(完整版)苏教版初中数学七年级下册教案(全册)
苏教版初中数学七年级下册教案(全册)
苏教版初中数学七年级下册教案(全册) 第一章有理数1.1 有理数•相反数•绝对值•有理数的分类•有理数的加减和乘法运算1.2 有理数的除法•有理数的除法•有理数的乘除混合运算1.3 有理数的比较与大小•有理数的比较•有理数的大小比较第二章代数式2.1 代数式及其计算•代数式•代数式的加减乘除运算2.2 一元一次方程•一元一次方程的定义•解一元一次方程的基本方法2.3 利用一元一次方程解决简单问题•利用一元一次方程解决实际问题的基本方法第三章坐标系3.1 平面直角坐标系•平面直角坐标系•点的坐标3.2 点和图形的位置关系•点和图形的位置关系3.3 坐标计算•求两点之间的距离•分段计算第四章相似4.1 相似三角形•相似三角形的定义•相似三角形的性质4.2 相似的判定•两角对应相等•两边成比例•一角和两边成比例4.3 相似三角形的应用•相似三角形的应用第五章图形的变换5.1 平移•平移的定义•平移的性质5.2 旋转•旋转的定义•旋转的性质5.3 翻折•翻折的定义•翻折的性质第六章数据的分析6.1 平均数•平均数的概念•平均数的计算6.2 中位数•中位数的概念•中位数的求法6.3 众数•众数的概念•众数的求法总结本教材综合了初中数学七年级下册的各个重点内容,涵盖了有理数、代数式、坐标系、相似、图形的变换以及数据的分析等多个部分,内容丰富、易于理解。
教学过程中,可根据不同的章节结合具体的教材内容进行教学,提升学生的数学综合素质,培养其数学思维能力和实际数学运用能力。
苏科版七年级数学下册全册教案
⑴.如图,直线 a 、 b 被直线 c 所截,下列说法正确的是(
);(第⑴题)
(A)当 1 2 时,一定有 a // b
(B)当 a // b 时,一定有 1 2
(C)当 a // b 时,一定有 1 2 180(D)当 a // b 时,一定有 1 2 90
⑵.如图,直线 l1∥l2,则 α 为(
D
C
E
B
5
1
2
1
A
B
图1
43 2 图2
4. 下列所示的四个图形中, 1和 是同.位.角.的是( )
1 1
2
2
1 1
2 2
①
②
③
④
A. ②③
B. ①②③ C. ①②④ D. ①④
5. 如图 3 所示,点 E 在 AC 的延长线上,下列条件中能.判.断.AB// CD ( )
B
D
13
2 4
A
CE
图3
A. 3 4 B. 1 2 C. D DCE D. D ACD 180
通过折一张半透明的纸得到的(如图 4(1)~(4) ): 从图中可知,小敏画平行线的依据有( )
①两直线平行,同位角相等;
③同位角相等,两直线平行;
A.①②
B.②③
图4
②两直线平行,内错角相等;
④内错角相等,两直线平行.
C.③④
D.①④
五、课堂小结 梳理认知 判定两直线平行的条件有哪些,它们之间的联系是什么?
同位角
,两直线
5、课堂检测
。如何应用呢?
(1)、知识梳理、提升
如图 1,同位角有 对,能判定 a∥b 吗,为什么?要使 a∥b,满足什么条件?
(完整版)苏教版初中数学七年级下册教案(全册)
苏华世七年级数学教学体系7.1探索直线平行的条件7.2探索平行线的性质7.3图形的平移7.4认识三角形第八章幂的运算8.1同底数幂的乘法8.2幂的乘方和积的乘方8.3同底数幂的除法第九章从面积到乘法公式9.1单项式乘单项式9.2单项式乘多项式9.3多项式乘多项式9.4乘法公式9.5单项式乘多项式法则的再认识)9.6乘法公式的再认识-因式分解(二)二元一次方程组10.1二元一次方程10.2二元一次方程组10.3解二元一次方程组10.4用方程组解决问题5.1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质 1.学生画直线AB 、CD 相交于点O ,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达延长线它们的另一边互为反向有一条公共边与OA ,AOD AOC ∠∠; BOD AOC ∠∠与有公共的顶点O ,而且AOC ∠的两边分别是BOD ∠两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表: 两条直线相交所形成的角分类 位置关系数量关系教师提问:如果改变AOC∠的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,∠,求4401=∠的度数。
苏教版初中数学七年级下教案全集
若∠1=∠2,则 a∥b.
