《向量的加法》教案优秀2篇

合集下载

《向量的加法》教学设计方案,DOC

《向量的加法》教学设计方案,DOC

《向量的加法》教学设计【教学目标】1.知识与技能(1)理解并掌握向量的加法运算并理解其几何意义.(2)会用向量加法的三角形法则和平行四边形法则求作两个向量的和.2.过程与方法通过采取实际问题的方式引入课题,让学生初步接触现实生活中除了数量之外的一些量,渗透研究3.【课时】一课时[12345678、平行四边形的性质与判定:我们都知道,数能够进行四则运算,与数的运算类比,向量是否也能进行运算呢?有了刚才所复习的这些知识作基础,接下来就可以进一步的探讨向量的运算了。

数的运算中,加法运算是最基本的运算,类似地在向量的运算中,我们也从加法开始进行探索课题:向量的加法。

[问题情境]某人从A地经B地到C地两次位移,的结果与从A地直接到C地的位移,有什么关系?用式子表示出来。

结论:动点A直接位移到点C与从A地经B地到C地连续位移的效果相同。

即:+=举实例:学生甲从宿舍到操场,再从操场到教室,学生乙从宿舍到教室。

结论:两个学生位移的效果相同。

思考:怎样定义任意两个向量的和呢?一、向量加法的定义:已知向量a ,b ,在平面内的任取一点A ,作=a ,=b ,则向量叫做记作a +b ,即+= 求两个向量和的运算,叫向量的加法。

12.表示:3.注意:(1(2(3(4++++=4(1)a +b=AB →+BC →=AC →.(2)当两个向量反向时a +b=AB →+BC →=AC →.(3)对于零向量与任一向量a ,都有a +0=0+a =a .5、多个向量求和:首尾相接,自始而终.已知向量a ,b ,c ,d .在平面上任选一点O ,作=a ,=b ,=c ,=d .则=+++=a +b +c +d .(二)平行四边形形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以为起点的就是a 与b 的和,这种求向量和的方法称为向量加法的1、图示:2.表示:AD →+DC →=b +a =AC →,3.注意:(1)从两个向量的公共始点出发作和向量.即三个向量都共始点,和向量是三个共始点向量都中作为平行四边形对角线的那一条。

《向量的加法》教案完美版

《向量的加法》教案完美版

《向量的加法》教案完美版第一章:向量的概念回顾1.1 向量的定义:向量是有大小和方向的量,通常用箭头表示。

1.2 向量的表示方法:在坐标系中,向量可以用有序数对表示,即(x, y)。

1.3 向量的模:向量的模是指向量的大小,可以用|v|表示,计算公式为|v| = √(x^2 + y^2)。

第二章:向量的加法运算2.1 向量加法的定义:两个向量a和b的加法运算,记作a + b,结果是一个新的向量,其大小等于a和b大小的和,方向等于a和b方向的矢量和。

