完整版)专升本高等数学知识点汇总

合集下载

专升本高数知识点汇总

专升本高数知识点汇总

专升本高数知识点汇总高等数学在专升本考试中占据着重要的地位,对于许多考生来说,掌握好高数的知识点是成功升本的关键之一。

以下是为大家汇总的专升本高数知识点,希望能对大家的学习有所帮助。

一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。

对于定义域内的每一个输入值,都有唯一的输出值与之对应。

2、函数的性质包括奇偶性、单调性、周期性和有界性。

奇函数满足 f(x) = f(x),偶函数满足 f(x) = f(x)。

单调性是指函数在某个区间内是递增或递减的。

周期性函数是指存在一个非零常数 T,使得 f(x + T) = f(x)。

有界性则是指函数的值域在某个范围内。

3、极限的定义极限是指当自变量趋近于某个值时,函数值趋近于的一个确定的值。

4、极限的计算包括利用极限的四则运算法则、两个重要极限(\(\lim_{x \to 0} \frac{\sin x}{x} = 1\),\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\))以及等价无穷小代换来计算极限。

5、无穷小与无穷大无穷小是以零为极限的变量,无穷大是绝对值无限增大的变量。

无穷小的性质在极限计算中经常用到。

二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的切线斜率。

2、导数的几何意义导数表示函数在某一点处的变化率,反映了函数图像的斜率。

3、基本导数公式包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

4、导数的四则运算法则加法法则、减法法则、乘法法则和除法法则。

5、复合函数求导通过链式法则进行求导。

6、隐函数求导通过方程两边同时对自变量求导来求解。

7、微分的定义函数的微分等于函数的导数乘以自变量的微分。

8、微分的几何意义微分表示函数在某一点处切线的增量。

三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ) = 0 。

专转本高数知识点整理

专转本高数知识点整理

专转本高数知识点整理一、函数。

1. 函数的概念。

- 设x和y是两个变量,D是一个给定的非空数集。

如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y = f(x),x∈ D。

其中x称为自变量,y称为因变量,D称为函数的定义域。

- 函数的两要素:定义域和对应法则。

2. 函数的性质。

- 单调性:设函数y = f(x)在区间(a,b)内有定义,如果对于(a,b)内任意两点x_1和x_2,当x_1时,有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间(a,b)内是单调增加(或单调减少)的。

- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈ D,有f(-x)=f(x),则称y = f(x)为偶函数;如果f(-x)= - f(x),则称y = f(x)为奇函数。

- 周期性:设函数y = f(x)的定义域为D,如果存在一个不为零的数T,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x)恒成立,则称函数y = f(x)为周期函数,T称为函数的周期。

3. 反函数。

- 设函数y = f(x)的定义域为D,值域为W。

如果对于W中的每一个y值,在D中有且只有一个x值使得y = f(x),则在W上定义了一个函数,称为函数y = f(x)的反函数,记作x = f^-1(y)。

习惯上,将y = f(x)的反函数记作y = f^-1(x)。

二、极限。

1. 极限的定义。

- 数列极限:设{a_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| a_n-a|都成立,那么就称常数a是数列{a_n}的极限,或者称数列{a_n}收敛于a,记作lim_n→∞a_n=a。