应用格式:
∵∠1=∠2(已知)
∴a∥b(内错角相等,两直线平行)
2、同旁内角互补,两直线平行
即直线 a,b 被直线 c 所截,所得的两对同旁内角中,若有一
对互补,则 a∥b.如图若∠1+∠2=180,则 a∥b
应用格式:
∵∠1+∠2=180( 已知)
∴a∥b(同旁内角互补,两直线平行)
动手操作 合作探究
通过操作发现, 让学生进一步 体会数学美的 乐趣。
(四)做一做:
三、巩固提高
如图,将一张长方形纸片沿 EF 折叠 后,点 D、C 分别落在点 I、H 的位 置,EI 的延长线与 BC 交于点 G.若 ∠EFG=50°,求∠1、∠2 的度数
E
A
D
1
I
2
B
C
G
F
H
独立思考 讨论合作
让学生通过练 习加深对平行 线的理解,学会 知识适时迁移。
板演 …… …… …… …… ……
教
学
后
记
课题
第七章 平面图形的认识(二) 8.1 探索直线平行的条件(2)
课
时 本课(章节)需 2 课时
分 本 节 课 为 第 2 课时
配 为 本 学期总第
课时
会用内错角相等判定二条直线平行 教学目标
会用同旁内角互补判定二条直线平行
重 点 推导的过程
难 点 证明推理
7,∠7 与∠8,∠8 与∠5。
还有同位角,内错角,同旁内角。 (1)同位角:两条直线被第三条直线所截,在二条直线的同侧, 且在第三条直线的同旁的二个角叫同位角。 如图中的∠1 与∠5 分别在直线 AB CD 的上侧,又在第三条直线 EF 的右侧,所以∠1 与∠5 是同位角,它们的位置相同,在图中还 有∠2 与∠6,∠4 与∠8,∠3 与∠7 也是同位角。 (2)内错角:两条直线被第三条直线所截,在二条直线的内侧, 且在第三条直线的两旁的二个角叫内错角。 如上图中∠2 与∠8 在直线 AB、CD 的内侧(既 AB 、CD 之间), 且在 ED 的两旁,所以∠2 与∠8 是内错角。同理,∠3 与∠5 也是内 错角。 (3)同旁内角:两条直线被第三条直线所截,在两条直线的你 侧,且在第三条直线的同旁的两个角叫同旁内角。 如上图中的∠2 与∠5 在直线 AB CD 内侧又在 EF 的同旁,所以 ∠2 与∠5 是同安排能够内角,同理,∠3 与∠8 也是同旁内角。 因此,两条直线被第三条直线所截,共得 4 对同位角,2 对内 错角,2 对同旁内角。
苏教版七年级下册数学全册教案
新课引入——思情想景,导获入得:数学结论的过程.
如图在一块小木板上面画一条线段 AB,你能通过测量图中哪些角的大 小来判断木板的上、下边缘是否平行?
A
B
“议一议”: 1.如图 1,直线 a、b 被直线 c 所截,∠2=∠3.直线 a 与直线 b 平行
吗?试说明理由. 2.如图 2,直线 a、b 被直线 c 所截,∠2
第 16 页 共 201 页
辨一辨、议一议:
在以下现象中,属于平移的是 (
)
① 在荡秋千的小朋友;
② 打气筒打气时,活塞的运动;
③ 钟摆的摆动;
④ 传送带上,瓶装饮料的移动.
A.①②
B.①③ C.②③
D.②④
例 1 如图,4 个小三角形都是等边三角形,边
F
长为 1.3cm.你能通过平移△ABC 得到其他三角形
教学目 标:
7.3 图形的平移 1.认识平移的概念及平移的不变性,理解平移图形中对应线段 平行且相等的性质; 2.能按要求作出简单平面图形平移后的图形,能用平移的性质 解决实际问题.
教学重 理解图形平移的基本性质,并能按要求作出简单平面图形平移
点:
后的图形.
教学难 点:
能运用平移的性质解决实际问题.