2.2 向量加法的表示方法:在坐标系中,向量加法可以通过将两个向量的坐标分别相加得到结果向量的坐标。

2.3 向量加法的性质:向量加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

第三章:向量加法的几何解释3.1 向量加法的几何图形:在坐标系中,向量加法可以通过将两个向量的箭头首尾相接,得到结果向量的箭头。

3.2 平行向量的加法:当两个向量平行时,它们的加法运算结果是它们的模的和(或差,取决于它们的方向是否相同)。

3.3 非平行向量的加法:当两个向量不平行时,它们的加法运算结果是一个新的向量,其大小和方向由平行四边形法则确定。

第四章:向量加法的应用4.1 力的合成:在物理学中,向量加法可以用来计算两个力的合力,即力的合成。

4.2 位移的计算:在物理学中,向量加法可以用来计算物体的位移,即起点到终点的位移向量。

4.3 速度和加速度的合成:在物理学中,向量加法可以用来计算物体的速度和加速度的合成。

第五章:向量加法的练习题第六章:向量加法在坐标系中的运算规则6.1 直角坐标系:在直角坐标系中,向量的加法可以通过对应坐标轴上的坐标值进行运算。

6.2 斜坐标系:在斜坐标系中,向量的加法需要考虑角度和半径的变化。

6.3 空间坐标系:在空间坐标系中,向量的加法涉及到三个坐标轴的运算规则。

第七章:向量加法在实际问题中的应用7.1 力学问题:在力学中,向量加法可以用来计算物体所受多力的合力。

向量的加法运算的教学设计

向量的加法运算的教学设计

向量的加法运算的教学设计教学设计:向量的加法运算一、教学目标:1.理解向量的概念和性质。

2.掌握向量的加法运算规则。

3.能够通过向量的加法运算解决简单的几何问题。

4.培养学生的逻辑思维和分析问题的能力。

二、教学准备:1.课件、投影仪等教学工具。

2.长度和方向可调节的示教仪器。

3.相关教学素材和练习题。

4.活动和实例的设计。

三、教学过程:步骤一:导入(5分钟)1.利用多媒体展示各种不同方向和长度的箭头图形,引导学生思考箭头图形的特点和表示方式。

2.提问:这些箭头图形有什么共同点?学生回答后,引导学生认识到箭头图形代表量和方向,即向量。

步骤二:概念解释(10分钟)1.通过多媒体课件展示向量的定义和性质,包括大小、方向和平行性质。

2.解释向量加法的概念,即将两个向量的长度和方向相加得到一个新的向量。

步骤三:向量加法规则(15分钟)1.利用示教仪器展示向量的加法法则。

首先定义向量的起点和终点,然后将第二个向量的起点对准第一个向量的终点,得到一个新的向量。

2.引导学生自己发现向量加法规则,并总结出向量加法规则。

步骤四:情境演示(15分钟)1.设计一个实际生活中的情境,如小明从家里出发,先向东行走100米,再向南行走50米。

请问小明最后的位置在哪里?2.让学生使用向量的加法运算解决问题,并将解题思路和结果展示给全班。

步骤五:练习与巩固(15分钟)1.分发练习题,让学生在课堂上独立完成。

练习题包括计算已知向量的和、已知向量和其相反向量的和等。

2.提供答案并进行讲解,帮助学生检查答案和理解解题思路。

步骤六:情境设计(20分钟)1.分组讨论和设计新的情境问题,要求学生利用向量的加法运算解决问题。

2.学生展示自己的情境设计,并全班学生进行讨论和互动。

步骤七:拓展应用(10分钟)1.展示一些向量加法的应用实例,如矢量力学、向量运算在地图和导航中的应用等。

2.引导学生思考向量加法在实际问题中的应用和意义。

四、教学评价:1.课堂作业的完成情况和准确性。

(完整版)向量的加法教案

(完整版)向量的加法教案

《向量的加法》教案一、教学目的1、掌握向量加法的概念,能熟练掌握向量加法,平行四边形法则和三角形法投影,并能作出已知两向量的和向量。

2、理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。

掌握有特殊位置关系的两个向量之和,3、通过本节的学习,培养学生类比、迁移、分类、归纳等能力。

二、教学重难点:重点:向量加法的运算及其几何意义难点:对向量加法的三角形法则的理解,以及求两共线向量的和。

三、教学过程:一〉回顾旧知:1、什么叫向量?如何表示向量?2、什么叫相等向量? 二〉新课讲解:在数的运算中,加法运算是最基本的运算,类似地在向量的运算中,我们也从加法开始进行探索课题:向量的加法。

定义:求两个向量和的运算,收做向量的加法。

向量究竟是按怎样的方法相加的呢? 首先看下面的这个问题。

如图,作用在同一物体上的不共线的两个力和,它们是怎样合成的?以、为邻边作□ OACB ,则与、 共起点的对角线就是与的合力,即=+即它们是按平行四边形法则合成的。

力的合成等同于向量的加法。

说明向量的加法可以按照平行四边形法则来进行。

平行四边形法则如图,以同一点O 为起点的两个已知向量、为邻边作□ OACB ,则以O 为起点的对角线就是与的和,这种作两个向量的和的方法叫OCFBCAO+AO做向量加法的平行四边形法则,即: = + 。

法则特点:两个已知向量的起点相同。

例1:如图已知向量、,求作向量 + 。

作法:在平面内任取点O ,作 = ,OB =,以OA 、OB 为邻边作□ OACB ,则= + 。

练习:P84,2点评练习:O 点可以任意选取,因此可以的起点作为O 点,将的起点移到点O 作平行四边形。

问题:观察□ OACB 中还有与相等的向量吗?= ,可见求、之和,可以直接将它们首尾相连,然后连接OC ,则△OAC 边就是 + 。

由此可知,求两个向量的和,只需将它们首尾相连,然后由第一个向量的起点指向最后一个向量的终点就得到两个向量的和,这就是向量加法的:三角形法则如图,已知非零向量 、 在平面内任取一点A ,作=、= ,则向量叫做 与 的和。

《向量的加法》教学设计方案

《向量的加法》教学设计方案

《向量的加法》教学设计方案一、教学目标:1.认识向量的概念,理解向量的定义和性质;2.学会向量的加法的几何和代数方法;3.掌握向量的几何和代数运算法则;4.培养学生的逻辑思维和几何推理能力。

二、教学内容:1.向量的定义和性质;2.向量的加法的几何方法和代数方法;3.向量的几何运算法则和代数运算法则。

三、教学重难点:1.向量的加法的几何方法和代数方法;2.向量的几何运算法则和代数运算法则。

四、教学过程:第一步:导入新知1.引导学生回忆平面向量、几何向量和代数向量的定义及符号表示;2.提问:你知道向量的加法有哪几种方法吗?第二步:向量的定义和性质1.讲解向量的定义:有大小和方向的量叫向量;2.引导学生发现向量的性质:向量的大小用数表示,方向用箭头表示,有共线向量和相等向量的概念;3.提示:向量的大小叫做模,方向叫做方向角;4.讲解向量相等的判定方法:两个向量如果大小相等且方向相同,则这两个向量相等。

第三步:向量的几何加法1.引导学生观察和比较各种几何方法的例子;2.讲解三角形法则:将两个向量的起点相连,以两个向量的末点为另外两条边,形成一个三角形,将这两个向量相加的和向量就是这个三角形的第三条边;3.引导学生观察平行四边形法则:将两个向量以相同的起点相连,形成一个平行四边形,对角线就是这两个向量相加的和向量;4.练习:通过画图求和向量。

第四步:向量的代数加法1.物理方法:将同一直线上的向量相加时,只需将它们的大小相加,方向不变;2.已知向量相等,则有方向相反的向量之和为零向量;3.正负向量相加:加一负号相当于减一个正号。

第五步:向量运算的性质1.满足交换律和结合律;2.零向量是加法的单位元。

第六步:小结归纳1.整理和总结向量加法的几何方法和代数方法;2.写出向量加法的法则和性质。

五、课堂练习:1.出示一些向量图形,要求学生画出相应的和向量;2.给出一些向量的数值,要求学生计算出相应的和向量。

六、板书设计:向量的加法:1.几何方法:三角形法则,平行四边形法则;2.代数方法:物理法则,负向量和零向量;3.运算法则:交换律,结合律;4.运算性质:单位元零向量。