- 函数极限(x→ x_0):设函数f(x)在点x_0的某一去心邻域内有定义。

专升本高数全知识点

专升本高数全知识点

专升本高数全知识点一、知识概述《专升本高数全知识点》①基本定义:高等数学就是大学数学,主要研究函数、极限、导数、积分这些东西。

函数就像是一个有输入和输出的“魔法盒子”,你给它一个数,它按照一定规则给你一个结果。

极限有点像你一直朝着一个地方走,快到目的地但还没到那个确切的点时候的情况。

导数呢,就是函数在某一点变化的快慢程度,就像汽车在某个瞬间的速度。

积分和导数相反,就像是知道速度求路程这样。

②重要程度:在专升本学科里那可是相当重要的。

很多专业都要考,而且是筛选人才的重要部分。

高数好的话,在理工科专业学习起来就会很顺利。

③前置知识:你得对基本的代数知识很熟悉,像一元二次方程这些。

还有函数的概念也要清楚,比如一次函数、二次函数的图像性质等。

④应用价值:在工程领域可以用来计算结构强度,在经济领域可以做成本效益分析之类的。

比如说盖房子的时候,通过高数能算出怎么设计结构能承受更大压力。

二、知识体系①知识图谱:整个高数体系像一棵大树,函数是树根,极限是树干,导数和积分就是树枝和树叶。

导数和积分又各自有很多分支。

②关联知识:函数和极限密切相关,有函数才有极限概念。

导数是从极限发展来的,积分又和导数是逆运算关系。

③重难点分析:重难点有极限的计算(有时候要用到很多复杂技巧)、导数的复合函数求导、积分的换元积分法。

关键是要理解概念然后多做练习才能掌握。

④考点分析:在考试里每个部分都可能考。

选择题会考查基本概念,计算题就着重极限、导数、积分的计算等。

应用题可能会把高数知识用在实际场景下考查。

三、详细讲解【理论概念类- 函数】①概念辨析:函数就是一种对应关系,一个自变量x能通过某种法则找到唯一对应的因变量y。

就像每个人(x)对应着自己唯一的身份证号(y)。

②特征分析:主要特征就是有定义域(x能取的值的范围)和值域(y 能取的值的范围)。

单值性是很重要的一点,就是一个x只能对应一个y。

③分类说明:有初等函数像多项式函数(如y = x²+1)、三角函数(如y = sinx)等,还有分段函数,就是在不同区间有不同表达式的函数。

专升本高等数学知识点汇总3篇

专升本高等数学知识点汇总3篇

专升本高等数学知识点汇总第一篇:极限与导数一、极限1.极限概念极限是指函数值在某个自变量取值趋于某个值时的极限值。

用数学符号表示为lim f(x)=A(x->a)。

2.极限的四则运算对于极限值的四则运算涉及到有限值与无限值的关系,具体如下:①有限值加减有限值:lim[f(x)+g(x)]=lim f(x)+lim g(x) (x->a)②有限值乘法有限值:lim[f(x)*g(x)]=lim f(x)*lim g(x) (x->a)③有限值除以有限值:lim[f(x)/g(x)]=lim f(x)/lim g(x) (x->a)④无限值加减无限值:极限不存在。

3.极限的求解求出极限的基本方法:①查找零点②分母分子有理化③将式子化成等价无穷小形式④采用夹逼定理二、导数1.导数概念导数是表示函数一点的切线在该点的斜率,用数学符号表示为f’(x)或df/dx。

2.导数的几何意义导数的几何意义是函数在某一点处的切线的斜率,也就是曲线在该点处的瞬时变化率。

3.导数的求法导数的求法可以使用以下几种方法:①查公式②使用某个函数的导数性质推导出新函数导数的公式③使用导数的四则运算④使用导数的几何性质以上是关于极限与导数的一些基本知识点,通过对这些知识点的学习,我们可以更好地理解数学的基础,从而更好地应用数学知识进行实际问题的解决。

第二篇:微积分中的函数与极限一、函数的概念函数是指一个变量和另一个变量之间的依赖关系,也就是根据一个变量的取值,可以求出另一个变量的值。

二、函数的分类根据函数的定义域和值域的不同,函数分为以下几类:①一次函数:y=kx+b(k,b∈R且k≠0),其中k为斜率,b为截距。

②二次函数:y=ax²+bx+c (a,b,c∈R且a≠0),其中a 为抛物线开口方向和大小的常数,b为对称轴与x轴交点的横坐标,c为抛物线与y轴交点的纵坐标。

③指数函数:y=a的x次方 (a>0且且a≠1),其中a为底数,x为指数。

(完整版)专升本高等数学知识点汇总

(完整版)专升本高等数学知识点汇总

专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)c bx ax y b kx y ++=+=2一般形式的定义域:x ∈R(2)x k y =分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0(4)x y a log = 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。

当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。

2、 函数的奇偶性定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-)(1) 偶函数)(x f ——D x ∈∀,恒有)()(x f x f =-。

(2) 奇函数)(x f ——D x ∈∀,恒有)()(x f x f -=-。

三、基本初等函数1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。

2、幂函数:u x y =, (u 是常数)。

它的定义域随着u 的不同而不同。

图形过原点。

3、指数函数定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。

4、对数函数定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。

图形过(1,0)点。

5、三角函数(1) 正弦函数: x y sin =π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(2) 余弦函数: x y cos =.π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(3) 正切函数: x y tan =.π=T , },2)12(,|{)(Z R ∈+≠∈=k k x x x f D π, ),()(+∞-∞=D f . (4) 余切函数: x y cot =.π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f .5、反三角函数(1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2,2[)(ππ-=D f 。

完整版专升本高等数学知识点汇总

完整版专升本高等数学知识点汇总

完整版专升本高等数学知识点汇总高等数学是专升本考试的重点科目之一,其课程内容包括微积分、数学分析、线性代数、概率论、数值计算等多方面的知识。

以下就是完整版的专升本高等数学知识点汇总:一、微积分(一)函数的极限和连续性1. 函数极限的定义和计算方法2. 充分条件和必要条件等述和运用3. 连续函数的概念和性质4. 零点定理、介值定理、最大值最小值定理5. 导数和微分6. 黎曼和与积分(二)微分方程1. 基本概念和解的存在唯一性定理2. 分离变量法、齐次方程、线性方程和二阶线性齐次方程3. 变量分离法、常系数齐次线性微分方程和欧拉公式(三)多元函数微积分1. 偏导数、全微分、隐函数定理和函数极值2. 二元函数定积分和变量替换法3. 重积分、累次积分和极坐标下的重积分(四)级数1. 序列极限、级数部分和的极限和级数收敛的定义2. 正项级数收敛判别法和比较判别法3. 极限比值法、根值法、阿贝尔定理和绝对收敛二、线性代数(一)行列式1. 行列式的定义、性质和元素和运算2. 克拉默法则和余子式、代数余子式的定义3. 行列式的计算和逆阵的求法(二)矩阵1. 矩阵的定义和性质2. 矩阵的运算:加法、数乘、乘法3. 矩阵的逆和伴随矩阵4. 线性方程组的解法:高斯消元法、初等变换法、矩阵法(三)向量空间1. 向量空间的定义和性质2. 线性无关、线性相关、秩和基础矩阵3. 子空间、直和空间、坐标系(四)特征值和特征向量1. 特征值的定义、性质和计算2. 特征向量的定义和寻找3. 对角矩阵和相似变换三、概率论(一)随机事件和随机变量1. 随机事件和概率的定义和性质2. 条件概率和乘法公式3. 随机变量的定义、分布函数和密度函数(二)随机变量的分布1. 常见离散型分布:伯努利分布、二项分布、泊松分布等2. 常见连续型分布:均匀分布、正态分布、指数分布等(三)随机变量的数字特征1. 数理期望和方差2. 协方差和相关系数3. 大数定律和中心极限定理四、数学分析(一)无穷级数1. 函数项级数、幂级数和几何级数2. Abel定理和Dirichlet定理(二)函数的连续性和可导性1. 极限的闭合性和连续函数的性质2. 可导函数的定义、求导公式和求导法则3. 微分中值定理和泰勒公式(三)广义积分1. 广义积分的概念、性质和判别法2. 常见的特殊函数与收敛性讨论五、数值计算(一)插值法1. 拉格朗日插值、牛顿插值与分段线性插值2. 多项式插值误差和插值余项(二)数值微积分1. 求积公式的概念和性质2. Newton-Cotes公式和Gauss-Legendre公式3. 自适应辛普森公式和数值微分公式以上便是专升本高等数学知识点的完整汇总,考生通过此份知识点汇总可做到有的放矢,聚焦重点,帮助他们更好地备战考试。