结论? 2.平行线的性质与平行线的判定有何区
别与联系? 3.你能用三种语言表示平行线的性质与
判定吗? 4.判定角相等的方法有哪些?
课后作业: 1.课本 P16-17 习题 7.2 第 2、3、4、5 题; 2.思考题(选做). 已知:如图∠1=∠2,∠A=∠C,说明:AE∥BC.
第 15 页 共 201 页
第 10 页 共 201 页
课后作业: 1.课本 P15 练一练第 1、2 题; 2.思考题(选做): 已知:如图,AB∥CD,∠1=∠2,则 GP 与 QH 的位置关系是什么?
苏教版初中数学七年级下册教案(全册)
苏教版初中数学七年级下册教案(全册) 第一章平面直角坐标系
课时1 相识坐标系
教学目标
1.了解平面直角坐标系的概念和相关法则。
2.学习在平面直角坐标系内表示点和图形的方法。
3.掌握在平面直角坐标系内求距离和中点的方法。
教学重点
1.平面直角坐标系的概念和相关法则。
2.平面直角坐标系内表示点和图形的方法。
3.在平面直角坐标系内求距离和中点的方法。
教学难点
掌握在平面直角坐标系内求距离和中点的方法。
教学过程
一、导入新课
通过展示例子,了解直角坐标系在日常生活中的应用,引出平面直角坐标系的概念和相关法则。
二、新课内容
1.平面直角坐标系的概念和性质。
2.在平面直角坐标系内表示点和图形的方法。
3.在平面直角坐标系内求距离和中点的方法。
三、训练
1.通过练习,巩固平面直角坐标系的相关法则和表示点和图形的方法。
2.练习在平面直角坐标系内求距离和中点的方法。
四、课堂小结
通过课堂小结,今天所学的知识点,并强调在日常生活中的应用。
五、作业布置
布置相关作业。
教学反思
本节课通过引入例子,让学生了解到直角坐标系在日常生活中的应用,进而引入平面直角坐标系的概念和相关法则。
通过训练,巩固了平面直角坐标系内表示点和图形的方法,并掌握了在平面直角坐标系内求距离和中点的方法。
最后通过本节课的,强调了所学知识在日常生活中的应用。
苏教版初中数学七年级下教案全集
2
。由理明说试 �吗
行平 b 线直与 a 线直。3∠=2∠�截所 c 线直被 b�a 线直�图如 1
议一议请 。行平线直两麽那�等相角位同的得截果如 、 。角内旁同�角 错内�角位同有中角个八的成形�截所线直条三第被线直条两 答回生学 动 活 生 学
仪影投
�入引 动
课授新
活
师
教 法方学教 点 点 难 重
果结出说 考思察观
。性极积的 习学与乐 �与参 主自生学发激 算运、作操、考 思、察观过通
A
入导境情、一
�mc 少多为离距的移平 A 体 物的上带送传�时角的°021 过转 轮动转的 mc03 为径半当 �图如 �击点识知�一� 图 意 计 设 动活生学 动 活 师 教 程 过 学 教 板角三、体媒多 究探导引 识知关有形角三及以图作移平形图面平握掌和解理 念概关有的形角三�质性和件条的行平线直解理 。识意义主国爱透渗 �务服而活生的好美更造创为又 �活生于源来学数会体 �标目感情 妙奇 的学数受感生学让�性造创和性阔广的维思生学练训�力能新创 、力能流交、作操�维思理推、维思理条的生学养培�标目力能 。用应 中活生际实在线行平条两会体�系联的间之段线角、边解理�质 性及件条的行平线直两了索探�动活等践实作操过通�标目识知 课习练 型 课 标目学教 备准具教 式形学教 点难学教 点重学教 节环学教
A
�么
什为�行平相互线些那中图�081=EDB∠+B∠�2∠=1∠�图如 �1 题例
�行平线直两�补互角内旁同�b∥a∴ �知已 �081=2∠+1∠∵ �式格用应 b∥a 则�081=2∠+1∠若图如.b∥a 则�补互对 一有若�中角内旁同对两的得所�截所 c 线直被 b,a 线直即 行平线直两�补互角内旁同、2 �行平线直两�等相角错内�b∥a∴ �知已�2∠=1∠∵ �式格用应 .b∥a 则�2∠=1∠若 图如,b∥a 麽那�等想对
(完整版)苏教版七年级下教学案第十章《二元一次方程组》(共9课时)
课题10.1 二元一次方程自主空间1、理解二元一次方程及二元一次方程的解的观点。
2、学会求出某二元一次方程的几个解和查验某对数值能否为二元一次方学习程的解。
目标3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示。