《向量的加法》教学设计

《向量的加法》教学设计

《向量的加法》教学设计【教学目标】1、知识目标:掌握向量加法的定义,会用三角形法则和平行四边形法则作向量的加法。

掌握向量加法的交换律和结合律,并会用它们解决实际应用题。

2、能力目标:理解和体会实际问题抽象为数学概念的过程和思想,增强数学的应用意识,培养分类、数形结合等能力。

3、情感目标:激发学生学习数学的兴趣和积极性,培养创新意识。

【教学重点难点】1、重点:三角形法则,平行四边形法则及应用。

2、难点:向量加法的运算律。

【教法】“启发式”、”探究式”与“讲解式”相结合。

【学法】课前指导预习,课内引导学生发现,采用合作学习方式。

【教学手段】多媒体辅助教学【教学探究过程】一、复习回顾1、向量的概念:既有又有的量叫向量。

2、平行向量:方向或的向量叫平行向量,平行向量也叫做。

3、相等向量:相等且相同的向量叫相等向量。

4、长度为0的向量叫,长度为1的向量叫。

二、创设情境,导入新课我们知道有理数可以进行加法运算,那么向量能否进行加法运算呢?首先看下面的例子:1、飞机从广州飞往上海,再从上海飞往北京,与从广州直接飞往北京的位移相同,我们把后一次位移叫前两次位移的合位移。

2、一重物从A搬运到B处,它的实际位移可看作水平分位移与竖直分位移的合位移。

那么向量的加法如何定义呢?三、概念形成已知和,在平面内任取一点A,作=,=,则向量叫做向量和的和向量,记作+=,这种作法叫做三角形法则。

同样,作=,=,因为AD∥BC且AD=BC,所以四边形ABCD为平行四边形,向量叫作向量与的和,记作+,这种作法叫平行四边形法则。

特点:三角形法则两向量首尾相连,平行四边形法则两向量有共同起点。

四、概念深化理解1、提出问题,让学生分组讨论,形成答案。

⑴两个向量的和仍然是向量吗?⑵三角形法则对于两个向量共线时适用吗?⑶当两个向量共线时,如何作出两向量的和向量?结论:向量加法的三角形法则与平行四边形法则本质上是一致的。

当两向量不共线时,两法则的意义一致;当两向量共线(平行)时,平行四边形法则不再适用,而三角形法则依然成立。

向量的加法教学设计

向量的加法教学设计

2.2.1向量的加法
教学目标:
1.知识目标
掌握向量的加法定义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量;掌握向量加法的运算律,并会用它们进行向量计算。

2.能力目标
使学生经历向量加法法则的探究和应用过程,体会数形结合等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。

3.情感目标
注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。

教学重点:
向量加法的两个法则及其应用.
教学难点:
对向量加法定义的理解.
教学方法:
结合学生实际,主要采用“问题探究”式教学方法。

通过创设问题情境,使学生对向量加法有一定的感性认识;通过设置问题链,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。

教学过程:
OB。

加法。

问题析,。

是什么?。

向量的加法教案

向量的加法教案

向量的加法教案
教学目标:
1. 理解向量的概念及向量的加法运算方法;
2. 掌握向量的加法运算法则;
3. 能够灵活运用向量的加法运算方法解决实际问题。

教学重点:
1. 向量的概念及性质;
2. 向量的加法运算法则。

教学难点:
1. 向量的加法运算法则的理解和应用。

教学准备:
1. 教材:高中数学教材;
2. 教具:教师黑板、彩色粉笔。

教学过程:
一、导入新知识(5分钟)
教师提问:你们知道什么是向量吗?
学生回答:向量是空间中有大小和方向的量。

二、讲授新知识(10分钟)
1. 教师引入向量的加法运算,解释向量的运算法则。

2. 通过实例说明向量的加法运算方法。

三、练习与讲解(15分钟)
教师出示练习题,让学生进行练习并解答,然后进行讲解。

四、巩固与拓展(15分钟)
1. 教师布置一些拓展练习,要求学生独立完成,并在下节课开始前检查。

2. 分组讨论和比较练习答案。

五、课堂总结(5分钟)
教师对本节课内容进行总结并强调重点和难点。

六、课后作业(5分钟)
1. 完成课堂练习的剩下部分;
2. 完成课后拓展练习。

教学反思:
通过上述教学过程,学生对向量的概念有了初步的了解,并且能够运用向量的加法运算法则来解决一些基本问题。

但是,由于时间的限制,学生对练习题目的解答和讲解并不充分,希望在以后的教学中,能够给予更多的时间和机会让学生进行练习和讲解。

此外,也需要加强学生的课后作业,以便巩固和深化他们对向量加法的理解和运用。

向量的加法运算的教学设计

向量的加法运算的教学设计

向量的加法运算的教学设计教学设计:向量的加法运算一、教学目标1.知识与技能目标:理解向量的概念及其加法运算的定义,能够进行向量的加法运算;掌握向量的加法运算的运算法则和性质。

2.过程与方法目标:采用发现性学习法,激发学生的学习兴趣和探究意识;开展多种形式的练习与训练,培养学生的运算能力和问题解决能力;通过小组合作学习,提高学生的合作与交流能力。

