高中数学 第二章 统计 2.2.3 茎叶图导学案新人教A版必修3
高中数学 第2章《统计》茎叶图 精品导学案 苏教版必修三
江苏省响水中学高中数学第2章《统计》茎叶图导学案苏教版必修3学习目标1掌握茎叶图的意义及画法;2能在实际问题中用茎叶图进行数据统计.一、基础知识导学1. 茎叶图:2. 茎叶图的制作方法:探究二甲、乙两蓝球运动员上赛季每场比赛的得分如下,甲 12 , 15, 24, 25, 31, 31, 36, 36, 37, 39, 44, 49, 50.乙 8, 13, 14, 16, 23, 26, 28, 33, 38, 39, 51.(1)请用茎叶图表示上面的数据;(2)从图中分别找出甲、乙两名运动员得分的众数、中位数,比较这两位运动员的得分水平.三、智能基础检测1.2003至2004赛季,某球员在NBA一些场次的比赛中所得篮板球数为16, 6, 3, 5,12, 8, 13, 6, 10, 3, 19, 14, 9, 7, 10, 10, 9, 11, 6,11, 12, 12, 9, 15, 15, 12, 13, 18, 8, 16,请制作这些数据的茎叶图.2.下面是某同学设计的茎叶图:前两位第三位10 6 6 7 8 8 8 811 0 2 6问这组数据的众数和中位数分别是()A. 108, 108B. 106, 108C. 110, 108D. 108, 1163.某运动员在20场球赛中得分的茎叶图为:十位个位0 81 02 8 5 6 9 92 2 4 5 5 8 9 93 0 1 2 24 5则该运动员在20场比赛中得分在30分以上的(包括30分)的百分比为( )A. 20%B. 25%C. 5%D. 40%4.十运会期间,体操运动员李小鹏的一组体操动作,裁判员分别亮出了8.9分,8.7分,9.2分,8.0分,8.1分,8.8分,8.4分,9.0分,8.6分,9.1分,(1)用茎叶图表示该组数据;(2)这组数据的中位数是多少?众数是多少?5.在某电脑杂志的一篇文章中,每个句子中所含字数的个数如下:10 28 31 17 23 27 18 15 26 24 20 1936 27 14 25 15 22 11 21 24 27 17 29在某报纸的一篇文章中,每个句子中所含字数的个数如下:27 39 33 24 28 19 32 41 33 27 35 1236 41 27 13 22 23 18 46 32 22 18 32(1)将这两组数据用茎叶图表示 ;(2)将这两组数据进行比较分析,你能得到什么结论?教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
人教A版数学必修三导学案:2.2.3茎叶图
班级:姓名:学号:第学习小组
【学习目标】
1、掌握茎叶图意义及画法;
2、能在实际问题中用茎叶图进行数据统计.
【课前预习】
某篮球运动员甲在某赛季各场比赛的得分情况如下:
甲:12,15,24,25,31,36,36,37,39,44,49,50
过去,我们是如何分析该运动员的整体水平及发挥的稳定程度的呢?还有没有其它方法?
试比较两小组的成绩.
例3非典期间某医院的发热门诊部对一天接待的16名病人的体温进行了测量,得到以下数据,请作出当天病人体温数据的茎叶图.
37.5
38
39.2
38.5
39.5
37.8
39.12
38.17
37.6
39.2
39.5
37.8
38.5
38.7
39.33
【学后反思】
课题:2.2.3茎叶图检测案
2
0 1 1 3
7
3
2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图:
(1)甲,乙两名队员的最高得分各是多少?
(2)哪名运动员的成绩好一些?
甲乙
0 8
50 1 247
32 2 199
875421 3 36
944 4
1 5 2
3.从全年级的两个班调研考试成绩中每班任意抽取 名的数学成绩如下(总分 分).
班级:姓名:学号:第学习小组
【课堂检测】
1.某篮球学校中甲、乙两名运动员练习罚球,每人练习 组,每组罚球 个,命中个数的茎叶图如下图,则罚球命中率较高的是__________,乙运动员在一组中的最高命中个数为______________.
叶(甲)
高中数学 第二章 统计 2.2.3 茎叶图教案 苏教版必修3(2021年最新整理)
高中数学第二章统计2.2.3 茎叶图教案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章统计2.2.3 茎叶图教案苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章统计2.2.3 茎叶图教案苏教版必修3的全部内容。
2.2。
3 茎叶图教学目标:1.掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计;2.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.教学重点:茎叶图的意义及画法.教学难点:用茎叶图进行数据统计.教学方法:1.通过组织学生观察茎叶图特点,用图形直观的方法引出茎叶图的概念,有利于学生对概念的了解.2.通过本课的学习,使学生进一步体会观察、比较、归纳、分析等一般科学方法的运用.教学过程:一、问题情境情境:某篮球运动员在某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.二、学生活动如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?三、建构数学1.茎叶图的概念:一般地:当数据是一位和两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示;(2)茎叶图只便于表示两位(或一位)有效数字的数据,对位数多的数据不太容易操作;而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰;(3)茎叶图对重复出现的数据要重复记录,不能遗漏四、数学运用1.例题.例 1 (1)情境中的运动员得分的茎叶图如图:(2)从这个图可以直观的看出该运动员平均得分及中位数、众数都在20和40之间,且分布较对称,集中程度高,说明其发挥比较稳定.例2 甲、乙两篮球运动员在上赛季每场比赛的得分如下,试比较这两位运动员的得分水平.甲12,15,24,25,31,31,36,36,37,39,44,49,50.乙8,13,14,16,23,26,28,33,38,39,51解:画出两人得分的茎叶图.从这个茎叶图可以看出甲运动员的得分大致对称平均得分及中位数、众数都是30多分;乙运动员的得分除一个51外,也大致对称,平均得分及中位数、众数都是20多分,因此甲运动员发挥比较稳定,总体得分情况比乙好.2.练习:(1)右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知 ( A )A.甲运动员的成绩好于乙运动员甲0 乙8B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分(2)课本第61页练习第1,3题.五、要点归纳与方法小结1.绘制茎叶图的一般方法;2.茎叶图的特征.。
人教版高中数学A版必修三-第二章统计导学案
第二章统计§2.1随机抽样§2.1.1简单随机抽样【学习目标】1.理解简单随机抽样的概念.2.掌握常见的两种简单随机抽样的方法.3.能合理地从实际问题的个体中抽取样本.【学习重点】真确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤【学习难点】能灵活应用相关知识从总体中抽取样本.【学习过程】一、自主学习(阅读课本第54—58页,完成下列问题)1.阅读课本第55页《一个著名的案例》,你认为预测结果出错的原因是什么?由此可以总结出什么教训?2.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?3.一般地,我们把所考察的对象的全体叫___________,组成总体的每一个研究对象叫________,从总体中抽取的一部分个体叫________,样本中个体的数目叫__________.3.简单随机抽样的定义:设一个总体含有N个个体,从中______________地抽取n个个体作为样本(__________),如果每次抽取时总体内的______________________________,这种抽样方法叫简单随机抽样.说明:简单随机抽样的特点:(1)被抽取样本的总体中的个体数N是______的;(“有限”或“无限”)(2)抽取的样本个体数n______________总体的个体数N;(3)抽取的样本是从总体中逐个抽取的;(4)简单随机抽样是一种________抽样;(“放回”或“不放回”)(5) 总体中每个个体被抽到的可能性_______;(6)每个个体被抽到的可能性均为nN.4.最常用的简单随机抽样的方法有___________法、____________法.二、合作探究例1:某车间工人加工一种零件共100件,为了了解这种零件的质量,要从中抽取10件零件在同一条件下测量,如何采用抽签法获取样本?例2:我们要考察某公司生产的一批牛奶的质量是否达标,现从1000袋牛奶中抽取100袋进行检验,如何利用随机数表法获取样本?例3:下列抽样的方式属于简单随机抽样的有____________(填写序号).(1)从无限多个个体中抽取50个个体作为样本.(2)从1000个个体中一次性抽取50个个体作为样本.(3)将1000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.三、达标检测1.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量2.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为﹙﹚A.150 B.200 C.100 D.1203.对于简单随机抽样,有以下几种说法,其中不正确的是()A.要求总体的个数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与抽取先后有关4.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号②获取样本号码③选定开始的数字,这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②5.