体强度:围岩的强度是指岩体抵抗破坏的能力。

围岩的强度越高,洞室的稳定性越好。

因此,在地下洞室工程中,需要对围岩的强度进行测试和评估,以确定相应的施工方案和支护措施。

4.岩体稳定性:围岩的稳定性是指岩体在开挖和施工过程中是否容易发生破裂、塌陷等现象。

围岩的稳定性与地下水位、地应力、岩体结构等因素有关。

在地下洞室工程中,需要通过岩体稳定性分析,确定相应的支护措施,以确保洞室的安全施工和使用。

针对以上围岩特征,地下洞室工程中常用的支护措施有:1.开挖方式:在地下洞室开挖过程中,可以采用不同的开挖方式,如爆破开挖、钻机开挖、机械掘进等,根据围岩的特征选择合适的开挖方式。

同时,还需要合理设置开挖工作面和施工顺序,以降低围岩变形和破坏的发生。

2.支护结构:地下洞室工程中常用的支护结构有钢支撑、混凝土衬砌、锚杆支护等。

根据围岩的特征和洞室的设计要求,选择合适的支护结构,并进行稳定性分析和力学计算,以确保支护结构的稳定性和耐久性。

3.地下水控制:地下水是影响地下洞室稳定性的重要因素之一、在地下洞室工程中,需要采取相应的地下水控制措施,如井孔排水、封水墙施工等,以降低地下水对围岩的影响。

4.监测与预警:地下洞室工程中,需要设置相应的监测系统,对围岩的变形、位移、应力等进行实时监测,及时发现问题并采取相应措施。

隧道开挖中的围岩稳定问题

隧道开挖中的围岩稳定问题

隧道开挖中的围岩稳定问题隧道是一种人工开凿的地下通道,被广泛应用于交通、水利、矿山等工程领域。

在隧道的建设过程中,围岩稳定问题是一个必须要解决的关键问题。

围岩稳定性不仅关系到隧道施工的安全性,还直接影响着隧道的使用寿命和运行效果。

隧道的开挖过程中,周围的围岩会受到剥离、开裂、变形等不同程度的影响。

这些问题可能导致隧道内部的渗水、坍塌、塌方等严重事故发生,给施工人员和设备带来巨大的风险。

因此,在进行隧道开挖时,必须对围岩进行稳定性分析,并采取相应的措施来确保开挖的安全和顺利进行。

首先,稳定性分析是隧道开挖过程中不可或缺的一步。

在进行分析时,需要考虑到地质构造、岩性、围压、地下水位等因素的综合影响。

通过对围岩力学性质的测试和现场观测,可以获得有效的数据来进行分析。

常见的分析方法有解析法、数值方法和模拟实验等。

通过分析,可以确定隧道开挖时可能遇到的围岩变形和破坏形式,从而选择合适的支护措施。

其次,围岩支护是确保隧道开挖稳定性的关键。

根据不同的地质条件和围岩性质,可以采用不同的支护措施。

常见的支护措施包括钢支撑、混凝土衬砌、锚杆喷锚等。

这些措施可以提供稳定的支撑力,减少围岩变形和开裂的可能性。

同时,也可以通过控制隧道开挖的速度和采取适当的排水措施来降低开挖对围岩的影响。

此外,隧道施工过程中的监测与预警也是非常重要的。

通过安装各种传感器和监测设备,可以实时监测围岩的变形和应力状态。

当监测到异常情况时,及时采取措施进行补救,避免事故的发生。