3.情感态度价值观目标:培养学生合作学习的能力,培养学生对数学的兴趣和探究精神,培养学生良好的学习习惯和解决问题的能力。

二、教学重点1.向量的定义及其加法运算的定义。

2.向量的加法运算的运算法则和性质。

三、教学难点1.运用向量的加法运算解决实际问题。

2.运用向量的加法运算证明相关性质。

四、教学过程与内容安排1.导入新知识教师可以通过引入实际情境,例如在直角坐标系中表示位移、速度等概念,激发学生对向量的兴趣和好奇心。

2.概念解释与引入教师通过幻灯片、板书等形式,讲解向量的定义及其加法运算的定义。

结合示意图,生动形象地介绍向量的有向性和零向量的概念。

3.规范化向量表示法的引入教师介绍规范化向量表示法,包括向量的坐标表示法和向量的分解表示法。

通过具体的例子,引导学生理解和掌握向量的规范化表示法。

4.向量的加法运算法则的引入教师讲解向量的加法运算法则,并通过具体的例题进行演示和解析。

着重培养学生进行向量的加法运算的能力。

5.向量的加法运算性质的讲解教师讲解向量的加法运算的交换律、结合律和零向量的性质,并通过具体的例题进行演示和解析。

引导学生运用这些性质解决相关问题。

6.练习与巩固教师设计一些练习题目,让学生进行练习和巩固。

可以采用个人练习和小组合作练习相结合的方式,培养学生的运算能力和合作能力。

7.运用向量的加法运算解决实际问题教师讲解如何运用向量的加法运算解决实际问题,例如位移、速度、力的合成等方面的问题。

通过具体的例子,让学生学会将抽象的数学概念与实际问题相结合。

《向量的加法》教学设计方案

《向量的加法》教学设计方案

《向量的加法》教学设计【教学目标】1. 知识与技能(1)理解并掌握向量的加法运算并理解其几何意义.(2)会用向量加法的三角形法则和平行四边形法则求作两个向量的和.2.过程与方法通过采取实际问题的方式引入课题,让学生初步接触现实生活中除了数量之外的一些量,渗透研究新问题的思想和方法,培养学生自主探究知识形成过程的能力,合作释疑过程中合作交流的能力。

3. 情感态度与价值观通过创设问题情境,激发学生的好奇心与求知欲,并在教学过程中始终注重数形结合,引导学生思考,养成学生规范的作图习惯,激发学生学习数学的兴趣与积极性。

通过引导学生思考,使问题处于学生思维的最近发展区,以此较好地培养学生发现问题、提出问题、解决问题的能力.【教学重点】利用向量加法的三角形法则和平行四边形法则,求任意两个向量的和向量.【教学难点】向量加法定义的理解.【教学方法】启发式教学、讲练结合【课时】一课时【教学过程】[复习引入]1、向量的定义:2、向量的表示:3、零向量:4、单位向量:5、相等向量:6、共线向量:7、三角形的边角关系:8、平行四边形的性质与判定:我们都知道,数能够进行四则运算,与数的运算类比,向量是否也能进行运算呢?有了刚才所复习的这些知识作基础,接下来就可以进一步的探讨向量的运算了。

数的运算中,加法运算是最基本的运算,类似地在向量的运算中,我们也从加法开始进行探索课题:向量的加法。

[问题情境]某人从A地经B地到C地两次位移,的结果与从A地直接到C地的位移,有什么关系?用式子表示出来。

结论:动点A直接位移到点C与从A地经B地到C地连续位移的效果相同。

即:+=举实例:学生甲从宿舍到操场,再从操场到教室,学生乙从宿舍到教室。

结论:两个学生位移的效果相同。

思考:怎样定义任意两个向量的和呢?一、向量加法的定义:已知向量a ,b ,在平面内的任取一点A ,作=a ,= b ,则向量叫做记作a + b ,即+= 求两个向量和的运算,叫向量的加法。

《向量的加法》教案完美版

《向量的加法》教案完美版

《向量的加法》教案柳州高级中学刘继淑教学目标1.知识目标掌握向量的加法定义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量;掌握向量加法的运算律,并会用它们进行向量计算。

2.能力目标使学生经历向量加法法则的探究和应用过程,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。

3.情感目标注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。

教学重点、难点重点:向量加法的两个法则及其应用;难点:对向量加法定义的理解。

突破难点的关键是抓住实例,借助多媒体动画演示,不断渗透数形结合的思想,使学生从感性认识升华到理性认识。

教学方法结合学生实际,主要采用“问题探究”式教学方法。

通过创设问题情境,使学生对向量加法有一定的感性认识;通过设置一条问题链,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。

采用计算机辅助教学,通过直观演示体现形、动、思于一体的教学效果,优化课堂结构,提高教学质量。

教学过程教学环节教学内容师生互动设计意图复习引入一、复习旧知:我们已经学过向量。

(1)什么是向量?既有大小又有方向的量叫向量,一般用有向线段表示(2)什么是平行向量?方向相同或相反的非零向量叫平行向量,零向量与任意向量平行(3)如果两个向量要相等,必须具备什么条件?长度相等且方向相同的向量叫相等向量(4)向量和数的区别在哪里?教师提问,学生思考回答。

重温旧知,为学习新知识做铺垫。

二、新课讲授:1.设置情境,提出问题向量和数有区别吗?数可以做加法,而且对于任意两个数x y y x+=+;()()x y z x y z++=++即交换律和结合律。

那么对于向量,是否和数一样可以相加,而且满足这两个运算律呢?这就是本节课要讨论的问题。

《向量的加法运算》教学设计、导学案、同步练习

《向量的加法运算》教学设计、导学案、同步练习

《6.2.1 向量的加法运算》教学设计【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第六章《平面向量及其应用》,本节课是本章第2课时,《向量的加法》是第六章平面向量的线性运算的第一节课。

本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。

向量的加法是向量的线性运算中最基本的一种运算,向量的加法为后面学习减法运算、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。