关于简单随机抽样,下列说法不正确的是( )A.当总体中个体数不多时,可以采用简单随机抽样B.采用简单随机抽样不会产生任何代表性差的样本C.用随机数表法抽取样本时,读数的方向可以向右,也可以向左、向下、向上等等D.抽鉴法抽取样本对每个个体说都是公平的6.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.四、学习小结1.简单随机抽样的定义.2.简单随机抽样的特点.3.最常用的两种简单随机抽样的方法步骤及各自的优点和缺点.§2.1.2系统抽样【学习目标】1.理解和掌握系统抽样.2.会用系统抽样从总体中抽取样本.3.正确理解系统抽样与简单随机抽样的区别及使用范围.【学习重点】实施系统抽样的步骤.【学习难点】当Nn不是整数,如何实施系统抽样.【学习过程】一、自主学习(阅读课本第58页,回答下列问题)1.结合课本58页的探究归纳系统抽样的步骤:(1)__________________________________________________________________;(2)__________________________________________________________________;(3)__________________________________________________________________;(4)__________________________________________________________________.2.系统抽样的定义:在抽样中,当总体中个体数目________时,可将总体分成均衡的几个部分,然后按照预先制订的规则,从每一个部分中抽取____个个体,得到所需要的样本,这样的抽样方法叫系统抽样.说明:系统抽样的特点:(1)当总体总量________时,常采用系统抽样;(2)将总体分成的各个部分必须是_______的,间隔是______的;(3)规则是________制订的;(4)第一部分的抽样采用__________抽样;(5)总体中每个个体被抽到的可能性_______.二、合作探究例1:从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,32例2:为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.三、达标检测1.从学号为0—50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是()A.1,2,3,4,5 B.5,15,25,35,45C.2, 12, 22, 32, 42 D.9,19,29,39,492.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为()A.1083B.18C.183D.不相等3.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是( ).A.分层抽样B.抽签法C.随机数表法D.系统抽样法4.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( )A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法5.为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为( )A.40B.30C.20D.126.某工厂生产的产品用传送带将其送入包装车间之前,质检员每隔5分钟从传送带某一位置取一件产品检测,则这种抽样方法是_____________.7.若总体中含有1650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除__________个个体,编号后应均分为________段,每段有________个个体.8.某单位的在岗工人为624人,为了调查工作上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,如何采用系统抽样的方法完成这一抽样?四、学习小结1.系统抽样的定义.2.系统抽样的特点.3.简单随机抽样与系统抽样的区别与联系.§2.1.3分层抽样【学习目标】1.正确理解分层抽样的概念.2.会用分层抽样法从总体中抽取样本.3.理解分层抽样与简单随机抽样和系统抽样的区别与联系.【学习重点】分层抽样的概念及其步骤.【学习难点】确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.【学习过程】一、自主学习(阅读课本第60—61页,完成下列问题)1.假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本,能使样本更具有代表性?2.分层抽样的定义:在抽样时,若总体由存在________的几部分组成,则按这种差异将总体分成互不交叉的_____,然后按照_______________,从各层中______地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.说明:分层抽样的特点:(1)适用于有____________的总体;(2)在各层中____________抽样;(3)各层中抽样采用_______________法或______________法;(4)是等可能抽样,每个个体被抽到的可能性都是________.二、合作探究例1:某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5 C.6 D.7例2:一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?三、达标检测1.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法()①简单随机抽样②系统抽样③分层抽样A.②③ B.①③C.③ D.①②③2.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为( ) A.45,75,15 B.45,45,45 C.30,90,15 D.45,60,303.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是( )A.6,12,18 B.7,11,19 C.6,13,17 D.7,12,174.一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的频率为( )A.180B.124C.110D.185.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是______________.6.某校高一、高二、高三,三个年级的学生人数分别为1500人,1200人和1000人,现采用按年级分层抽样法了解学生的视力状况,已知在高一年级抽查了75人,则这次调查高三年级共抽查了__________人.7.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2 :3 :5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量n________.8.某公司生产三种型号的轿车,产量分别是1200辆、6000辆和2000辆,为检验公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取_______、__________、__________.9.某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, (270)使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样四、学习小结§2.2用样本估计总体甲 乙1 29 4 48 7 5 42 13 93 2 1 9 95 0 2 4 712345§2.2.1用样本的频率分布估计总体分布【学习目标】1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表、画频率分布直方图、频率分布折线图、茎叶图.3.能利用图形解决实际问题.【学习重点】会列频率分布表,画频率分布直方图、频率折线图和茎叶图.【学习难点】对总体分布概念的理解,能通过样本的频率分布估计总体的分布.【学习过程】一、自主学习(阅读课本第65—70页,完成下列问题)1.通常我们对总体作出估计分成两种,一种是_____________,另一种是____________.2.频率分布:指一个样本数据在各个小范围内所占比例的____.一般用_________反映样本的频率分布.3.画频率分布直方图步骤:(1)_____________________(2)_____________________(3)_____________________(4)_____________________(5)_____________________4.频率分布直方图的特征:(1) 在频率分布直方图中纵轴表示________,每个小长方形面积=______________,各个小长方形面积之和=_________.(2)原始数据_______在频率分布直方图中表示出来.(“能”或“不能”)(3) 从频率分布直方图可清楚地看出数据分布的________.(4)频率分布直方图有“好”与“坏”之分5.频率分布折线图:连接频率分布直方图中各个小长方形上端的______,就得到频率分布折线图.6.总体密度曲线:在样本频率分布直方图中,当样本容量逐渐增加,相应的_________会越来越接近一条光滑曲线,统计中称这条光滑曲线为总体密度曲线,它能够更加精细地反映出总体在各个范围内取值的_________.用样本的频率分布折线图_____(“能”或“不能”) 得到准确的总体密度曲线.7.茎叶图:茎叶图也是用来表示数据的一种图,茎是指_______的一列数,叶是从茎的旁边生长出来的数.二、合作探究例1:为了了解某中学300名17岁女生的身体发育情况,从中随机抽取了30名女生,对其身高进行了测量,结果如下:(单位:cm )154 159 166 169 159 156 166 162 158 156 157 151 157 161 163 158 153 158 164 158162 159 154 165 166 157 151 146 151 158(1)列出样本的频率分布表;绘出频率分布直方图.