专升本高数数学知识点总结

专升本高数数学知识点总结

专升本高数数学知识点总结一、微积分微积分是高等数学的重要组成部分,它包括导数和积分两个部分。

导数是一个函数对自变量的变化率的描述,而积分则是对函数曲线下的面积的计算。

1. 导数导数是描述函数变化率的概念,它表示函数在某一点的变化速率。

通常用f'(x)或者dy/dx 表示。

导数的定义是函数在某一点的极限值,即f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

在计算导数时,我们可以使用求导法则,包括常数法则、幂函数法则、指数函数法则、对数函数法则、乘法法则、除法法则、复合函数求导法则等。

2. 积分积分是对函数曲线下的面积的计算,它的定义是函数$f(x)$在区间[a,b]上的定积分$\int_{a}^{b}f(x)dx$表示曲线$f(x)$与$x$轴所围成的面积。

在计算积分时,我们可以使用不定积分和定积分两种方式。

不定积分通常写作$\int f(x)dx$,其结果是一个函数。

定积分通常写作$\int_{a}^{b}f(x)dx$,其结果是一个数值。

3. 微分方程微分方程是微积分的一部分,它描述了变量之间的关系,并且包含了导数。

微分方程分为常微分方程和偏微分方程两类。

常微分方程是以导数为主要变量的方程,通常用于描述物理现象的规律。

偏微分方程是以偏导数为主要变量的方程,通常用于描述空间中的变化规律。

二、线性代数线性代数是研究向量空间和线性变换的数学分支,它包括向量、矩阵、行列式、特征值、特征向量等概念。

1. 向量向量是线性代数中的基本概念,它表示具有大小和方向的物理量。

通常用a或者b表示。

向量可以进行加法、数乘等运算,也可以用点积和叉积来描述。

2. 矩阵矩阵是线性代数中的另一个重要概念,它是一个按照行和列排列的数表。

矩阵可以进行加法、数乘、转置等运算,也可以进行矩阵的乘法运算。

3. 行列式行列式是描述矩阵性质的重要工具,它表示矩阵所代表的线性变换的相似性。

行列式的定义是一个关于矩阵元素的多重求和。

专升本高数必修知识点归纳

专升本高数必修知识点归纳

专升本高数必修知识点归纳专升本高等数学是许多学生在继续深造过程中必须面对的一门课程,其知识点广泛,涉及多个数学领域。

以下是对专升本高等数学必修知识点的归纳总结:一、函数与极限- 函数的概念:定义域、值域、奇偶性、周期性等。

- 极限的定义:数列极限、函数极限、无穷小量和无穷大量的概念。

- 极限的运算法则:四则运算、有理化、夹逼定理等。

二、导数与微分- 导数的定义:导数的几何意义、物理意义。

- 基本导数公式:幂函数、三角函数、指数函数、对数函数等。

- 高阶导数:二阶导数、三阶导数等。

- 微分的概念:一阶微分、高阶微分。

三、积分学- 不定积分:换元积分法、分部积分法、有理函数积分。

- 定积分:定积分的性质、几何意义、物理意义。

- 广义积分与反常积分:概念、计算方法。

- 积分的应用:面积、体积、平均值等。

四、级数- 级数的概念:收敛、发散、条件收敛。

- 正项级数:比较判别法、比值判别法、根值判别法。

- 幂级数:泰勒级数、麦克劳林级数。

- 函数项级数:傅里叶级数、傅里叶变换。

五、多元函数微分学- 多元函数的极限与连续性。

- 偏导数与全微分。

- 多元函数的极值问题。

六、多元函数积分学- 二重积分与三重积分。

- 曲线积分与曲面积分。

- 格林公式、高斯公式、斯托克斯定理。

七、常微分方程- 一阶微分方程:可分离变量方程、一阶线性微分方程、伯努利方程等。

- 高阶微分方程:特征方程、欧拉方程。

- 线性微分方程组。

八、线性代数基础- 向量空间、子空间、基和维数。

- 线性变换、矩阵的运算、行列式。

- 特征值、特征向量、对角化。

九、解析几何- 空间直线与平面的方程。

- 空间曲线与曲面的方程。

- 向量在空间几何中的应用。

结束语:专升本高等数学的学习是一个系统而深入的过程,需要同学们不断积累和实践。

掌握上述知识点,将有助于同学们在专升本考试中取得优异的成绩。

希望这份归纳能够帮助同学们更好地理解和复习高等数学,为未来的学术和职业生涯打下坚实的基础。

专升本高数知识点概述总结

专升本高数知识点概述总结