因此,在每个施工阶段都应该进行周密的监测工作,并制定相应的应急预案。

最后,隧道施工中的围岩稳定问题也需要与环境保护相结合。

在进行隧道开挖时,需要注意对周边环境的影响。

包括噪声、震动、水土流失等问题。

应采取相应的措施来减少对环境的负面影响,保护生态环境。

综上所述,隧道开挖中的围岩稳定问题是一个复杂而关键的课题。

通过稳定性分析、围岩支护、监测与预警以及环境保护等措施的综合应用,可以确保隧道开挖的安全和稳定性。

煤矿深部岩巷围岩稳定与支护对策

煤矿深部岩巷围岩稳定与支护对策

煤矿深部岩巷围岩稳定与支护对策随着煤炭资源的逐渐枯竭,煤矿勘探和开采往往要越来越深入地下,这就对煤矿深部岩巷的岩体稳定与支护提出了更高的要求。

煤矿深部岩巷岩体稳定与支护对策是煤矿生产中一个重要的技术问题,直接关系到矿井的安全生产和资源开发利用。

本文将从岩巷围岩的稳定性原因分析、支护措施和新技术应用等方面探讨深部岩巷围岩稳定与支护对策。

一、围岩稳定性原因分析1. 地质构造地质构造是岩巷围岩稳定性的重要因素之一。

在煤矿深部开采中,地质构造常常较为复杂,存在断层、节理、褶皱等地质构造对围岩稳定性的影响。

2. 地质岩性地质岩性包括煤层的产状、厚度和坚固程度等,这直接影响到围岩的稳定性。

一些软弱的破碎煤层容易发生滑移、坍塌,导致围岩失稳。

3. 应力状态在煤矿深部,地下应力较大,会对围岩产生较大的压力,导致围岩破裂、变形等现象,严重影响围岩稳定。

4. 水文地质条件水文地质条件是围岩稳定性的重要影响因素之一。

水文地质条件较差,容易导致围岩的湿润和软化,使围岩稳定性下降。

二、支护措施1. 预留合理矿柱在煤矿深部开采中,合理预留矿柱是保障围岩稳定的有效措施。

通过预留合理的矿柱,可以有效减小地下应力,减轻围岩的承压,提高围岩的稳定性。

2. 地压控制地压控制是指通过合理布置和支护巷道,减少围岩的变形和破裂。

采用合理的采煤工艺、适当的放顶和支护措施,可以有效控制围岩的稳定。

3. 巷道支护巷道支护是保障围岩稳定的重要手段。

采用合理的巷道支护材料和技术,对巷道进行有效加固,可以增加围岩的抗压和抗剪强度,提高围岩的稳定性。

4. 特殊地质条件下的支护对于特殊地质条件下的围岩,如软弱煤层、断层带、岩溶地质等,需要采用相应的支护措施。

比如对软弱煤层围岩可以采用锚杆、锚索、预应力锚杆支护;对断层带可以采用预应力锚杆加固,对岩溶地质可以采用喷浆固化等方式进行支护加固。

三、新技术应用1. 高效支护材料随着材料科学的发展,高效支护材料的研发应用对围岩稳定与支护起到了重要作用。

保障洞室围岩稳定的措施

保障洞室围岩稳定的措施

保障洞室围岩稳定的措施
为了保障洞室围岩的稳定,我们可以采取以下措施:
1. 岩石分类及强度测试:首先,对洞室围岩进行岩性分类,确定其物理力学性质和强度,在这个基础上进行岩石强度测试,以确定其质量和稳定性。