(2)估计该校17岁女生身高在160cm(包括160cm)以上的约有多少人?例2:下面一组数据是某工厂甲乙两车间各15名工人某日加工零件的个数,设计茎叶图表示这组数据,并由图说明两个车间此日生产情况.甲:134 112 117 126 128 124 122 116 113 107 116 132 127 128 126乙:121 120 118 108 110 133 130 124 116 117 123 122 120 112 112三、达标检测1.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据下图可知( )A .甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分2.有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5],3;(15.5,18.5], 8;(18.5,21.5],9;(21.5,24.5],11;(24.5,27.5],10;(27.5,30.5],4.由此估计,不大于27.5的数据约为总体的()A.91% B.92% C.95% D.30%3.一个容量为20的样本数据,数据的分组及各组的频数如下:(10,20),2;(20,30),3;(30,40),4;(40,50),5;(50,60),4;(60,70),2.则样本在区间(10,50)上的频率为()A.0.5 B.0.7 C.0.25 D.0.054.一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如下图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭____________万盒.快餐公司个数情况图快餐公司盒饭年销售量的平均数情况图四、学习小结1.频率分布直方图步骤.2.茎叶图画法.3.用样本估计总体.§2.2.2用样本的数字特征估计总体的数字特征【学习目标】1.会求样本众数、中位数、平均数、标准差、方差.2.理解用样本的样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.【学习重点】众数、中位数、平均数、标准差、方差的意义及计算方法.【学习难点】能应用相关知识解决简单的实际问题.【学习过程】一、自主学习(阅读课本第71—78页,完成下列问题)1.众数:一组数据中出现________最多的数称为这组数据的众数,一组数据中的众数可能不止______个,也可能没有.众数反映了该组数据的________趋势.在频率分布直方图中,最高矩形的_______就是数据的众数.2.中位数:一组数据按由小到大(或由大到小)的顺序排成一列,处于_______位置的数,称为这组数据的中位数.一组数据中的中位数是唯一的,反映了该组数据的_________趋势.在频率分布直方图中,中位数左边和右边的直方图面积_________.说明:按顺序排列后,若样本容量为奇数,则中位数为最中间的______数;若样本容量为偶数,则中位数为最中间两个数的__________.3.平均数:12= n x x x x 数据,,, 的平均数_________________________,平均数代表该组数据的____________.4.标准差:12n x x x s =数据,,, 的标准差_____________________________,标准差反映了该组数据的____________,标准差越大,数据的离散程度______,标准差越小,数据的离散程度__________.5.方差:212n x x x s =数据,,, 的方差_______________________________.同标准差一样,方差也是用来测量一组数据的___________的特征数.二、合作探究例1:某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.甲班:112,86,106,84,100,105,98,102,94,107,87,112,94,94,99,90,120,98,95,119,108,100,96,115,111,104,95,108,111,105,104,107,119,107,93,102,98,112,112,99,92,102,93,84,94,94,100,90,84,114乙班:116,95,109,96,106,98,108,99,110,103,94,98,105,101,115,104,112,101,113,96,108,100,110,98,107,87,108,106,103,97,107,106,111,121,97,107,114,122,101,107107,111,114,106,104,104,95,111,111,110例2:下面是某校学生日睡眠时间抽样频率分布表(单位:h ),试估计该校学生的日平均甲运动员:7,8,7,9,5,4,9,10,7,4; 乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?三、达标检测1.若M 个数的平均数是X,N 个数的平均数是Y ,则这M+N 个数的平均数是___________;2.如果两组数x 1,x 2,…,x n 和y 1,y 2,…,y n 的样本平均数分别是x 和y ,那么一组数x 1+y 1,x 2+y 2,…,x n +y n 的平均数是___________.3.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为____________.4.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m /s )的数据如下:试判断选谁参加某项重大比赛更合适?四、学习小结众数、中位数、平均数、标准差、方差的意义.§2.3变量间的相关关系§2.3.1变量之间的相关关系§2.3.2两个变量的线性相关【学习目标】1.理解两个变量间的相关关系的概念..2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.3.会求回归直线方程.【学习重点】直观认识两个变量之间的相关关系,求回归直线方程.【学习难点】两个变量之间的相关关系的认识,对线性回归的认识.【学习过程】一、自主学习(阅读课本第84—91页,完成下列问题)1.相关关系的概念:两个变量之间的关系分两类:①确定性的函数关系,例如如匀速直线运动中时间与路程之间的关系.②带有不确定性的变量间的相关关系,例如课本第84页问题1、2、3.(自变量取值一定时,因变量的取值带有一定的_________的两个变量之间的关系)2.散点图:将样本中n 个数据点1,2,,i i x y i n =(,) ()描在平面直角坐标系中得到的图形叫做散点图.3.正相关与负相关:散点图中的点散布在从________到__________的区域,对于这种相关关系叫做正相关;散点图中的点散布在从________到__________的区域,对于这种相关关系叫做负相关.4.回归直线:如果散点图中点的分布从整体上看大致在_________附近,我们就称这两个变量之间具有____________关系,这条直线叫做回归直线.5.回归方程:ˆˆˆy bx a =+,其中ˆ___________________ˆ___________________b a ⎧=⎪⎨⎪=⎩11,11n n i i i i x x y y n n ====∑∑. 二、合作探究例1:下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系例2:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2 ℃,预测这天卖出的热饮杯数.三、达标检测1.三点(3,10),(7,20),(11,24)的线性回归方程是()A.^y=5.75-1.75x B.^y=1.75+5.75xC.^y=1.75-5.75x D.^y=5.75+1.75x2.车间为了规定工时定额,需要确定加工零件所花费的时间,进行了10次试验,收集数据3(1)系,说明理由;(2)如果具有线性相关关系,求出线性回归方程.四、学习小结1.散点图的画法.2.如何判断两个变量是否线性相关?3.回归直线方程及作用.第二章统计测试题一、选择题(每小题4分,共48分)1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是﹙﹚A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为﹙﹚A.150 B.200 C.100 D.1203.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.其它抽样方法4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是 ( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法5.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A .45,75,15B . 45,45,45C .30,90,15D . 45,60,30 ( )6.频率分布直方图中,小长方形的面积等于 ( )A .相应各组的频数B .相应各组的频率C .组数D .组距7.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是 ( )A . 20人B . 40人C . 70人D . 80人8.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量是x 甲=x 乙=415㎏,方差是2s 甲=794,2s 乙=958,那么这两个水稻品种中产量比较稳定的是 ( )A .甲B .乙C .甲、乙一样稳定D .无法确定9.一个容量为35的样本数据,分组后,组距与频数如下[)5,10:5个;[)10,15:12个;[)15,20:7个;[)20,25:5个;[)25,30:4个;[)30,35:2个.