专升本高数知识点概述总结一、数列与级数1. 数列的概念和表示方法2. 数列的分类及常见数列3. 数列的通项公式及性质4. 级数的概念和性质5. 级数的敛散性及判别法6. 级数的常见级数及性质7. 函数极限与无穷小8. 极限的概念和性质9. 极限的求解方法10. 无穷小量与无穷大量11. 函数的连续性12. 函数的连续性及运算13. 函数极值与最值14. 函数求导与微分15. 函数的泰勒展开与应用16. 定积分及其性质17. 定积分的计算方法与应用18. 不定积分及其定义与性质19. 不定积分的计算方法与应用20. 定积分与无穷积分之间的联系二、微分方程1. 微分方程的概念及分类2. 微分方程的解法3. 一阶线性微分方程4. 高阶线性常系数微分方程5. 高阶线性变系数微分方程6. 高阶非齐次线性微分方程7. 常微分方程的应用8. 微分方程的解析解与数值解9. 微分方程在生物和医学领域中的应用10. 微分方程在工程领域中的应用三、多元函数微分学1. 多元函数的定义及表示2. 多元函数的极限与连续性3. 多元函数的偏导数4. 隐函数的偏导数5. 方向导数与梯度6. 多元函数的极值与最值7. 多元函数的泰勒公式及应用8. 多元函数的微分形式9. 多元函数的积分计算10. 重积分的概念及性质11. 重积分的计算方法与应用12. 二重积分与三重积分之间的联系13. 积分中值定理及应用四、向量代数与空间解析几何1. 向量的基本概念及运算2. 向量的数量积与向量积3. 空间直线和平面的方程4. 空间曲线和曲面的方程5. 空间向量与向量代数的应用6. 空间几何与向量的几何应用7. 空间几何在物理和工程领域中的应用五、级数求和与数学证明1. 数学归纳法2. 递推数列的通项公式求解与应用3. 数列的数学归纳法证明4. 几何级数与数学证明5. 一元函数的泰勒级数展开与应用6. 麦克劳林级数的应用7. 级数求和的收敛性判别法8. 变步长球壳法与变限积分的应用9. 函数逼近及余项估计10. 数学证明在实际问题中的应用这些是专升本高等数学的主要知识点,通过对这些知识点的深入学习和理解,学生可以掌握高等数学的核心内容,为将来的学习和工作奠定坚实的数学基础。

专升本知识点 数学 总结

专升本知识点 数学 总结

专升本知识点数学总结一、数与式1、自然数、整数、有理数、实数、复数的概念及其相互关系2、绝对值的概念、性质及计算3、数的整除与分解质因数4、实数集的基本划分5、整式、有理式、多项式及其基本性质6、方程与不等式的基本概念、解的集合及其应用7、分式、分式方程与分式不等式的基本概念、性质及其应用8、根式与带有根式的代数式的基本性质9、函数及其概念及表示法、函数的基本性质10、反比例函数、一次函数、二次函数、一次函数与二次函数的基本性质及图像二、平面解析几何1、平面向量、向量的基本性质、向量的线性运算及其应用2、点和直线的位置关系、直线和平面的位置关系3、二元二次方程组理论4、平面几何图形基本性质5、圆锥曲线及其方程6、平面曲线的切线与法线7、平面解析几何常见问题三、三维空间解析几何1、空间中点和向量的表示及计算2、点、直线、平面的位置关系3、平面与空间曲线的位置关系4、空间几何体的投影及应用5、空间向量的线性运算及其应用四、立体几何1、立体图形2、平行四边形及其应用3、等腰三角形、等边三角形、全等三角形的性质、判定及其应用4、直角三角形、解答直角三角形问题的方法及应用5、平面中直线与圆的位置关系及其应用6、立体几何中球及其应用五、数列1、数列的概念及等差数列、等比数列的概念及其通项公式2、数列的基本性质及其求和公式3、通项公式的构造及其应用4、数列的应用六、不等式的研究1、一元二次不等式的基本概念及其解集2、绝对值不等式及其应用3、分式不等式的基本概念及其解集4、实际问题中的不等式应用七、函数及其应用1、函数的概念、图象、性质及表示法2、函数的四则运算3、复合函数、反函数及函数的应用4、常用初等函数的性质及图像:一次函数、二次函数、指数函数、对数函数、幂函数、三角函数、反三角函数5、解函数的基本方法与步骤及函数零点的性质6、函数的最值及最值问题7、函数的单调性及单调性应用8、函数的奇偶性及奇偶函数的图象9、函数的周期性及周期函数的性质10、函数的对称性及对称函数的性质11、函数方程与不等式及其应用12、组合函数的概念及其性质13、反比例函数及其性质14、一次函数与二次函数的基本性质及图象15、函数的应用问题八、解方程与求解关系1、基本初等方程及其求解2、分式方程及其应用3、实际问题与方程的应用4、元代数方程及其求解5、基本初等方程组及其应用6、实际问题与方程组的应用7、二元二次方程组及其求解8、二元一次方程组及其应用9、线性规划问题及其解法九、计算方法1、数值计算的基本概念及计算方法2、不同进制数的运算及应用3、数值近似及误差分析4、函数零点的数值计算法5、数值计算与函数图象的应用以上是专升本数学知识点的总结,希望对大家备考专升本数学考试有所帮助。