所以本课在平面向量及空间向量中有很重要的地位。

【教学目标与核心素养】A.理解向量加法的意义;B.掌握向量加法的几何表示法,理解向量加法的另两个运算法则;C.理解向量的运算律;D.理解和体验实际问题抽象为数学概念的过程和思想,增强学生的应用意识。

【教学重点】:两个向量的和的概念及其几何意义;【教学难点】:向量加法的运算律。

【教学过程】【答案】向量的大小:有向线段的长度。

向量的方向:有向线段的方向。

零向量:长度为零的向量叫零向量;单位向量:长度等于1个单位长度的向量叫单位向量。

二、探索新知思考1:如图,某质点从点A 经过点B 到点C ,则这个质点的位移怎么表示?【答案】 从运算的角度看, 可以认为是与的和,即位移、可以看作向量的加法。

1.已知向量和,如图在平面内任取一点O ,作,则向量叫做和的和,记作.即。

求两个向量和的运算叫做向量的加法.根据向量加法的定义得出的求向量和的方法,称为向量加法的三角形法则.【口诀】首尾相连首尾连。

思考2:某物体受到F 1,F 2作用,则该物体所受合力怎么求?【答案】 从运算的角度看, 可以认为是与的和,即力的合成可以看作向量的加法。

AC AB BC a b b AB a OA ==,OB a b b a +OB AB OA b a =+=+F 21F F 和2.向量加法的平行四边形法则如图,以同一点O 为起点的两个已知向量和为邻边作平行四边形OACB ,则以O 为起点的对角线OC 就是和的和,我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.【口诀】起点相同,对角线为和。

《向量的加法运算》教案、导学案、课后作业

《向量的加法运算》教案、导学案、课后作业

《6.2.1 向量的加法运算》教案【教材分析】本节通过数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算规律掌握向量加法运算的交换律和结合律.【教学目标与核心素养】课程目标1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法.数学学科素养1.数学抽象:向量加法概念;2.逻辑推理:利用向量加法证明几何问题;3.直观想象:向量加法运算;4.数学建模:从实际问题抽象出数学模型,数形结合,运用向量加法解决实际问题.【教学重点和难点】重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量;难点:理解向量加法的定义.【教学过程】一、情景导入数有加减乘除运算,那么向量有没有加减乘除运算,如果有,该怎么运算呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本7-10页,思考并完成以下问题1.向量加法是如何定义的?2.运用什么法则进行向量加法运算?3.向量加法满足哪些运算律?4.和向量和已知向量有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则和平行四边形法则 (1)三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点,作=a ,=b,则向量叫做a 与b的和,记作a +b,即a +b, 规定: a + 0= 0 + a(2)平行四边形法则如图所示:AC →=AB →+BC →(三角形法则) ,又因为BC →=AD →,所以AC →=AB →+AD →(平行四边形法则),注意:在使用三角形法则时,应注意“首尾连接”,这个方法可推广到多个向量相加的情形;在使用平行四边形法则时,应注意范围的限制及和向量与两向量起点相同.3.向量a +b 与非零向量a ,b 的模及方向的关系(1)当a 与b 不共线时,a +b 的方向与a ,b 都不相同,且|a +b |<|a |+|b |. (2)当a 与b 同向时,a +b ,a ,b 的方向相同,且|a +b |=|a |+|b |.(3)当a 与b 反向时,若|a |≥|b |,则a +b 与a 的方向相同,且|a +b |=|a |-|b |. 若|a |<|b |,则a +b 与b 的方向相同,且|a +b |=|b |-|a |.A AB BC AC AC BC AB =+=ABCa +b+baa bbabb +aa4.向量加法的运算律 (1)交换律:a +b =b +a ;(2)结合律:a +b +c =(a +b )+c =a +(b +c ). 四、典例分析、举一反三题型一 向量的三角形法则和平行四边形法则例1 如下图中(1)、(2)所示,试作出向量a 与b 的和.【答案】见解析【解析】如下图中(1)、(2)所示,首先作OA →=a ,然后作AB →=b ,则OB →=a +b . 解题技巧(应用三角形和平行四边形法则的步骤) (1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合. ②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点. ②以这两个已知向量为邻边作平行四边形.③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 跟踪训练一1、如图,已知a ,b ,求作a +b ;【答案】见解析. 【解析】如图所示..题型二 向量的加法运算例2 如图,在△ABC 中,O 为重心,D ,E ,F 分别是BC ,AC ,AB 的中点,化简下列三式:【答案】 (1) BA →. (2) OB →. (3) AC →..(1)BC →+CE →+EA →; (2)OE →+AB →+EA →; (3)AB →+FE →+DC →.【解析】 (1)BC →+CE →+EA →=BE →+EA →=BA →. (2)OE →+AB →+EA →=(OE →+EA →)+AB →=OA →+AB →=OB →. (3)AB →+FE →+DC →=AB →+BD →+DC →=AD →+DC →=AC →. 解题技巧: (向量加法运算注意事项)(1)可以利用向量的几何表示,画出图形进行化简或计算.(2)要灵活应用向量加法运算律,注意各向量的起、终点及向量起、终点字母的排列顺序,特别注意勿将0写成0.跟踪训练二 1、化简或计算: (1)CD →+BC →+AB →;(2)AB →+DF →+CD →+BC →+FA →.【答案】(1)AD →. (2) 0.【解析】(1)CD →+BC →+AB →=(AB →+BC →)+CD →=AC →+CD →=AD →.(2)AB →+DF →+CD →+BC →+FA →=(AB →+BC →)+(CD →+DF →)+FA →=AC →+CF →+FA →=AF →+FA →=0.题型三 利用向量加法证明几何问题例3已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AO →=OC →,DO →=OB →.求证:四边形ABCD 是平行四边形. 【答案】见解析.【解析】证明 AB →=AO →+OB →,DC →=DO →+OC →, 又∵AO →=OC →,OB →=DO →,∴AB →=DC →, ∴AB =DC 且AB ∥DC ,∴四边形ABCD 为平行四边形.解题技巧(用向量加法证明集合问题的基本思路)用向量方法证明几何问题,首先要把几何问题中的边转化成相应的向量,通过向量的运算及其几何意义得到向量间的关系,然后再还原成几何问题.跟踪训练三1.如图所示,在平行四边形ABCD 的对角线BD 的反向延长线及延长线上取点E ,F ,使BE =DF ,求证:四边形AECF 是平行四边形.【答案】见解析.【解析】证明 ∵AE →=AB →+BE →,FC →=FD →+DC →, 又AB →=DC →,FD →=BE →, ∴AE →=FC →,即AE 与FC 平行且相等. ∴四边形AECF 是平行四边形. 题型四 向量加法的实际应用例4 在水流速度为向东10 km/h 的河中,如果要使船实际航行的速度的大小为10 3 km/h ,方向垂直于对岸渡河,求船行驶速度的大小与方向.【答案】 船行驶速度为20 km/h ,方向与水流方向的夹角为120°.【解析】 如图所示,OA →表示水速,OB →表示船实际航行的速度,OC →表示船速,由OB →=OC →+OA →易知|BC →|=|OA →|=10,又∠OBC =90°,所以|OC →|=20, 所以∠BOC =30°,所以∠AOC =120°,即船行驶速度为20 km/h , 方向与水流方向的夹角为120°.解题技巧: (向量加法解决实际问题的步骤)跟踪训练四1、在某地抗震救灾中,一救护车从A 地按北偏东35°的方向行驶800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向行驶800 km 送往C 地医院,求这辆救护车行驶的路程及两次位移的和.【答案】救护车行驶的路程是1600 km ,两次行驶的位移和的大小为800 2 km ,方向为北偏东80°.【解析】如图所示,设AB →,BC →分别表示救护车从A 地按北偏东35°方向行驶800 km ,从B 地按南偏东55°的方向行驶800 km.则救护车行驶的路程指的是|AB →|+|BC →|;两次行驶的位移的和指的是AB →+BC →=AC →.依题意,有|AB →|+|BC →|=800+800=1600(km).又α=35°,β=55°,∠ABC =35°+55°=90°.所以|AC →|=|AB →|2+|BC →|2=8002+8002=8002(km).其中∠BAC =45°,所以方向为北偏东35°+45°=80°.从而救护车行驶的路程是1600 km ,两次行驶的位移和的大小为800 2 km ,方向为北偏东80°.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本10页练习,22页习题6.2的1,2题. 【教学反思】本节课重点是向量加法的定义,三角形法则和平行四边形法则,同时还涉猎到向量加法交换律和结合律。