4、初步学会依据给定的解求出方程中所含字母的值。
学习二元一次方程的意义及二元一次方程的解的观点要点二元一次方程的解的不定性和有关性。
即二元一次方程的解有无数个,但学习又不是随意两个数是它的解。
难点教课流程1.依据篮球的比赛规则,赢一场得 2 分,输一场得 1 分,在某次中学预生比赛中,一支球队赛了若干场后积20 分,问该队赢了多少场?输了多习导少场?航一.新知研究:1、察看方程2x+y=20 和 6x+8y=38 有哪些共同得特色?你能依据这些特色给它们起一个名称吗?二元一次方程的观点:像这样,含有两个未知数,而且所含未知数的项的次数都是 1 的方程,叫做二元一次方程2、判断以下方程哪些是二元一次方程,哪些不是?⑴ x+3y=3z⑵ 2xy+y =7⑶ x+y+1⑷ 2(x+y)=1-x合3、请同学们编一道二元一次方程和一道不是二元一次的方程。
作探4、下边,我们一同来议论一下二元一次方程的解的状况。
第一我们来复究习一下什么是一元一次方程的解?思虑一下:什么是二元一次方程的解?使一个二元一次方程左右两边的值相等的一对未知数的值,叫二元一次方程的解。
①重申:“一对”如 x=8,y=3就是方程2x+3y=25的一个解,记作:x=8 ,y=3②写出一个二元一次方程,使x=-1 ,y=3 为它的一个解,该二元一次方程能够为_______________二.例题剖析:例 1:已知 3y-2x=1 ,用含 x 的一次式来表示 y,并取 x=1, -5 , 10,求出方程的三个解。
解:移项,得: 3y=1+2x∴(当用含 x 的一次式来表示 y 后,再请同学做游戏,让同学领会一下计算的速度能否要快)取 x=1,得: y=1;取 x=-5 ,得: y=-3 ;取 x=10,得: y=7;∴是方程 3y-2x=1 的三个解。
初中数学七年级下册苏科版10.1二元一次方程优秀教学案例
3.回顾一元一次方程的知识,引导学生发现从一元到二元的过渡。
4.宣布本节课的学习任务:学习二元一次方程的定义、解法和应用。
(二)讲授新知
1.讲解二元一次方程的定义,明确方程的构成要素:未知数、系数、等号、常数。
2.通过示例,讲解二元一次方程的解法:代入法、消元法等。
2.感受数学与实际生活的紧密联系,培养学生的数学应用意识。
3.培养学生勇于挑战、克服困难的意志,增强学生的自信心。
4.认识到数学学习需要团队合作,培养学生的集体荣誉感和责任感。
在教学过程中,我将关注每一个学生的学习进度,关注学生的个体差异,充分调动学生的积极性,让每一个学生都能在课堂上发挥自己的潜能。同时,我将积极引导学生进行自我反思,培养学生的自主学习能力,为学生的终身发展奠定基础。通过本节课的学习,使学生在知识与技能、过程与方法、情感态度与价值观等方面取得全面发展。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的问题为背景,创设情境,引发学生的思考。例如,设计“购物预算”等情境,让学生在解决问题的过程中自然接触到二元一次方程。
2.故事情境:通过有趣的故事,激发学生的学习兴趣。如讲解“狐狸和葡萄”的故事,引导学生理解二元一次方程的内涵。
3.游戏情境:设计有趣的数学游戏,让学生在游戏中体验二元一次方程的乐趣。例如,设计“猜数字”游戏,让学生在游戏中感悟到二元一次方程的应用。
(二)过程与方法
1.通过合作交流,培养学生主动探究、积极思考的学习习惯。
2.运用多媒体教学手段,引导学生直观地理解二元一次方程的解法。
3.创设有趣的教学情境,让学生在实践中感受二元一次方程的应用价值。
最新苏教版初中数学七年级下册教案(全册)
精品文档苏华世七年级数学教学体系7.1探索直线平行的条件7.2探索平行线的性质7.3图形的平移7.4认识三角形第八章幂的运算8.1同底数幂的乘法8.2幂的乘方和积的乘方8.3同底数幂的除法第九章从面积到乘法公式9.1单项式乘单项式9.2单项式乘多项式9.3多项式乘多项式9.4乘法公式9.5单项式乘多项式法则的再认识)9.6乘法公式的再认识-因式分解(二)二元一次方程组10.1二元一次方程10.2二元一次方程组10.3解二元一次方程组10.4用方程组解决问题5.1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质 1.