完整版专升本高等数学知识点汇总

完整版专升本高等数学知识点汇总

完整版专升本高等数学知识点汇总高等数学是一门综合性的学科,它是数学的一个重要分支,主要研究数与形的关系及其变化规律。

在专升本考试中,高等数学是必考科目之一,掌握高等数学的知识点对于顺利通过考试非常重要。

下面我将为大家总结一下高等数学的主要知识点。

一、极限和连续极限是高等数学的一个基本概念,它是研究函数变化规律的基础。

在极限的定义中,包括函数极限、数列极限和无穷小量等内容。

极限是描述数值接近程度的概念,比如当自变量趋于某一值时,函数的值会趋于某个确定的值。

连续是指函数在定义域内的所有点上都具有极限,没有断点和间断点。

在连续的定义中,可以通过极限和函数的定义来判断一个函数是否连续,以及判断一个函数在某一点是否连续。

二、导数和微分导数是描述函数在某一点附近的变化率的概念,它在物理、经济、工程等领域有广泛的应用。

在导数的定义中,包括函数的导数、导数的几何意义和导数的运算法则等内容。

微分是导数的一个应用,它是函数在某一点附近的近似变化量。

微分的计算和应用包括微分的四则运算、微分的几何意义和微分方程等内容。

三、积分积分是导数的逆运算,它是描述曲线下面的面积、函数与曲线的位置关系等的工具。

在积分的定义中,包括不定积分、定积分和积分的性质等内容。

积分的应用广泛,如求面积、求曲线与坐标轴所围成的面积、求体积等。

四、级数级数是一种数学上的无穷和,它是无穷个数按照一定的次序相加所得到的结果。

在级数的定义中,包括数项级数、幂级数和级数的运算等内容。

级数的收敛性和发散性是级数研究的重要内容。

五、空间解析几何空间解析几何是高等数学的一个重要分支,它是研究空间点、直线、平面及其之间的位置关系和性质的学科。

空间解析几何的主要内容包括空间点的坐标、直线与平面的方程、平面与平面间的夹角等。

六、常微分方程常微分方程是研究函数与其导数之间关系的方程。

在常微分方程的研究中,主要涉及到一阶常微分方程、二阶常微分方程、高阶常微分方程和线性常微分方程等。

高等数学专升本知识点

高等数学专升本知识点

高等数学专升本知识点
1. 极限与连续
- 闭区间套定理
- 无穷小与无穷大
- 函数的极限定义和性质
- 极限存在准则(夹逼定理、单调有界准则)
- 洛必达法则
- 连续函数的定义和性质
- 间断点与间断类型
2. 导数与微分
- 导数的定义和性质
- 高阶导数
- 函数求导法则(和差法则、积法则、商法则、复合函数法则)
- 隐函数求导
- 参数方程求导
- 微分的定义和性质
- 级数收敛与发散
- 泰勒展开与泰勒公式
3. 微分方程
- 常微分方程的基本概念
- 一阶常微分方程解法(分离变量法、齐次方程法、一阶线性方程法) - 高阶常微分方程解法(常系数齐次线性方程、常系数非齐次线性方程) - 变量可分离的偏微分方程
- 一阶线性偏微分方程
- 泊松方程和拉普拉斯方程
4. 曲线与曲面积分
- 曲线的参数方程
- 曲线积分的定义和性质
- Green公式
- 曲面的参数方程
- 曲面积分的定义和性质
- 散度与无源场
- 斯托克斯公式
5. 多元函数微分学
- 多元函数的极限、连续、偏导数
- 隐函数定理
- 多元函数的极值(条件极值)
- 多元函数的微分学中值定理
- 多元函数的泰勒公式
- 二重积分的定义和性质
- 三重积分的定义和性质
6. 多元函数积分学
- 曲线的参数方程和弧长
- 平面区域和曲面积分的计算方法
- 广义积分的收敛性
- 极坐标系和柱坐标系下的积分
这些知识点涵盖了高等数学专升本的常见考点,希望对你的学习有帮助。

(完整版)专升本高等数学知识点汇总

(完整版)专升本高等数学知识点汇总

(完整版)专升本高等数学知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)c bx ax y bkx y ++=+=2一般形式的定义域:x ∈R(2)xk y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0(4)x y a log = 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。

当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。

2、 函数的奇偶性定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-)(1) 偶函数)(x f ——D x ∈∀,恒有)()(x f x f =-。

(2) 奇函数)(x f ——D x ∈∀,恒有)()(x f x f -=-。

三、基本初等函数1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。

2、幂函数:u x y =, (u 是常数)。

它的定义域随着u 的不同而不同。

图形过原点。

3、指数函数定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。

4、对数函数定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。

图形过(1,0)点。

5、三角函数(1) 正弦函数: x y sin =π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(2) 余弦函数: x y cos =.π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(3) 正切函数: x y tan =.π=T , },2)12(,|{)(Z R ∈+≠∈=k k x x x f D π, ),()(+∞-∞=D f . (4) 余切函数: x y cot =.π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f .5、反三角函数(1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2,2[)(ππ-=D f 。