2. 围岩加固技术:根据围岩的物理力学性质和强度测试结果,选择合适的围岩加固技术,如锚杆加固、喷射混凝土加固、灌浆加固等。

利用这些技术,可以增加围岩的强度和稳定性。

3. 地下水管理:地下水渗漏是导致洞室围岩变松散和破坏的主要原因之一,因此,必须进行地下水的有效管理。

通过合理构建排水系统,减少地下水渗漏,可以有效降低围岩的湿度,防止水和岩石发生相互作用,从而保持围岩的稳定。

4. 岩体监测系统:安装岩体监测系统,可以及时监测围岩的位移、应力和变形等变化情况。

通过对监测数据的收集和分析,可以有效预测和评估围岩稳定状况,提前采取相应的措施。

5. 安全支护措施:在洞室围岩中采取安全支护措施是非常重要的。

例如,可以根据围岩的特点选择合适的支护方式,如钢架支护、预应力锚杆支护、喷锚支护等。

这些措施可以增强洞室围岩的抗压能力和稳定性。

综上所述,保障洞室围岩稳定的措施包括岩石分类及强度测试、围岩加固技术、地下水管理、岩体监测系统、安全支护措施等。

通过这些措施的综合应用,可以有效保证洞室围岩的稳定性和安全性。

第八章地下洞室围岩稳定性分析

第八章地下洞室围岩稳定性分析

第八章地下洞室围岩稳定性分析
一、地下洞室围岩稳定性
地下洞室围岩稳定性是指开挖地下洞室时,所受水、渗、力、温度变
化作用下,围岩在洞室形成过程中,确保其稳定性,防止发生失稳破坏的
能力。

地下采掘洞室围岩稳定性受到岩性、受力形式、受力程度、渗透性、温度变化、洞室形状及支护形式等多种因素的影响,是复杂的工程力学问题。

二、稳定性分析指标
1、岩体的稳定性
假设在洞室围岩失稳前,围岩的状态是完全稳定的,所以在洞室围岩
的稳定性分析中,首先要对围岩的物理力学性质进行研究,确定洞室围岩
的初始稳定性或不稳定性,对洞室围岩的加载稳定性进行评价,并确定必
要的加固措施。

2、洞室围岩作用的潜在施工影响
稳定性分析还要考虑洞室的施工对围岩的影响,如渗漏的影响,支撑
结构的影响,排水管的影响,洞室入口封闭的影响等。

这些因素会对洞室
围岩的稳定性造成一定影响。

三、稳定性分析方法
1、岩层垂直受力平衡分析法
岩层垂直受力平衡分析法是指将洞室每一层的垂直受力状况按照垂直
受力平衡原理,进行层层分析,以确定每一层的受力及稳定情况。

公路隧道围岩稳定性分析及支护对策研究

公路隧道围岩稳定性分析及支护对策研究

公路隧道围岩稳定性分析及支护对策研究在隧道建设中最为关心的是隧道围岩稳定性问题。

本文对影响隧道围岩稳定性的各类因素进行了分析,并对衬砌技术、衬砌防排水技术进行简要的说明,指出其中存在的问题并提出相应的解决思路,以期对公路隧道围岩稳定性的研究及实际工程施工有所帮助。

标签:公路隧道;围岩;支护;对策一、隧道围岩稳定性影响因素1、地质及地质结构。

地质及地质结构主要考虑岩性的影响、岩体结构及裂隙的分布和特殊地质条件(如岩溶区、强风化区、断层破碎带等不良地质)。

2、地应力。

地下工程的失稳主要是由于开挖工作引起的应力重分布超过围岩强度或引起围岩过分变形而造成的。

而应力重分布是否会达到危险的程度主要看初始应力场的方向、量值和性质而定。

3、岩体力学性质影响。

如上所述,工程岩体的稳定性主要视岩体的强度与变形特性与开挖后重分布的围岩应力这二者相互作用的结果而定。

强者强于后者则稳定,弱于后者则不稳定。

工程岩体的破坏主要有拉破裂和剪破裂两种基本类型,所以其抗拉强度和抗剪强度很重要。

4、工程因素。

工程因素主要指洞室的方位、规模(高、跨)、形态、使用性质、施工方法、开挖工艺、支护形式及实施过程、受其它工程活动的影响等。

5、地下水因素。

6、时间因素。

围岩状态随时间的恶化及地层压力的增加主要有两方面的原因:一是岩体的流变性质。

二是时间的增长加剧了围岩弱化过程。

二、公路隧道围岩稳定性分析方法(一)力学解析方法自从人们对围岩稳定性的研究开始,对其的力学研究一直处于不断进步的过程,主要经历了从古典压力理论、散体压力理论以及发展到现在更为先进的弹性、塑性力学理论。