学生画直线AB 、CD 相交于点O ,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达延长线它们的另一边互为反向有一条公共边与OA ,AOD AOC ∠∠; BOD AOC ∠∠与有公共的顶点O ,而且AOC ∠的两边分别是BOD ∠两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表:教师提问:如果改变AOC ∠的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用 练习: 下列说法对不对(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2) 邻补角是互补的两个角,互补的两个角是邻补角(3) 对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b 相交, 401=∠,求4,3,2∠∠∠的度数。
苏科版七年级数学下册全套教案
②它们到原点的距离相等,并且分别在原点的两侧。
③它们只有符号不同。
你还能举出有这样特征的几对数吗?
二、自主探索
像这样符号不同,绝对值相等的两个数,叫做互为相反数(opposite number)。
规定,0的相反数还是0
例1:求3,-4.5,0的相反数。
解:
例2:6与__________是互为相反数,_________是4.6的相反数,_________的相反数是它本身。
相反数等于-2.6的数有_____________个,它是______________。
相反数等于它本身的数有______________个,它是______________
表示一个数的相反数,只要在这个数的前面添一个“-”号。
Hale Waihona Puke 如5的相反数是-5;而-5的相反数是-(-5)=5。
相反数的相反数是本身。
例3:
(1)+2.3的相反数是_________,|+2.3|=_________
(2)-10.5的相反数是_________,|-10.5|=_________
(3)0的相反数是_________,|0|=_________
2.初步培养学习运用所学知识和技能解决问题,发展应用意识。
三、情感态度与价值观
体会数学知识,以现实世界 的联系,体现数学充满着探索性。
【教学重点】
能将已知数在数轴上表示出来。说出数轴上已知点所表示的数。
【教学难点】
利用数轴比较有理数大小。
【教学准备】
一、直尺 三角板 温度计
二、预习导学
问题:在一条东西向的马路上,有一个汽车站,汽车站东 3m和7.5m处有一棵柳树和一棵杨树,汽车站西3m和4.8m处有一棵槐树和一根电线杆,试画图表示这一情景。
苏教版初中数学七年级下册教案(全册)
苏华世七年级数学教学体系7、1探索直线平行得条件7、2探索平行线得性质7、3图形得平移7、4认识三角形第八章幂得运算8、1同底数幂得乘法8、2幂得乘方与积得乘方8、3同底数幂得除法第九章从面积到乘法公式9、1单项式乘单项式9、2单项式乘多项式9、3多项式乘多项式9、4乘法公式9、5单项式乘多项式法则得再认识)9、6乘法公式得再认识-因式分解(二)二元一次方程组10、1二元一次方程10、2二元一次方程组10、3解二元一次方程组10、4用方程组解决问题5、1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力与有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中得一个角得邻补角与对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角得概念、对顶角性质与应用难点:理解对顶角相等得性质得探索[教学设计]一、创设情境激发好奇观察剪刀剪布得过程,引入两条相交直线所成得角在我们得生活得世界中,蕴涵着大量得相交线与平行线,本章要研究相交线所成得角与它得特征。
观察剪刀剪布得过程,引入两条相交直线所成得角。