完整版专升本高等数学知识点汇总3篇

完整版专升本高等数学知识点汇总3篇

完整版专升本高等数学知识点汇总第一篇:导数与微分导数:是用来研究函数在某一点的变化率的一种工具。

其代表的是函数在该点的微小变化与自变数的微小变化之比的极限值。

微分:是由函数的导数所定义的另一种函数。

微分是利用导数对自变数进行微小的变化而得到的函数值的变化量,即函数的微分为函数在某一点的导数与自变数的微小变化值的乘积。

导数的定义公式:$\Large f'(x)= \lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}= \lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$微分的定义公式:$\Large dy=f'(x)dx$常用导数公式:常数函数的导数为0:$\large (\mathrm{C})'=0$幂函数的导数为其幂次减一倍的函数值:$\large(x^n)'=nx^{n-1}$指数函数的导数是其自身的函数值再乘以以e为底数的指数,即:$\large (e^x)'=e^x$常数倍的函数的导数,等于常数倍和该函数的导数之积:$\large (k f(x))'=k f'(x)$和差函数的导数等于其各自的导数之和:$\large(f(x)\pm g(x))'=f'(x)\pm g'(x)$常用微分公式:$\large dy=(\frac{d}{dx}f(x))dx$$\largedy=\frac{d}{dx}(f(x)g(x))dx=f'(x)g(x)+f(x)g'(x)dx$ $\largedy=\frac{d}{dx}(\frac{f(x)}{g(x)})dx=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}dx$高阶导数:如果函数的一阶导数存在,可以对其再进行一次导数运算,得到函数的二阶导数;继续运算,可以得到函数的三、四、五……n阶导数。

高数专升本知识点目录总结

高数专升本知识点目录总结

高数专升本知识点目录总结第一章:集合与函数1.1 集合的基本概念1.2 集合的运算1.3 函数的概念1.4 函数的性质1.5 反函数和复合函数第二章:极限与连续2.1 数列的极限2.2 函数的极限2.3 极限的运算法则2.4 无穷大与无穷小2.5 连续的概念2.6 连续函数的运算法则第三章:导数与微分3.1 导数的定义3.2 导数的计算3.3 隐函数和参数方程的导数3.4 高阶导数和导数的应用3.5 微分的概念3.6 微分的近似计算第四章:不定积分4.1 不定积分的性质4.2 不定积分的基本公式4.3 特殊函数的不定积分4.4 不定积分的计算方法4.5 定积分的性质第五章:定积分5.1 定积分的定义5.2 定积分的计算5.3 特殊函数的定积分5.4 定积分的应用第六章:微分方程6.1 微分方程的基本概念6.2 微分方程的解的存在唯一性6.3 一阶微分方程的解法6.4 高阶微分方程的解法6.5 微分方程的应用第七章:多元函数微分学7.1 多元函数的极限7.2 偏导数7.3 全微分7.4 多元函数的极值7.5 条件极值第八章:重积分8.1 二重积分的概念8.2 二重积分的计算8.3 三重积分的概念8.4 三重积分的计算8.5 重积分的应用第九章:曲线曲面积分9.1 曲线积分的概念9.2 第一型曲线积分9.3 第二型曲线积分9.4 曲面积分的概念9.5 曲面积分的计算第十章:无穷级数10.1 级数的概念10.2 收敛级数的性质10.3 收敛级数的判别法10.4 幂级数的收敛半径10.5 函数展开为幂级数第十一章:向量代数11.1 向量的基本概念11.2 向量的线性运算11.3 空间直角坐标系中的向量11.4 点、线、面的向量方程11.5 向量的数量积和向量积第十二章:空间解析几何12.1 空间直角坐标系中的点、直线、平面12.2 空间中的曲线和曲面12.3 空间中的曲线积分12.4 空间中的曲面积分12.5 空间中的曲率和法线方程以上的知识点目录总结包括了高数专升本课程的所有重要知识点,涵盖了集合与函数、极限与连续、导数与微分、不定积分、定积分、微分方程、多元函数微分学、重积分、曲线曲面积分、无穷级数、向量代数以及空间解析几何等内容。