隧道开挖之后,因改变了岩体之间原有的受力状态,使得围岩内部受力重新分布,并有可能出现应力集中的不利状态,因此需对其受力状态进行受力分析,如果围岩所受的应力均小于岩体的弹性极限强度,则围岩稳定,处于弹性状态,而当围岩部分受力超出其受力状态时,使得处于弹塑性状态,会因围岩受力不均匀而使得围岩发生部分坍塌,因此需对围岩进行弹塑性进行分析。

隧道工程中的围岩稳定与支护技术

隧道工程中的围岩稳定与支护技术

隧道工程中的围岩稳定与支护技术隧道工程是现代交通基础设施建设中不可或缺的一环。

隧道工程的成功与否,直接关系到交通的畅通与人们的出行,因此隧道工程中的围岩稳定与支护技术显得尤为重要。

围岩的稳定是隧道工程中首要关注的问题。

围岩的稳定性直接影响到整个隧道的安全性和持久性。

当隧道位于地层中的时候,地层的稳定性就成了一个值得研究和关注的问题。

在选择隧道位置时,必须对地层进行详细的勘探和分析,了解地层的结构、岩性、裂隙和地下水等情况。

通过对地层特征的精确判断,可以合理选择施工工艺和支护措施,确保围岩的稳定性。

同时,在施工过程中,还需要根据地质条件的变化,及时调整支护方案,确保围岩的稳定。

对于围岩的稳定性,支护技术起到了非常重要的作用。

在隧道工程中,支护是指通过采用各种措施,来增加围岩的稳定性和承载能力。

常用的隧道支护技术主要包括锚喷、钢筋混凝土衬砌、钢支撑等。

锚喷技术是一种常用的支护技术。

通过在围岩中钻孔,然后在孔内喷射锚杆和灌浆材料,加固围岩的支护措施。

这种技术可以增加围岩的强度和稳定性,提高隧道的安全性。

同时,锚喷技术还可以减少地表沉降,保护地下建筑和管道的安全。

钢筋混凝土衬砌是一种常见的隧道支护技术。

通过在隧道围岩上切割出一定的几何形状,再在围岩上喷涂钢筋混凝土,形成钢筋混凝土衬砌,增加围岩的稳定性和承载能力。

钢筋混凝土衬砌可以有效地防止围岩的剥落和坍塌,保护隧道的完整性和安全性。

钢支撑是一种常用的隧道支护技术。

通过在围岩中钻孔,安装和固定钢杆,形成支撑体系,增加围岩的稳定性和承载能力。

钢支撑可以灵活调整支护体系的形态和参数,满足不同地质条件下的支护要求。

同时,钢支撑还可以有效地减少施工周期和成本。

当然,隧道工程中的围岩稳定与支护技术还有许多其他的方法和技术。

例如,地下连续墙、岩锚和喷射桩等。

这些技术都在隧道工程中发挥了重要的作用,使得隧道的施工更加安全、经济、高效。

总之,隧道工程中的围岩稳定与支护技术是确保隧道施工安全与可持续发展的重要保障。

第七节 改善地下洞室围岩稳定性的

第七节 改善地下洞室围岩稳定性的
第七节 改善地下洞室 围岩稳定性的研究
大量的工程事例表明,各种复杂的工程地质条件是导致水工隧洞围岩 失稳的主要原因。为了保证隧道的安全施工和正常运行,就需要采取一定 的的工程技术措施去改善围岩的稳定条件。对于那些断面较大,地质条件
较差的地下洞室,尤其需要注意施工方式和方法的选择,如尽量采用分步
开挖和光面爆破技术以减少对围岩的扰动。为防止围岩在开挖后继续松动 与变形,要求在断面开挖的同时或稍后,适时地进行支护或衬砌。目前在 水利水电工程建设中常用的改善围岩稳定条件的工程措施有支护(衬砌) 和喷锚结构两类。
(2)有压隧洞衬砌。 平整的及止水衬砌、单层整体混凝土衬砌、钢筋混凝土衬砌、双层和联 合衬砌、钢板衬砌、预应力衬砌。
分部开挖、逐步扩挖示意图
衬砌类型示意图
二、喷锚支护
当地下洞室开挖后,围岩总是逐渐地向洞内变形。喷锚支护就是在洞 室开挖后,及时地向围岩表面喷一薄层混凝土(一般厚度为5~20cm),有 时再增加一些锚杆,从而部分地阻止围岩向洞内变形,以达到支护的目的。
为了防止锚杆之间岩块的坍落,可采用喷层和钢丝网来配合。
楔缝式及楔头式锚杆
胀壳式及砂浆粘结式预应力锚杆
2、喷混凝土支护 喷混凝土是将一定比例的水泥、砂、速凝剂等拌和均匀,装入喷射机 与水混合,以高速喷射在围岩表面上,形成一层与围岩紧紧粘在一起的混 凝土层,从而起到支护作用。
喷射混凝土的作用
喷锚支护与常规衬砌支护比较示意图
一、支护和衬砌
根据围岩压力的性质和大小,选用相应的支护与衬砌方法,这是维护 和改善围岩稳定条件的最常用的方法。 1、支撑 在洞室开挖过程中,用以稳定围岩用的临时性措施,按照选用材料的 不同,有木支撑、钢支撑及混凝土支撑等。在不太稳定的岩体中开挖时, 需及时支撑以防止围岩早期松动。