则样本在[)20,+∞区间上的频率为 ( )A .20%B .69%C .31%D .27%10.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[)2700,3000的频率为 ( )A . 0.001B . 0.1C . 0.2D . 0.311.下列说法中,正确的是( )A .数据5,4,4,3,5,2的众数是4B .一组数据的标准差是这组数据的方差的平方C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D .频率分布直方图中各小长方形的面积等于相应各组的频数12.对于给定的两个变量的统计数据,下列说法正确的是( )A .都可以分析出两个变量的关系B .都可以用一条直线近似地表示两者的关系C .都可以作出散点图D .都可以用确定的表达式表示两者的关系二、填空题 (每小题5分,共30分)11.从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中的每个个体被抽取的概率等于_________.12. 某工厂生产A 、B 、C 三种不同型号的产品,产品数量这比依次为1600,1600,4800.现用分层抽样的方法抽出一个容量为N 的样本,样本中A 种型号的产品共有16件,那么此样本的容量N=__________件.13. 若总体中含有1650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除__________个个体,编号后应均分为________段,每段有________个个体.14.某工厂生产的产品用传送带将其送入包装车间之前,质检员每隔5分钟从传送带某一位置取一件产品检测,则这种抽样方法是_____________.15.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有______________条鱼. 16.200辆汽车通过某一段公路时的时速频率分布直方图如图所示,则时速在[)50,60的汽车大约有_______辆.三、解答题 (每小题10分,共42分) 17.(10分)一个单位的职工有500人,其中不到35岁以上的有95人.样本,应该怎样抽取? 18.(10分)若1x ,2x ,…n x ,和1y ,2y ,…n y 的平均数分别是x 和y ,那么下各组的平均数各为多少。
人教版高中数学A版必修三优秀教案(第二章--统计)
第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.2.1 随机抽样2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,…,199,200,…,700. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.整体设计教学分析教材通过探究“学生对教师教学的意见”过程,介绍了一种最简单的系统抽样——等距抽样,并给出实施等距抽样的步骤.值得注意的是在教学过程中,适当介绍当n N 不是整数时,应如何实施系统抽样. 三维目标1.理解系统抽样,会用系统抽样从总体中抽取样本,了解系统抽样在实际生活中的应用,提高学生学习数学的兴趣.2.通过自学课后“阅读与思考”,让学生进一步了解虚假广告是淡化总体和抽样方法、强化统计结果来夸大产品的有效性,以提高学生理论联系实际的能力.重点难点教学重点:实施系统抽样的步骤.教学难点:当nN 不是整数,如何实施系统抽样. 课时安排1课时教学过程导入新课思路1上一节我们学习了简单随机抽样,那么简单随机抽样的特点是什么?简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们学习的内容:系统抽样.推进新课新知探究提出问题(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论结果:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N 个个体编号;2°将整体按编号进行分段,确定分段间隔k(k ∈N ,l≤k);3°在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,l≤k );4°按照一定的规则抽取样本.通常是将起始编号l 加上间隔k 得到第2个个体编号(l+k),再加上k 得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.应用示例例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2 ,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.变式训练1.下列抽样不是系统抽样的是( )A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈 分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.答案:C2.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号. 解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l≤5);(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.例2 为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本.分析:由于501003不是整数,所以先从总体中随机剔除3个个体. 步骤:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数 1 000能被样本容量50整除,然后再重新编号为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,...,20;第2组是21,22,23,...,40;依次下去,第50组是981,982, (1000)(4)在第1组用简单随机抽样确定第一个个体编号l(l≤20).(5)按照一定的规则抽取样本.抽取的学生编号为l+20k (k=0,1,2,...,19),得到50个个体作为样本,如当k=2时的样本编号为2,22,42, (982)点评:如果遇到nN 不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练1.某校高中三年级有1 242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么( )A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生分析:为了保证每名学生被抽到的可能性相等,必须是随机剔除学生,由于401242的余数是2,所以要剔除2名学生.答案:D2.从2 005个编号中抽取20个号码,采用系统抽样的方法,则抽样的分段间隔为( )A.99B.99.5C.100D.100.5答案:C例3 从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32分析:用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求.答案:B点评:利用系统抽样抽取的样本的个体编号按从小到大的顺序排起来,从第2个号码开始,每一个号码与前一个号码的差都等于同一个常数,这个常数就是分段间隔.。
高中数学 2.2.3《茎叶图》导学案 苏教版必修3
2.2.3《茎叶图》导学案学习目标:(1)掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计;(2)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.学习重点:茎叶图的意义及画法.学习难点:茎叶图用数据统计.学习过程:一、复习练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
二、问题情境1.情境:某篮球运动员在某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.2.问题:如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?三、建构数学1.茎叶图的概念:_______________________________________________________________ ______________________________________________________________________________ _____________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ 2.茎叶图的特征:_______________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ 四、数学运用1.例题:例1.(1)情境中的运动员得分的茎叶图如图:(2)从这个图可以直观的看出该运动员平均得分及中位数、众数都在20和40之间,且分布较对称,集中程度高,说明其发挥比较稳定.例2.甲、乙两篮球运动员在上赛季每场比赛的得分如下,试比较这两位运动员的得分水平.甲 12,15,24,25,31,31,36,36,37,39, 44,49,50.乙 8,13,14,16,23,26,28,33,38,39,512.练习:(1)右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分(2)课本第58页,练习第1题.五、回顾小结:1.绘制茎叶图的一般方法;2.茎叶图的特征.六、课外作业:课本第60页第7、8、9题.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
高中数学人教A版必修三习题第二章-用样本的数字特征估计总体的数字特征含答案
;x =
5
乙
5
=30,
2.所以-x 甲<-x 乙,s 甲>s 乙.
答案:B 二、填空题 6.甲、乙两位同学某学科连续五次的考试成绩用茎叶图表示如图所示,则平均分数较 高的是________,成绩较为稳定的是________.