向量的加减法教案

向量的加减法教案

向量的加减法教案第一章:向量简介1.1 向量的定义向量的概念:具有大小和方向的量向量的表示方法:用箭头表示,例如→a 或<a, b>1.2 向量的性质向量的大小:向量的长度或模向量的方向:向量的起点到终点的线段单位向量:大小为1的向量1.3 向量的坐标表示二维空间中的向量:用(x, y) 表示三维空间中的向量:用(x, y, z) 表示第二章:向量的加法2.1 向量加法的定义向量加法:将两个向量的对应分量相加得到新的向量2.2 向量加法的几何意义向量加法:起点相同的两个向量,终点相加得到一个新的向量2.3 向量加法的坐标表示二维空间中的向量加法:(a, b) + (c, d) = (a+c, b+d)三维空间中的向量加法:(a, b, c) + (d, e, f) = (a+d, b+e, c+f) 第三章:向量的减法3.1 向量减法的定义向量减法:将两个向量的对应分量相减得到新的向量3.2 向量减法的几何意义向量减法:起点相同的两个向量,终点相减得到一个新的向量3.3 向量减法的坐标表示二维空间中的向量减法:(a, b) (c, d) = (a-c, b-d)三维空间中的向量减法:(a, b, c) (d, e, f) = (a-d, b-e, c-f)第四章:向量的数乘4.1 向量数乘的定义向量数乘:将一个向量与一个实数相乘得到新的向量4.2 向量数乘的几何意义向量数乘:将向量的大小乘以实数,方向不变4.3 向量数乘的坐标表示二维空间中的向量数乘:(a, b) c = (ac, bc)三维空间中的向量数乘:(a, b, c) c = (ac, bc, cc)第五章:向量加减法的应用5.1 向量加减法的几何应用向量加减法在几何图形中的应用,例如计算向量位移、速度等5.2 向量加减法的物理应用向量加减法在物理学中的应用,例如计算力的合成和分解5.3 向量加减法的实际应用向量加减法在计算机图形学中的应用,例如计算图像的位移和旋转第六章:向量加减法的运算律6.1 向量加法的运算律交换律:向量a + 向量b = 向量b + 向量a结合律:(向量a + 向量b) + 向量c = 向量a + (向量b + 向量c)6.2 向量减法的运算律减法与加法的关联:向量a 向量b = 向量a + (-向量b)结合律:(向量a 向量b) 向量c = 向量a (向量b + 向量c)第七章:向量的数乘运算7.1 向量数乘的运算律分配律:向量a (向量b + 向量c) = (向量a 向量b) + (向量a 向量c) 结合律:向量a (向量b 向量c) = (向量a 向量b) 向量c7.2 标量与向量的运算标量与向量相乘:标量向量= 向量标量第八章:向量加减法的应用举例8.1 二维空间中的向量加减法应用例题:计算物体在两个力的作用下的位移8.2 三维空间中的向量加减法应用例题:计算飞机在两个推力的作用下的位移第九章:向量的数乘应用举例9.1 二维空间中的向量数乘应用例题:计算物体在力的大小变化后的加速度9.2 三维空间中的向量数乘应用例题:计算飞机在推力大小变化后的加速度向量加减法的基本概念、运算律及应用10.2 向量加减法的拓展向量加减法在其他领域的应用,例如生物学、经济学等10.3 向量加减法的练习题及解答提供一些向量加减法的练习题,帮助学生巩固所学知识重点和难点解析一、向量简介1.1 向量的定义与表示方法:理解向量的基本概念,以及向量的大小和方向。