地下洞室围岩稳定性分析与评价

地下洞室围岩稳定性分析与评价

地下洞室围岩稳定性分析与评价地下洞室围岩稳定性是地下工程中非常重要的问题之一,对地下工程的安全和经济运行具有重要意义。

地下洞室围岩稳定性的分析与评价可以帮助我们判断洞室围岩的稳定程度和寿命,为洞室工程的设计和施工提供可靠的依据。

首先,对地下洞室围岩的力学性质进行测试和分析。

这包括围岩的弹性模量、抗压强度、抗剪强度等力学参数的测定。

通过测试和分析得到的力学参数可以为后续的围岩稳定性分析提供基础数据。

其次,对围岩的岩性和结构进行详细的地质调查和研究。

通过对围岩的地质构造、结构洞的位置、破碎度和节理特征等进行详细的调查和研究,可以了解围岩的变形和破坏机理,为后续的稳定性分析提供依据。

然后,进行数值模拟和分析。

根据实际工程情况,可以使用有限元方法或者其他数值模拟方法对围岩的稳定性进行模拟和分析。

通过模拟和分析,可以得到围岩的应变、应力分布以及稳定性指标,进一步评价围岩的稳定性。

最后,根据分析和评价结果,对围岩稳定性进行评价。

根据实际工程要求和标准,可以将围岩的稳定性进行分级评价,确定围岩的稳定等级,并提出相应的建议和措施,以提高围岩的稳定性。

在地下洞室围岩稳定性分析与评价过程中,需考虑不同因素对围岩稳定性的影响。

例如,水文地质条件、地应力状态、围岩的强度参数、地震和地下水位变化等因素都会对围岩的稳定性产生重要影响,需要对这些因素进行综合分析和评价。

总之,地下洞室围岩稳定性的分析与评价是地下工程设计和施工的重要环节。

通过科学的测试、调查、分析和数值模拟,可以全面、准确地评价围岩的稳定性,为地下洞室工程的建设提供可靠的基础。

地下洞室围岩稳定性

地下洞室围岩稳定性

1)围岩应力条件
判断岩爆发生的应力条件有两种方法: 一是用洞壁的最大环向应力σθ与围岩单轴抗压强度σc
之比值作为岩爆产生的应力条件;
一是用天然应力中的最大主应力σ1 与岩块单轴抗压强 度σc之比进行判断。
经验公式:σ1 /σc大于0.165~0.35的脆性岩体最易发生 岩爆。
2)岩性条件
弹性变形能系数ω:加载到0.7σc后再卸载至0.05σc时, 卸载释放的弹性变形能与加载吸收的变形能之比的百分数。
(3)断层错动引起的岩爆
坑道以小角度逼近一个潜在的活动断层时,坑道的开 挖使作用于断层面上的正应力减小,从而使沿断层面的摩 阻力降低,引起断层突然再活动,形成岩爆,这类岩爆一 般发生在构造活动区的探矿井中,破坏性很大,且影响范 围较广。
3)岩爆的产生条件与发生机制
本质上,岩爆乃是洞室围岩的一种伴有突然释放大量 潜能的剧烈的脆性破坏。从产生条件方面来看,高储能体 的存在及其应力接近于岩体强度是产生岩爆的内在条件, 而某些因素的触发效应则是岩爆产生的外因。
围岩
按照森维南原理,由开挖洞室引起的应 力状态的重大变化局限在洞周一定范围之内。 通常此范围等于地下洞室横剖面中最大尺寸 的3—5倍,习惯上将此范围内的岩体称为“围 岩”
3.3 地下洞室围岩的变形破坏
3.2.1 围岩变形破坏的一般过程和特点
地下洞室开挖常能使围岩的性状发生很大变化,促使 围岩性状发生变化的因素,除上述的卸荷回弹和应力重分 布之外,还有水分的重分布。 一殷说来,洞室开挖后,如果围岩岩体承受不了回弹 应力或重分布的应力的作用,围岩即将发生塑性变形成破 坏。 这种变形或破坏通常是从洞室周边,特别是那些最大 压或拉应力集中的部位开始,而后逐步向围岩内部发展的。

地下洞室围岩稳定性分析

地下洞室围岩稳定性分析