解析:-x
甲=70,-x 乙
=68,s甲2
=1 5
×(22+12+12+22)=2,s乙2
11
= =6. 11
答案:A
2.甲、乙两同学在高考前各做了 5 次立定跳远测试,测得甲的成绩如下(单位:米):
2.20, 2.30, 2.30, 2.40, 2.30, 若 甲 、 乙 两 人 的 平 均 成 绩 相 同 , 乙 的 成 绩 的 方 差 是
0.005,那么甲、乙两人成绩较稳定的是________. 解析:求得甲的平均成绩为 2.30米,甲的成绩的方差是 0.004.由已知得甲、乙平均成
而 2(k1-3),2(k2-3),…,2(k6-3)的平均数为 2(k -3),则所求方差为
16[4(k1--k )2+4(k2--k )2+…+4(k6-
- k )2]=4×3=12.
答案:12
8.若有一个企业,70%的员工年收入 1 万元,25%的员工年收入 3 万元,5%的员工年收
入 11万元,则该企业员工的年收入的平均数是________万元,中位数是________万元,众
乙品种的样本平均数也为 10,样本方差为
[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2)+(9.8-10)2]÷5=0.24.
因为 0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.
高中数学人教A版必修3目录
必修3
第一章算法初步
1.1算法与程序框图
1.1.1算法的概念(1课时)
1.1.2程序框图与算法的基本逻辑结构(3课时)
(程序框图与顺序结构, 条件结构, 循环结构与程序框图的画法)
1.2基本算法语句
1.2.1输入语句、输出语句与赋值语句(1课时)
1.2.2条件语句(1课时)
1.2.3循环语句(1课时)
1.3算法案例(2课时)
(辗转相除法与更相减损术, 秦九韶算法与进位制)
第二章统计
2.1 随机抽样
2.1.1 简单随机抽样(1课时)
2.1.2 系统抽样(1课时)
2.1.3 分层抽样(2课时)
(分层抽样, 三种抽样方法的联系)
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(2课时)
(频率分布表与频率分布直方图, 频率分布折线图与茎叶图)
2.2.2 用样本的数字特征估计总体的数字特征(2课时)
(众数、中位数、平均数,标准差)
2.3 变量间的相关关系(2课时)
(变量间的相关关系与散点图, 线性回归方程)
第三章概率
3.1 随机事件的概率
3.1.1 随机事件的概率(1课时)
3.1.2 概率的意义(1课时)
3.1.3 概率的基本性质(1课时)
3.2 古典概型
3.2.1 古典概型(2课时)
(古典概型的定义, 古典概型的计算)
3.2.2 (整数值)随机数(random numbers)的产生(1课时)
3.3 几何概型
3.3.1 几何概型(1课时)
3.3.2 均匀随机数的产生(1课时)
高中数学资料归纳 1。
高中数学人教A版必修三课时习题:第2章 统计 2.2.2.2含答案
2.2.2 用样本的数字特征估计总体的数字特征第2课时方差、标准差课时目标1.理解方差、标准差的意义,会计算一组数据的方差和标准差,掌握用样本方差或标准差去估计总体方差或总体标准差的方法.2.会用平均数和方差对数据进行处理与比较.识记强化标准差及方差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示.标准差的平方s2叫做方差,也为测量样本数据分散程度的工具.若样本数据是x1,x2,…,x n,x表示这组数据的平均数,则s=1n[x1-x2+x2-x2+…+x n-x2];s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].课时作业一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大C .2x -+3和s 2D .2x -+3和4s 2+12s +9 答案:B解析:由平均数、方差的求法可得.6.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定 答案:B解析:方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.二、填空题7.已知样本9、10、11、x 、y 的平均数是10,方差是2,则xy =________. 答案:96解析:由平均数得9+10+11+x +y =50,∴x +y =20,又由(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2=(2)2×5=10,得x 2+y 2-20(x +y )=-192,(x +y )2-2xy -20(x +y )=-192,xy =96.8.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案:6.8解析:x =15(8+9+10+13+15)=11,s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.9.若k 1,k 2,…,k 8的方差为3,则2(k 1-3),2(k 2-3),…,2(k 8-3)的方差为________. 答案:12解析:设k 1,k 2,…,k 8的平均数为k ,则18[(k 1-k )2+(k 2-k )2+…+(k 8-k )2]=3,而2(k 1-3),2(k 2-3),…,2(k 8-3)的平均数为2(k -3),解析:x 9=x 8+19(x 9-x 8)=5+19×(4-5)=449,s 29=89[s 28+19(x 9-x 8)2]=89[22+19(4-5)2]=29681. 13.下图为我国10座名山的“身高”统计图,请根据图中信息回答下列问题。
高中数学 第二章 统计 2.2.3 茎叶图学案 苏教版必修3
2.2.3 茎叶图掌握茎叶图的意义及画法,并能在实际问题中用茎叶图进行数据统计.(重点、难点)[基础·初探]教材整理茎叶图阅读教材P60~P61“练习”上面的部分,并完成下列问题.1.茎叶图的定义将样本数据有条理的列出来,从中观察样本分布情况的图称为茎叶图.2.茎叶图的适用范围当样本数据较少时,用茎叶图表示数据的效果较好.3.茎叶图的制作方法(1)画“茎”:“茎”表示两位数的十位数字,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,再画上竖线作为分界线.(2)添“叶”:“叶”画在分界线的另一侧表示两位数的个位数字,共茎的叶一般按从小到大(或从大到小)的顺序同行列出.4.茎叶图刻画数据的优缺点(1)茎叶图刻画数据的优点:①所有的信息都可以从茎叶图中得到.②茎叶图便于记录和表示.(2)茎叶图刻画数据的缺点:当样本数据很多时,茎叶图的效果就不是很好了.填空:(1)用茎叶图表示一组两位数据时,数据的个数________茎叶图中叶的个数.(填“>”“=”“<”)【解析】因为每个数的个位数都要写在表示叶的那一栏中,故数据的个数与茎叶图中叶的个数相等.【答案】=(2)如图2214表示8位销售员一个月销售商品数量的茎叶图,则销售数量分别为________(单位:百件).图2214【解析】由茎叶图知“茎”表示十位“叶”表示个位.【答案】45,45,52,56,57,58,60,63[小组合作型]甲的得分:95,81,75,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.【导学号:11032041】【精彩点拨】确定茎和叶→画出茎叶图→对两人成绩作出判断比较【自主解答】甲、乙两人数学成绩的茎叶图,如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,大多集中在80~100之间,中位数是98分;甲同学的得分情况除一个特殊得分外,也大致对称,多集中在70~90之间,中位数是88分,但分数分布相对于乙来说,趋于分散.因此,乙同学发挥比较稳定,总体得分情况比甲同学好.1.画茎叶图关键是分清茎和叶,一般来说数据是两位数的,十位上数字为“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要合理的选择茎和叶.2.在画茎叶图时,对于重复出现的数据要重复记录,不要遗漏.[再练一题]1.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)画出两组数据的茎叶图;(2)比较分析两组数据,能得出什么结论?【解】(1)依题意画出茎叶图,如图所示:(2)电脑杂志文章中每个句子的字数集中在10~20之间,而报纸文章中每个句子的字数集中在20~30之间,还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少,说明电脑杂志作为科普读物要简明,通俗易懂.8∶00~12∶00间各自的车流量(单位:百辆),得到如图2215所示的茎叶图,根据茎叶图回答下列问题:图2215(1)甲交通站的车流量在[10,40]间的频率是多少?