专升本高数知识点汇总

专升本高数知识点汇总

引言概述高等数学是专升本考试中的一门重要科目,对于考生来说,掌握高数知识点是提高考试成绩的关键。

本文将通过对专升本高数知识点的汇总,详细介绍每个知识点的内容和要点,以帮助考生全面、系统地复习高等数学。

正文内容一、极限与连续1.数列极限的概念与性质a.数列极限的定义b.数列极限的性质:唯一性、有界性等2.函数极限的概念与性质a.函数极限的定义b.函数极限的性质:局部有界性、局部保号性等3.连续与间断a.函数连续的定义b.连续函数的运算性质c.间断点的分类:可去间断点、跳跃间断点和无穷间断点二、导数与微分1.导数的概念与性质a.导数的定义b.导数的性质:零点定理、费马定理等2.常见函数的导数计算法则a.基本初等函数的导数b.复合函数的导数c.反函数的导数3.高阶导数与高阶微分a.高阶导数的定义b.高阶微分的定义与性质4.隐函数与参数方程的导数a.隐函数的导数b.参数方程的导数三、定积分与不定积分1.定积分的概念与性质a.定积分的定义b.定积分的性质:可加性、线性性等2.定积分的计算法则a.基本初等函数的定积分b.第一换元法和第二换元法c.分部积分法3.不定积分的概念与性质a.不定积分的定义b.不定积分的性质:线性性、可加性等4.常见函数的不定积分计算法则a.基本初等函数的不定积分b.反函数的不定积分c.分部积分法和换元法四、微分方程1.常微分方程的基本概念a.微分方程的定义与分类b.一阶微分方程与高阶微分方程2.常系数线性微分方程a.齐次线性微分方程b.标准非齐次线性微分方程3.变量可分离、一阶线性与一阶线性齐次微分方程a.变量可分离型微分方程的解法b.一阶线性微分方程的解法c.一阶齐次线性微分方程的解法4.高阶微分方程a.常系数线性齐次微分方程的解法b.常系数线性非齐次微分方程的解法五、级数与幂级数1.数项级数的定义与性质a.数项级数的定义b.数项级数的性质:比较判别法、正项级数的性质等2.幂级数的概念与收敛半径a.幂级数的定义b.幂级数的收敛半径3.幂级数的运算与收敛性质a.幂级数的加减运算b.幂级数的乘法运算c.幂级数的收敛性质:绝对收敛、条件收敛等4.常见函数的幂级数展开a.指数函数的幂级数展开b.三角函数的幂级数展开c.对数函数的幂级数展开总结通过本文对专升本高数知识点的详细阐述和系统归纳,我们对极限与连续、导数与微分、定积分与不定积分、微分方程以及级数与幂级数等重要内容有了全面的了解。

专升本高数知识点汇总

专升本高数知识点汇总

专升本高数知识点汇总高数(高等数学)是专升本考试的重要科目,涉及的知识点较多。

下面是高数的主要知识点汇总,供参考。

一、数列与数学归纳法1.数列的定义和表示方法2.等差数列、等差中项数列、等差数列的通项公式和前n项和公式3.等比数列、等比中项数列、等比数列的通项公式和前n项和公式4.递归定义的数列5.数学归纳法的基本原理和应用二、极限与连续1.函数的极限:-函数极限的定义与性质-左极限和右极限的定义-极限的四则运算法则2.数列的极限:-数列极限的定义与性质-收敛数列与发散数列-数列极限的四则运算法则-无穷小量与无穷大量的概念3.无穷级数:-无穷级数的概念与性质-收敛级数与发散级数-常见无穷级数的求和公式4.连续函数:-连续函数的概念与性质-连续函数的运算法则-闭区间上连续函数的性质三、导数与微分1.导数的概念与性质:-函数在一点处的导数定义与左右导数的定义-导数的四则运算法则-函数可导与函数连续的关系-高阶导数的概念2.基本初等函数的导数:-幂函数、指数函数、对数函数、三角函数与反三角函数的导数-常见函数的导数公式3.隐函数与参数方程的导数4.微分的概念与性质:-微分的定义-微分中值定理-高阶微分的概念5.函数的单调性与曲线的凹凸性:-函数的单调性与曲线的单调区间-曲线的凹凸性与拐点-曲线的凹凸区间四、不定积分与定积分1.不定积分:-不定积分的定义与性质-基本初等函数的不定积分公式-基本不定积分的性质2.定积分:-定积分的定义与性质-定积分的计算方法-定积分中值定理-平面图形的面积与旋转体的体积五、微分方程1.微分方程的基本概念与分类2.一阶微分方程:-可分离变量的方程-齐次方程-一阶线性方程- Bernoulli方程3.高阶微分方程:-齐次线性方程与非齐次线性方程的解法-常系数线性齐次方程-常系数线性非齐次方程4.变异参数法5.欧拉方程与欧拉型微分方程6.常微分方程的应用以上仅为高数知识点的大部分内容,考生在备考时还需细化每个知识点的具体内容并进行深入理解与掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。

2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。

当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。

2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。

2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。

三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。

2、幂函数:y=x^u,(u是常数)。

它的定义域随着u的不同而不同。

图形过原点。

3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。

图形过(0,1)点。

4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。

图形过(1,0)点。

5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。

4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。

四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。

改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。

2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。

当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。

2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。

2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。

三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。

2、幂函数:y=x^u,(u是常数)。

它的定义域随着u的不同而不同。

图形过原点。

3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。

图形过(0,1)点。

4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。

图形过(1,0)点。

5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。

4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。

四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。

代入法是求极限时常用的方法,利用“初等函数在某点的极限等于该点的函数值”的性质直接代入求解。

传统的求极限方法有四种:利用四则运算法则、等价无穷小量代换、两个重要极限和洛必达法则。

四则运算法则包括加减法和乘法,常数可以直接提出来,而除法则需要注意分母不能为零。

等价无穷小量代换常用的有sinx~x、tanx~x、arctanx~x和1-cosx~x等。

两个重要极限是sinx/x=1和lim(1+x)^1/x=e。

洛必达法则适用于“0/0”和“∞/∞”型不定式,需要求出函数的导数并再次进行极限求解。

导数的定义是当自变量x在某一邻域内取得增量时,相应地函数y取得的增量与自变量增量之比的极限,即lim(f(x+Δx)-f(x))/Δx=f'(x)。

求导公式1.基本初等函数的导数公式:1) (C)0 (C为常数)2) (x^n)nx^(n-1) (n为任意常数)3) (a^x)a^xlna (a>0.a≠1) 特殊情况(e^x)e^x4) (log_a x)1/(xlna) (x>0.a>0.a≠1) (lnx)1/x5) (sinx)cosx6) (cosx)-sinx7) (tanx)sec^2x8) (cotx)-csc^2x9) (arcsinx)1/√(1-x^2) (-1≤x≤1)10) (arccosx)-1/√(1-x^2) (-1≤x≤1)11) (arctanx)1/(1+x^2)12) (arccotx)-1/(1+x^2)2.导数的四则运算公式:1) [u(x)±v(x)]u(x)±v(x)2) [u(x)v(x)]u(x)v(x)+u(x)v(x)3) [ku(x)]ku(x) (k为常数)4) [u(x)/v(x)][u(x)v(x)-u(x)v(x)]/[v(x)]^23.复合函数求导公式:设y=f(u)。