第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。

从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。

较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。

如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。

但从总体来看,早期的地下洞室埋深和规模都很小。

随着生产的不断发展,地下洞室的规模和埋深都在不断增大。

目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。

地下洞室的用途也越来越广。

地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。

按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。

按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。

按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。

按围岩介质类型可分为土洞和岩洞两类。

另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。

各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。

由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。

(2)在重分布应力作用下,洞室围岩将向洞内变形位移。

如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。

(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。

煤矿深部岩巷围岩稳定与支护对策

煤矿深部岩巷围岩稳定与支护对策

煤矿深部岩巷围岩稳定与支护对策煤矿深部岩巷围岩稳定与支护是煤矿生产中一个重要的技术难题,岩巷是矿山中用于进出煤矿井下和采煤面的通道,其稳定与支护对矿山生产安全和效率有着重要影响。

目前我国强度低、应力大的煤矿深部岩巷围岩稳定与支护难题尚未得到彻底解决,煤矿深部岩巷围岩破坏严重,事故频发。

对煤矿深部岩巷围岩稳定与支护对策进行深入研究,是当前亟待解决的技术难题。

一、煤矿深部岩巷围岩稳定的问题分析1.围岩压力大煤矿深部由于覆岩厚度大、地应力高、围岩、尤其是硬围岩中的岩石构造关系复杂,制约了煤矿深部岩巷围岩变形及应力分布规律的研究。

煤矿深部岩巷硬围岩中固定岩层下沉大、应力状态复杂,其自重应力和原应力是矿山围岩破坏的主要原因之一。

2.围岩变形大煤矿深部巷道围岩体之间的相对变形速度大,并且变形率较高,粉煤体之间倾向于水平滑移。

对围岩应力和变形规律的研究是解决围岩破坏的基础。

3.围岩破坏严重由于煤矿深部地质条件复杂,巷道围岩变形和破坏严重。

工作于深部岩巷的矿工们一直处于高应力和高危险的境地。

煤矿深部岩巷围岩破坏不仅对煤炭生产造成了严重威胁,也对矿工的安全带来了巨大的挑战。

二、煤矿深部岩巷围岩稳定的关键技术1.围岩控制技术针对煤矿深部围岩变形和破坏的问题,可以采用预应力锚杆支护技术、高效低采模热强围岩控制技术、新型矿山地压控制技术等手段来控制围岩变形和破坏的问题,提高煤矿深部岩巷围岩的稳定性。