(2)甲、乙两个交通站哪个更繁忙?并说明理由.【精彩点拨】根据茎叶图中的数据进行分析并作出说明.【自主解答】 (1)甲交通站的车流量在[10,40]间的频率为414=27. (2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.1.利用茎叶图进行分析时要首先分清楚茎与叶所表示的意义及叶的排列规律,茎叶图直观地表示了数据的集中、离散的程度以及中位数、众数等特征.2.茎叶图既可以用于分析单组数据,也可以用于对两组数据进行比较分析.[再练一题]2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图2216可知,下列说法不正确的是________.(填序号)图2216①甲运动员的成绩好于乙运动员;②乙运动员的成绩好于甲运动员;③甲、乙两名运动员的成绩没有明显的差异;④甲运动员的最低得分为0分.【解析】 由图可知,甲运动员的成绩比较集中,且平均得分大约在30多分,乙运动员得分也大致对称,平均得分在20多分,甲运动员最低分10分,乙运动员最低分8分,故①正确.【答案】 ②③④[探究共研型]探究1 的,他们各有什么优缺点? 【导学号:11032042】【提示】【提示】 (1)当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.(2)正确利用三种分布的描述方法,都能得到一些有关分布的主要特点(如分布是否具有对称性、样本点落在各分组中的频率等),这些主要特点受样本的随机性的影响比较小,更接近于总体分布的特点.某统计机构从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录一上午各自的销售情况:(元)甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41.乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.试选用适当的方法表示上面的数据并简要说明选取该种方法的理由.【精彩点拨】 由于是两组数据,且数据个数不多,可选用茎叶图表示数据.【自主解答】 从题目中的数据不易直接看出各自的分布情况,为此,我们将以上数据用茎叶图表示,茎叶图如图所示,两竖线中间的数字表示甲、乙销售额的十位数字,两边的数字表示甲、乙销售额的个位数字.理由如下:茎叶图既可以用于分析单组数据,也可以用于对两组数据进行比较分析.用茎叶图刻画数据有两个优点:一是所有的信息都可以从这张茎叶图中得到,二是茎叶图便于记录和表示.茎叶图保留了数据信息,对数据的记录和表示很方便.但当样本数据很多时,茎叶图的效果就不是很好了,解题时应根据解决问题的特点和关注的主要方面有选择的应用.[再练一题]3.某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量并分别记录如下:甲:52,51,49,48,53,48,49;乙:60,65,40,35,25,65,60.(1)这种抽样方法是哪一种抽样方法?(2)画出茎叶图,并说明哪个车间的产品比较稳定.【解】(1)该抽样方法为系统抽样法.(2)茎叶图如图所示.由图可以看出甲车间包装的产品质量较集中,而乙车间包装的产品质量较分散,说明甲车间产品质量较稳定.1.如图2217是甲参加物理考试的成绩.图2217从图中可知甲参加的次数为________.【解析】由于茎叶图中重复的数字要一一列举出来,可知甲参加8次考试.【答案】82.在茎叶图2218中比40大的数据有________个.图2218【解析】由茎叶图知比40大的有47,48,49,共3个.【答案】 33.甲、乙两个班级各随机选出15名同学进行测试,成绩(单位:分)的茎叶图如图2219所示.图2219则甲、乙两班的最高成绩各是________分,从图中看,________班的平均成绩较高.【解析】由茎叶图可知甲班最高成绩为96,乙班最高成绩为92.由于乙班的成绩集中在60~80之间,故乙班的平均成绩高.【答案】96,92 乙4.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图2220.图2220据此可估计该校上学期400名教师中,使用多媒体进行教学次数在[16,30)内的人数为________.【解析】由茎叶图数据可知,在20名教师中,使用多媒体在[16,30)内的人数为8人,则在400名教师中共有400×820=160人.【答案】1605.心理教育专家对某班50人进行智力测验,其得分如下:48,65,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,4 7,66,55,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.(1)这次测验成绩中的最大值和最小值是多少?(2)画出并分析这50人成绩的茎叶图,你能得出什么结论?【解】(1)这次测验成绩中的最大值为97,最小值为32.(2)画出茎叶图如下图所示.从茎叶图上可以明显看出学生的成绩大都在50到70之间,且分布较对称,集中程度较高,符合学生正常的智力水平.。
高中数学第2章统计2.2总体分布的估计2.2.3茎叶图知识导引学案苏教版必修3(2021学年)
高中数学第2章统计2.2 总体分布的估计2.2.3 茎叶图知识导引学案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第2章统计2.2 总体分布的估计2.2.3 茎叶图知识导引学案苏教版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第2章统计 2.2 总体分布的估计 2.2.3 茎叶图知识导引学案苏教版必修3的全部内容。
2.2.3 茎叶图案例探究某赛季甲、乙两名运动员每场得分的原始记录如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.试利用茎叶图分析一下甲、乙两名运动员谁发挥的比较稳定?思路分析:本题如果用频率分布表或频率分布直方图来估计,就很难达到预期的效果,因此我们就选择统计中的另一种表示数据的图——茎叶图来表示。
用茎叶图表示,顾名思义,茎是指中间的一列数,叶就是从茎的旁边生长出来的数。
用中间的数字来表示得分的十位数,旁边的数字分别表示两个人得分的个位数。
解:由作茎叶图的方法,得到如下图所示的茎叶图:甲乙 8 6 4 3 86 311 23 4 52 54 51 1 6 6 79 4 90探究:在样本数据较少时,用茎叶图表示数据的效果较好.它不但可以保留所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便。
但当数据较多时,茎叶图就显的不太方便了.因为每一个数据都要在图中占据一个空间,如果数据很多,枝叶就会很长了。
特别是当数据是3位数时也不够方便。
另外还可以看出茎叶图既可以分析单组数据,也可以对两组数据进行比较.结论:从上图可以看出,茎叶图不仅能够保留原始数据,而且能够展示数据的分布情况.比如,乙运动员的得分基本上是对称的,集中程度高(在30多分),中位数是36;甲运动员的得分除一个特殊得分(51)外,也大致对称,中位数是26。
高中数学苏教版必修3第二章统计学案2.2.3茎叶图
§2.2.3 茎叶图教学目标:(1)掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计;(2)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.Array教学重点:茎叶图的意义及画法.教学难点:茎叶图用数据统计.教学过程:一、复习练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
二、问题情境1.情境:某篮球运动员在某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.2.问题:如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?三、建构数学1.茎叶图的概念:_______________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________2.茎叶图的特征:_______________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ 3.制作茎叶图的方法:答案:1.将数据有条理地列出来,从中观察得分的分布情况。
人教A版高中数学必修三新课标第二章统计导学案
年龄在42岁以上的职工有几人?