向量的加法---教案

向量的加法---教案

向量的加法一、教学内容分析《向量的加法》是苏教版《必修4》第二章第二单元中“平面向量的线性运算”的第一节课。

本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。

向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。

所以本课在“平面向量”及“空间向量”中有很重要的地位。

二、学生学习情况分析学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。

学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

三、设计理念教学矛盾的主要方面是学生的学。

学是中心,会学是目的。

因此,在教学中要不断指导学生学会学习。

在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。

四、教学目标根据新课标的要求: 培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识。

及本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目的确定为:1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。

能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

《向量的加法》教案

《向量的加法》教案

《向量的加法》教案《《向量的加法》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容教学要求:掌握向量加法的意义,并能运用三角形法则和平行四边形法则作几个向量的和向量。

能表述向量加法的交换律和结合律,并运用它进行向量计算。

教学重点:向量加法的三角形法则与平行四边形法则。

教学难点:对向量加法定义的理解。

德育目标:培养学生的集体主义观。

教学方法:启发引导式。

教具:多媒体辅助教学。

教学过程:复习引入。

提出课题:向量的加法。

1.定义:求两个向量的和的运算,叫做向量的加法。

注意:;两个向量的和仍旧是向量(简称和向量)2.三角形法则:3.例一、已知向量、,求作向量+作法:在平面内取一点,作则4.课堂练习:P101、15.加法的交换律和平行四边形法则上题中+的结果与+是否相同验证结果相同从而得到:1°向量加法的平行四边形法则2°向量加法的交换律:+=+6.向量加法的结合律:(+)+=+(+)证:如图:使,,则(+)+=+(+)=∴(+)+=+(+)从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行。

例二如图,一艘船从A点出发以km/hCD的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h。

求船实际航行速度的大小与方向(用与流速间的夹角表示)。

AB(解略)四、小结:1°向量加法的几何法则(首尾相接)2°交换律和结合律五、作业:P101—102练习P104习题5.21—3《向量的加法》教案这篇文章共1741字。

《向量的加法》教案完美版

《向量的加法》教案完美版

《向量的加法》教案完美版教案标题:向量的加法教学目标:1.了解向量的基本概念和表示方法;2.掌握向量的加法运算;3.理解和应用向量的加法运算规则;4.能够解决与向量加法相关的问题。

教学内容:1.向量的基本概念和表示方法;2.向量的加法运算;3.向量加法运算规则;4.根据向量加法运算解决相关问题。

教学重难点:1.向量的加法运算规则;2.如何应用向量加法解决问题。

教学准备:1.教学课件;2.讲台黑板;3.学生练习题。

教学过程:Step 1:导入新知(10分钟)1.导入:引导学生回顾前几节课学习的内容,如什么是矢量、如何用数表示向量等。

2.发出问题:向学生提问,什么是向量的加法?为什么需要进行向量的加法运算?Step 2:讲解向量的加法运算(15分钟)1.展示教学课件:通过教学课件,向学生介绍向量的加法运算的基本概念和表示方法。

2.解释向量的加法概念:向学生解释向量的加法是将两个或多个向量相加得到一个新的向量的过程。

并通过示意图展示向量之间的相加关系。

3.讲解向量的表示方法:向学生讲解用坐标表示法和分量表示法表示向量的加法运算。

Step 3:向量加法运算规则(20分钟)1.展示示例:通过教学课件,展示向量加法的运算规则,并通过具体案例演示向量加法运算。

2.揭示规律:通过分析示例,揭示向量加法的几个规律,如交换律、结合律等。

3.引导学生发现规律:指导学生通过讨论和分析,发现向量加法的其他规律。

Step 4:巩固练习(30分钟)1.学生练习题:让学生进行一定数量的练习题,包括计算向量的加法和应用向量加法解决实际问题。

2.收集作业:学生完成练习题后,教师收集作业并进行讲解和订正。

Step 5:拓展应用(15分钟)1.讲解拓展应用:通过示例或者实际问题,介绍如何应用向量的加法解决实际生活或者工作中的问题。

2.练习应用题:让学生进行一定数量的应用题练习,巩固所学知识。

Step 6:作业布置与小结(10分钟)1.作业布置:布置合适的作业,巩固所学知识。

《向量的加法》教案新部编本2

《向量的加法》教案新部编本2

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《向量的加法》教案一、 教学目标掌握向量的加法运算,并理解其几何意义。