2.支护技术通过采用高效的支护设备和技术手段,如使用高强度、高韧性的预应力锚杆、预应力喷锚杆、网架、钢架支护,结合喷浆加固技术等手段,提高煤矿深部岩巷的支护质量,确保矿巷的安全稳定。

3.监测预警技术利用现代化的煤矿巷道变形监测预警技术,如地下声波监测技术、地底应力监测技术、地表遥感监测技术等手段,对巷道变形和破坏进行实时监测,及时发现围岩的变形和破坏情况,提前采取相应的措施,确保巷道的安全稳定。

三、煤矿深部岩巷围岩稳定与支护对策1. 加强预警监测与风险评估,及时发现围岩变形和破坏情况,提前采取措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洞室围岩稳定性研究及支护方案建议
一、引言
洞室围岩稳定性一直是地下工程中极为重要的问题,它关系到工程的安全与可
靠性。

在本文中,我们将针对洞室围岩的稳定性问题进行研究,并提出相应的支护方案建议。

二、背景
地下洞室工程是人类利用地下空间资源的重要手段,广泛应用于地铁、隧道以
及水利、矿山等领域。

然而,由于地质条件的复杂性,洞室围岩稳定性问题一直困扰着工程师们。

处理好围岩的稳定性问题,将为地下工程的安全运行提供保障。

三、研究现状
目前,对于洞室围岩稳定性的研究已取得一定成果。

研究者们通过实地观测、
数值模拟以及室内试验等手段,深入探究了围岩的力学性质、变形特征以及破坏机理。

这些研究成果为我们提供了宝贵的基础数据。

四、围岩力学性质分析
围岩的力学性质是洞室稳定性研究的基础,通过对岩石的抗压强度、弹性模量、滑移特性等进行测试和分析,可以对围岩的稳定性进行评估。

此外,还需考虑岩石的节理、岩石的裂缝和破碎程度等因素。

五、围岩变形特征研究
围岩在受到应力作用下会发生变形,这种变形特征对于洞室稳定性的影响至关
重要。

当前的研究主要集中在围岩的压缩变形、剪切变形以及破裂变形等方面。

了解围岩的变形特征可以为后续的支护方案制定提供重要参考。

六、围岩破坏机理探究
围岩破坏是围岩稳定性问题中的核心内容,它关系到洞室的整体稳定性。

目前
的研究主要集中在岩体的破裂方式、破裂类型、破裂力学以及围岩的支护措施等方面。

通过对围岩破坏机理的深入探究,我们可以更好地预测围岩的破坏情况,并制定相应的支护方案。

七、支护方案建议
针对洞室围岩的稳定性问题,我们可以采取多种支护方案来增强围岩的稳定性。

具体的支护措施包括加固围岩、注浆加固、锚杆加固等。

在选择支护方案时,需要综合考虑洞室的大小、围岩的性质、地质条件以及经济成本等因素,并进行合理的设计和施工。

八、总结
通过对洞室围岩稳定性的研究,我们可以更好地了解围岩的力学性质、变形特
征以及破坏机理,为地下工程的安全运行提供保障。

同时,通过采取合理的支护方案,可以增强围岩的稳定性,减少洞室工程的安全风险。

因此,洞室围岩稳定性研究及支护方案建议具有重要的实践价值和应用前景。

以上是对洞室围岩稳定性研究及支护方案建议的探讨。

希望通过这些研究工作,能够更好地保证地下工程的安全性和可靠性,为社会发展做出贡献。

相关文档
最新文档