u=φ(x),且f(u)及φ(x)都可导,则复合函数y=f[φ(x)]的导数为dy/dx=(dy/du)·(du/dx)=f'(u)·φ'(x)导数的应用1.函数的单调性:若f'(x)>0,则f(x)在(a,b)内严格单调增加。

若f'(x)<0,则f(x)在(a,b)内严格单调减少。

2.函数的极值:f'(x)=0的点为函数f(x)的驻点,设为x0.1) 若xf(x0);x>x0时,f(x)<f(x0),则f(x0)为f(x)的极大值点。

2) 若xx0时,f(x)>f(x0),则f(x0)为f(x)的极小值点。

3) 若f(x)在x的两侧的符号相同,则f(x0)不是极值点。

3.曲线的凹凸性:若f''(x)>0,则曲线y=f(x)在(a,b)内是凹的。

若f''(x)<0,则曲线y=f(x)在(a,b)内是凸的。

4.曲线的拐点:1) 当f(x)在x的左、右两侧异号时,点(x,f(x))为曲线y=f(x)的拐点,此时f''(x)=0.2) 当f(x)在x的左、右两侧同号时,点(x,f(x))不为曲线y=f(x)的拐点。

5.函数的最大值与最小值。

极值和端点的函数值中最大和最小的就是最大值和最小值。

四、微分公式微分就是求导数,可以使用公式dy=f'(x)dx来求微分。

一、不定积分1、定义:不定积分是求导的逆运算,最后的结果是函数+C的表达形式。

可以使用求导公式来记忆公式。

2、不定积分的性质:1)[f(x)dx]'=f(x)或df(x)/dx=f(x)dx∫∫2)F'(x)dx=F(x)+C或dF(x)=F(x)+C∫∫3)[f(x)±φ(x)±…±ψ(x)]dx=∫∫f(x)dx±∫φ(x)dx±…±∫ψ(x)dx。

4)kf(x)dx=kf(x)dx(其中k为常数且k≠0)。

2、基本积分公式(要求熟练记忆):1)dx=C2)xdx=1/2x²+C3)∫xⁿdx=1/(n+1)x⁽ⁿ⁺¹⁾+C(其中n≠-1)4)∫adx=ax+C(其中a为常数)5)∫edx=eˣ+C6)∫sinxdx=-cosx+C7)∫cosxdx=sinx+C8)∫cos²xdx=tanx+C9)∫2sinxdx=-cotx+C10)∫1/(1-x²)dx=arcsinx+C11)∫1/(1+x²)dx=arctanx+C3、第一类换元积分法对不定微分g(x)dx,可以将被积表达式g(x)dx凑成∫f[ϕ(x)]ϕ'(x)dx=∫f(ϕ(x))d(ϕ(x)),这是关键的一步。

常用的凑微分的公式有:1)∫f(ax+b)dx=1/a f(ax+b)d(ax+b)2)∫f(ax+b)xdx=1/ak f(ax+b)d(ax²/2+b)3)∫f(x)/x dx=2f(x)dx4)∫f(x)/x² dx=-f(x)/x+C5)∫f(eˣ)edx=f(eˣ)deˣ6)∫f(lnx)/x dx=f(lnx)d(lnx)7)∫f(sinx)cosxdx=f(sinx)dsinx8)∫f(cosx)sinxdx=-f(cosx)dcosx9)∫f(tanx)/cos²x dx=f(tanx)dtanx10)∫f(c otx)sin²x dx=-f(cotx)dcotx11)∫f(arcsinx)/√(1-x²) dx=f(arcsinx)darcsinx1.$\mathrm{d}x=f(\arcsin x)\mathrm{d}(\arcsin x)$2.$f(\arccos x)\mathrm{d}x=-f(\arccos x)\mathrm{d}(\arccos x)$3.$\frac{1}{1+x^2} \mathrm{d}(\arctan x)=f(\arctanx)\mathrm{d}(\arctan x)$4.$\mathrm{d}x=\frac{\mathrm{d}(\ln\varphi(x))}{\varphi(x)}\quad (\varphi(x) \neq 0)$1.分部积分法公式为$\int u \mathrm{d}v=uv-\int v\mathrm{d}u$2.XXX-莱布尼茨公式为$\int_{a}^{b} f(x)\mathrm{d}x=F(b)-F(a)$,其中$F(x)$是$f(x)$的一个原函数。

3.计算平面图形面积公式为$S=\int_{a}^{b} (f(x)-g(x))\mathrm{d}x$,其中$f(x)$和$g(x)$是两条连续曲线,$x=a$和$x=b$是两条直线。

相关文档
最新文档