二、 教学重、难点重点:向量的加法运算。

难点:向量的加法运算的意义。

三、 教学方法采用提出问题,引导学生通过观察,类比,归纳,抽象的方式形成概念,结合几何直观引导启发学生去理解概念,不断创设问题情景,激发学生探究。

四、 课时1课时五、 教学过程情景设置:复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 情景设置:(1)某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AC BC AB =+(2)若上题改为从A 到B ,再从B 按反方向到C ,则两次的位移和:AC BC AB =+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+(4)船速为,水速为,则两速度和:=+ 探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +b=+=,规定: a + 0-= 0 + aA B CA B CA BCO Aaaab b b探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行. 小结1、向量加法的几何意义;2、交换律和结合律;3、注意:|a +b | ≤ |a | + |b |,当且仅当方向相同时取等号.A BCa +ba +baa b b abb aa。

向量的加法教学设计

向量的加法教学设计

7.1.2 向量的加法
【教学目标】
1. 理解并掌握向量的加法运算并理解其几何意义,掌握向量加法的运算律.
2. 会用向量加法的三角形法则和平行四边形法则求作两个向量的和.
3. 通过教学,养成学生规范的作图习惯,培养学生数形结合的能力.
【教学重点】
利用向量加法的三角形法则和平行四边形法则,作两个向量的和向量.【教学难点】
对向量加法定义的理解.
【教学方法】
这节课主要采用启发式教学和讲练结合的教学方法.创设问题情境,激发学生的好奇心与求知欲.并在教学过程中始终注重数形结合,引导学生思考,使问题处于学生思维的最近发展区,以此较好地培养学生发现问题、提出问题、解决问题的能力.
【教学过程】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《向量的加法》教案优秀2篇
《向量的加法》教案篇一
总课题平面向量总课时第18课时
分课题向量的加法分课时第1 课时
教学目标
理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和,掌握加法的交换律和结合律,并会用它们进行向量的运算。

重点难点
向量加法的三角形法则和平行四边形法则。

向量加法的交换律和结合律。

引入新课
问题1、利用向量的表示,从景点到景点的位移为,从景点到景点的位移为,那么经过这两次位移后游艇的合位移是(如图)
这里,向量,,三者之间有什么关系?
1、向量加法的定义
2、向量加法的三角形法则
具体步骤:
(1)把两个向量平移后,使两个向量的一个起点与另一个起点相连。

(2)将剩下的起点与终点相连,并指向终点,则该向量为两个向量的和。

简记为“首尾相连,首是首,尾是尾”
3、向量加法的平行四边形法则
4、对于零向量和任一向量有
,对于相反向量有
5、向量加法的运算律
交换律结合律
6、如果平面内有个向量依次首尾连接组成一条封闭折线,那么这个向量的和是什么?
例题剖析
例1、作出下列向量的和:
例2、如图,为正六边形的中心,作出下列向量:
(1) (2) (3)
例3、在长江南岸某渡口处,江水以的速度向东流,渡船的速度为。

渡船要垂直地渡过长江,其航向应如何确定?
巩固练习
1、化简。

2、已知点是平行四边形对角线的交点,则下面结论中正确的是( )
A、B、
C、D、
3、在△ 中,求证;
4、一质点从点出发,先向北偏东方向运动了,到达点,再从点向正西方向运动了到达点,又从点向西南方向运动了到达点,试画出向量以及。

课堂小结
1、向量加法的定义。

2、向量加法的三角形法则和平行四边形法则。

3、向量加法的运算律。

课后训练
班级:高一( )班姓名
一、基础题
1、已知正方形的边长为,则( )
A、B、C、D、
2、设点是△ 内一点,若,则必有( )
A、点是△ 的垂心
B、点是△ 的外心
C、点是△ 的。

重心
D、点是△ 的内心
3、当时,; 时,平分之间的夹角。

4、在四边形中,若,则四边形一定是。

5、向量满足,则的最大值和最小值分别为。

6、飞机从甲地按南偏东的方向飞行到达乙地,再从乙地按北偏西的方向飞行到达丙地,那么丙地在甲地的什么方向?丙地离甲地多远?
二、提高题
7、一架飞机向北飞行千米后,改变航向向东飞行千米,试求飞机飞行的路程和位移。

三、能力题
8、已知作用在同一质点上的两个力的夹角是直角,且它们的合力与的夹角是求和的大小。

《向量的加法》教案篇二
教材分析
1.本课的地位及作用:
平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

2学生情况分析:
在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。

因此结合中学生的认知结构特点和学生实际。

三维目标
1、知识与技能:
掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

2、过程与方法:
通过用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系,明确数学是研究数与形有机结合的学科。

3、情感态度与价值观:
能用所学知识解决有关综合问题。

1、通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法。

2、掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题。

3、通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的。

创新能力,提高学生的数学素质。

重点难点
教学重点:平面向量数量积的坐标表示。

教学难点:向量数量积的坐标表示的应用。

课时安排
1课时
教学方法和手段
1教学方法:
结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。

在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。

2教学手段:
利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣。

学法指导
改善学生的学习方式是高中数学课程追求的基本理念。

独立思考,自主探索,动手实践,合作交流等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的“再创造”的过程。

以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。

为了实现这一目标,本节教学让学生主动参与,让学生动手,动口、动脑。

通过思考、计算、归纳、推理,鼓励学生多向思维,积极活动,勇于探索。

具体体现在:
1、通过提出问题,把问题的求解与探究贯穿整堂课,使学生在自主探究中发现了结论,推广了命题,使学生感到成果是自己得到的,增强了成就感,培养了学生学好数学的信心和良好的学习动机。

2、通过数与形的充分挖掘,通过对向量平行与垂直条件的坐标表示的类比,培养了学生数形结合的数学思想,教给了学生类比联想的记忆方法。

相关文档
最新文档