作业
布置
课本69页复习题一
学习小结/教学
反思
B.乙班10名学生的成绩比甲班10名学生的成绩整齐
C.甲、乙两班10名学生的成绩一样整齐
D.不能比较甲、乙两班10名学生成绩的整齐程度
7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ).
A.3.5 B.-3 C.3 D.-0.5
(A)①用简单随机抽样法,②用系统抽样法
(B)①用分层抽样法,②用简单随机抽样法
(C)①用系统抽样法,②用分层抽样法
(D)①用分层抽样法,②用系统抽样法
4.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆舒畅行检验,这三种型号的轿车依次应抽取______________辆.
2.某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用___________抽样法.
3.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是( )
5、有一个样本容量为50的样本数据分布如下,
3; 8; 9; 11;
10; 6; 3.
估计小于30的数据大约占有( )
A、94 B、6 C、88 D、12
数学新学案同步必修三苏教版讲义:第2章 统计2.2.3
2.2.3茎叶图学习目标 1.了解茎叶图的概念,会画茎叶图.2.了解频率分布直方图、频率折线图、茎叶图的各自特征,学会选择不同的方法分析样本的分布,从而作出总体估计.知识点茎叶图思考茎叶图是表示样本数据分布情况的一种方法,那么“茎”、“叶”分别指的是哪些数?★答案★茎是指中间的一列数,叶就是从茎的旁边生长出来的数.梳理茎叶图的定义:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.优点:它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便.缺点:当样本数据较多时,枝叶就会很长,茎叶图就显得不太方便.1.对于两位数的茎叶图,中间的数字表示十位数,旁边的数字表示个位数.(√) 2.对于三位数的茎叶图,中间的数字表示百位数.旁边的数字表示十位和个位数.(×) 3.茎叶图的茎相当于频率分布表中的分组,茎上叶的数目相当于频率分布表中指定区间组的频数.(√)类型一茎叶图及其绘制例1有关部门从甲、乙两城市所有自动售货机中分别随机抽取了16台,记录了上午8∶00~11∶00间各自销售情况(单位:元):甲:18,8,10,43,30,10,22,6,27,25,58,5,14,18,30,41;乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.试列出两个城市销售情况的茎叶图.解画出两个城市销售情况的茎叶图,把茎放在中间共用,叶分列左、右两侧.反思与感悟茎叶图的制作步骤:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.跟踪训练1某赛季甲、乙两名篮球运动员每场得分情况如下:甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50.乙的得分:8,13,14,16,23,26,28,33,38,39,51,9,17.用茎叶图表示上面的数据.解如图所示的茎叶图中,中间的数字表示两位运动员得分的十位数,两边的数字分别表示两个人各场比赛得分的个位数.类型二茎叶图的画法及应用例2某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产量数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,44 5,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,41 6,422,430.(1)画出茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,得出统计结论.解(1)茎叶图如图.(2)样本容量不大,画茎叶图很方便,此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息丢失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A亩产量的平均数比品种B亩产量的平均数大;②品种A的亩产量波动比品种B的亩产量波动大,故品种A的亩产量稳定性较差.反思与感悟利用茎叶图进行样本分析的角度及图形特点(1)角度:要从数据分布的对称性、中位数、稳定性、平均数等几个方面来比较.(2)图形特点:平均水平:大茎上的叶多,则平均值大;大茎上的叶少,则平均值小.分散程度:看叶集中在几个茎上,还是分散在多个茎上.跟踪训练2某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579根据两组数据作出两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).解两地区用户满意度评分的茎叶图如图:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. 类型三 茎叶图与频率分布直方图的综合应用例3 在某市的青少年才艺表演评比活动中,参赛选手成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如图所示,据此回答以下问题:求参赛总人数和频率分布直方图中[80,90)矩形的高,并补全频率分布直方图. 解 由茎叶图知,分数在[50,60)的频数为2.由频率分布直方图知,分数在[50,60)的频率为0.008×10=0.08, 所以参赛总人数为20.08=25.所以分数在[80,90)的人数为25-2-7-10-2=4, 所以分数在[80,90)的频率为425=0.16, 故频率分布直方图中[80,90)矩形的高为0.1610=0.016.补全频率分布直方图,如图所示.反思与感悟茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录,但样本容量较大,或者需要比较三组以上的数据时,使用茎叶图就不合适;而频率分布表和频率分布直方图可以处理样本容量很大的数据,但损失了样本的原始数据,而且必须在完成抽样后才能制作.跟踪训练3某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是下列所给直方图中的________.(填序号)★答案★①解析方法一由题意知样本容量为20,组距为5.列表如下:观察各选项的频率分布直方图知应为①.方法二由茎叶图知落在区间[0,5)与区间[5,10)上的频数相等,故频率、频率组距也分别相等,比较四个直方图知①正确.1.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取__________.★答案★12,13,14,15解析在茎叶图中叶应是数据中的最后一位,从而茎就确定了.2.在茎叶图中比40大的数据有________个.★答案★3解析由茎叶图中知比40大的有47,48,49,共3个.3.已知某工厂工人在6月份每天加工的零件个数的茎叶图如图所示(以零件个数的百位、十位数字为茎,个位数字为叶),那么该工厂工人在该月内加工的零件个数超过130的天数所占的百分比为________.★答案★10%4.某校举行演讲比赛,9位评委给选手A打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若统计员计算无误,则数字x应该是________.★答案★2解析去掉最低分87,去掉最高分94(假设x≤4),则7×91=80×2+9+8+90×5+2+3+2+1+x,所以x=2,符合题意.同理可验证x>4不合题意.5.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.★答案★4解析由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.1.估计总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录;而频率分布表和频率分布直方图则损失了样本的原始信息,必须在完成抽样后才能制作.3.正确利用三种分布的描述方法,都能得到一些有关分布的主要特点(如分布是否具有单峰性、是否具有对称性、样本点落在各分组中的频率等),这些主要特点受样本的随机性的影响比较小,更接近于总体分布相应的特点.一、填空题1.下面的茎叶图,表示的数据为________________.★答案★8,11,11,12,21,24,29,50,52解析由茎叶图的制作方法知,数据为8,11,11,12,21,24,29,50,52.2.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.根据茎叶图判断________班的平均身高较高. ★答案★ 乙解析 由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间.因此乙班平均身高高于甲班.3.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.★答案★ 45 46解析 甲组数据为28,31,39,42,45,55,57,58,66,中位数为45. 乙组数据为29,34,35,42,46,48,53,55,67,中位数为46.4.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天中甲、乙两人日加工零件的平均数分别为________和________.★答案★ 24 23解析 x 甲=110(10×2+20×5+30×3+17+6+7)=24,x 乙=110(10×3+20×4+30×3+17+11+2)=23.5.一次选拔运动员,测得7名选手的身高(单位:cm)分布茎叶图为1718⎪⎪⎪0 3 x 8 90 1记录的平均身高为177 cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为________. ★答案★ 8解析 由茎叶图可知10+11+3+x +8+97=7,解得x=8.6.甲、乙两个小组各8名同学的英语口语测试成绩的茎叶图如图所示.甲、乙两组的平均数与中位数之差较大的组是________.★答案★乙解析由茎叶图可知,甲的平均数和中位数分别是83.625和83.5,乙的平均数和中位数分别是82.25和81,故乙的平均数和中位数的差较大.7.参加CBA 2016~2017赛季的甲、乙两支球队,统计两队队员的身高(单位:cm)茎叶图如下(以十位百位为茎,个位为叶):则由图知________队队员的身高更整齐些.★答案★甲解析由茎叶图知甲队身高大部分是2米零几,而乙队身高比较分散.8.某中学高一(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,则________同学发挥较稳定,平均成绩________同学较高.(填“甲”“乙”)★答案★乙乙解析从茎叶图可知乙同学的成绩在80~90分分数段的有9次,而甲同学的成绩在80~90分分数段的只有7次;再从题图上还可以看出,乙同学的成绩集中在90~100分分数段的最多,而甲同学的成绩集中在80~90分分数段的最多.故乙同学发挥较稳定且平均成绩也比甲同学高.9.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是________.★答案★ 46,45解析 由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45.10.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI 记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI 大于100的天数约为________.(该年为365天)★答案★ 146解析 该样本中AQI 大于100的频数是4,频率为25,由此估计该地全年AQI 大于100的频率为25,估计此地该年AQI 大于100的天数约为365×25=146.11.某篮球队的甲、乙两人练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图所示,则罚球命中率较高的是________(填“甲”“乙”).★答案★ 甲解析 由茎叶图知甲每组进球数集中在20多个,乙每组进球数集中在10多个,故罚球命中率较高的是甲. 二、解答题12.参加某赛季的甲、乙两支球队,统计两队队员的身高(单位:cm)如下: 甲队队员:194,187,199,207,203,205,209,199,183,215,219,206,201,208;乙队队员:179,192,218,223,187,194,205,207,185,197,199,209,214,189.(1)用茎叶图表示两队队员的身高;(2)根据茎叶图判断哪个队队员的身高整齐一些.解(1)茎叶图如下(以十位和百位为茎,个位为叶):(2)甲队队员的身高整齐一些.13.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?解(1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.三、探究与拓展14.某中学甲、乙两名同学最近几次的数学考试成绩情况如下:甲的得分:95,81,75,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.解甲、乙两人数学成绩的茎叶图如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的;甲同学的得分情况除一个特殊得分外,也大致对称,但分数分布相对于乙来说,趋向于低分阶段.因此乙同学发挥比较稳定,总体得分情况比甲同学好.15.甲、乙两个网站为了了解各自受欢迎的程度,分别随机选取了14天记录上午8:00~10:00间各自的点击量:甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25;乙:12,37,21,5,54,52,61,45,19,6,19,36,42,14.你能用哪些方法表示上面的数据?你认为甲、乙两个网站哪个更受欢迎?解方法一列频数分布表如下:由频数分布可以看出,甲网站的点击量多集中在[50,80]上,而乙网站的点击量多集中在[0,60)上,从数据的分布情况来看,甲网站更受欢迎.方法二画出茎叶图如图所示.由茎叶图可以看出,甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方.从数据的分布情况来看,甲网站更受欢迎.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2.3 茎叶图
【自主学习】
先学习课本P69-P70然后开始做导学案,记住知识梳理部分的内容;
一、学习目标:
1.在表示样本数据的过程中,学会画频率折线图和茎叶图
2.通过实例频率折线图、茎叶图各自特征,从而恰当地选择上述方法分析样本的分布,准确
地做出总体估计
二、知识梳理:
1、连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。
2、随着样本容量的增加,作图时,所分的组数也在增加,相应的频率分布折线图就会越来越接近于一条光滑曲线,统计中称之为总体密度曲线,它能够更加精细的反映出总体在各个范围内取值的百分比.
3、当样本数据较少时,用茎叶图表示数据的效果较好.它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来了方便.
三、自我检测:
1、某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如右图所示的茎叶图表示,则甲、乙两名运动员
的中位数分别为( )
A.19、13 B.13、19
C.20、18 D.18、20
2.青年歌手大奖赛共有10名选手参赛,并请了7
名评委.如图所示的茎叶图是7名评委给参加最后
决赛的两位选手甲、乙评定的成绩,去掉一个最高
分和一个最低分后,甲、乙选手剩余数据的平均成
绩分别为________、________.
答案: 1、 A 2、84.2分85分
7 8 9
9
44647
3
必修三:§2.2.3 茎叶图
【课堂检测】
1、下图是七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分
后,所剩数据的平均数和方差分别为().
A、84,4.84
B、84,1.6
C、85,1.6
D、85,4
2、如图所示茎叶统计图表示一台自动售货机的销售情况,则这组数据的极差是()
A、9
B、39
C、41
D、59
【拓展探究】
探究一:为了了解一大片经济林生长情况,随机测量其中的40株的底部周长,得到如下数据表(单位:cm)
(1)画出茎叶图;(2)估计该片经济林中底部周长小于100cm的树木约占多少,周长不小
于120cm 的树木约占多少.
探究二:为检测学生的体温状况, 随机抽取甲,乙两个班级各10名同学,测量他们的体温
(单位0.1摄氏度)获得体温数据的茎叶图,如图所示. (Ⅰ)根据茎叶图判断哪个班级的平均体温较高; (Ⅱ)计算乙班的样本平均数,方差;
【当堂训练】
4.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~ 10:00间各自的点击量,得如图所示的茎叶图,根据茎叶图回答下列问题. (1)甲、乙两个网站点击量的极差分别是多少? (2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两网站哪个更受欢迎?并说明理由.
小结与反馈:
茎叶图适用范围:当样本数据较少时,用茎叶图表示数据的效
果较好.
优点:它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便.缺点:当样本数据较多茎叶图时,枝叶就会很长,茎叶图就显得不太方便.
【课后拓展】
1.如图,是某篮球运动员在一个赛季的30场比赛中得分的茎叶图,则得分的中位数与众数分别为( )
A.3与3 B.23与3 C.3与23 D.23与23
2.(2011·北京海淀二模,理5)某赛季甲、乙两名篮球运动员各13场比赛的得分情况用茎叶图表示如下:根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )
A.甲运动员得分的极差大于乙运动员得分的极差
B.甲运动员得分的中位数大于乙运动员得分的中位数
C.甲运动员的得分平均值大于乙运动员的得分平均值
D.甲运动员的成绩比乙运动员的成绩稳定
3 1 27
7
5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4
6 7
9 4 0 31 2 3 5 5 6 8
8
8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 7
34 3 2 35 6
甲
乙
由以上数据设计了如下茎叶图
根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个结论: ① ;② .。