学生观察、思考、回答问题出示一块布与一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间得得角发生了什么变化?剪刀张开得口又怎么变化?教师点评:如果把剪刀得构造瞧作就是两条相交得直线,以上就关系到两条直线相交所成得角得问题,二.认识邻补角与对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同得位置怎么将它们分类?学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达延长线它们的另一边互为反向有一条公共边与OA ,AOD AOC ∠∠;BOD AOC ∠∠与有公共得顶点O,而且AOC ∠得两边分别就是BOD ∠两边得反向延长线2.学生用量角器分别量一量各角得度数,发现各类角得度数有什么关系? (学生得出结论:相邻关系得两个角互补,对顶得两个角相等) 3学生根据观察与度量完成下表:两条直线相交 所形成得角分类 位置关系 数量关系AOC ∠?4.概括形成邻补角、对顶角概念与对顶角得性质三.初步应用练习:下列说法对不对(1) 邻补角可以瞧成就是平角被过它顶点得一条射线分成得两个角(2) 邻补角就是互补得两个角,互补得两个角就是邻补角(3) 对顶角相等,相等得两个角就是对顶角学生利用对顶角相等得性质解释剪刀剪布过程中所瞧到得现象四.巩固运用例题:如图,直线a,b 相交, 401=∠,求4,3,2∠∠∠得度数。
苏科版七年级数学下册教案-7.4 认识三角形
7.4认识三角形(1)一、教学内容和内容解析本节是苏科版七年级下册数学第七章第四节的第一课时,本节旨在小学初步认识三角形的基础上得出三角形的定义,进一步认识三角形的各组成要素,了解三角形的表示方法,理解三边关系,并能应用三边关系解决一些实际问题.本节的教学注重培养学生的观察力,观察力空间观念和推理能力,学好本节内容是学习三角形其它知识的基础和保证.根据具体的教学内容将采取以学生自主探究为主,教师适时引导相结合的方法,让学生在学中乐,乐中学的氛围中完成教学任务.二、学情分析学生对三角形的知识已有了初步了解,能够较容易掌握三角形的表示方法等基础知识,但动手操作能力,以及通过观察总结结论的能力,语言表达等能力较差,对于知识的表述不是很全面、规范、准确,比如:学生很可能轻而易举地说出钝角三角形、直角三角形、锐角三角形、等腰三角形、等边三角形等,但是却不知道这些知识是根据什么来分类的.学生能够说出三角形两边之和大于第三边,但是只是停留在通过通过搭小棒得到的,不能从数学的角度去解释,教师就应该引导学生去实验、分析、总结、验证三角形的三边存在的关系.三、教学目标1.理解三角形的概念及基本要素,能初步应用三角形三边关系解决问题,培养观察、推理能力;2.经历观察、操作、想象、推理、交流等活动,自主探究,获取结论,体验数学知识在生活中的作用.3.在探究问题的过程中,发展观察问题、分析问题的能力;感受数学表达的严谨性;在交流与探讨的过程中感受团结协作的必要性,煅炼语言表达能力.四、教学重难点教学重点:理解三角形的概念及基本要素,应用三角形三边关系解决问题.教学难点:实践概括总结出三角形的三边关系.五、教学支持条件分析为了有效实现教学目标,条件许可可准备投影仪,多媒体课件,三角板,长度不等的小棒.学生自备学具:三角板,直尺,量角器、笔.六、教学过程(一)观察归纳三角形的定义 1.直观感知斜梁斜梁直梁问题1:请同学们观察图片,说出这些图片中都含有哪种几何图形,你能说出三角形的相关知识吗?设计意图:从实际背景出发,让学生感到数学与生活的关系,激发他们学习数学的兴趣,引起学生对学习过的三角形的知识回忆,为更好地学习作铺垫.师生活动:学生说出小学学过的三角形的相关知识,如锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形,老师做好记录,为下面的分类作准备.2.观察归纳问题2:(1)什么叫三角形?(你能给三角形下个定义吗)三角形怎么表示呢?(2)三角形包含哪些要素?设计意图:学生虽然能认识三角形,但是不能准确说出三角形的定义和表示方法,通过问题激发学生继续学习三角形的欲望.师生活动:引导学生通过观察三角形的图形给出三角形的定义.教师向学生讲解三角形的表示,三角形包含的三个要素.如图1,记作ΔABC有三个顶点 三角形的三要素有三条边 有三个内角 3.巩固练习问题3:请将下列各图中的三角形表示出来.设计意图:这组图形的设计可以加深学生对数学图形表示的理解和巩固,通过从简单到复杂,培养学生的观察能力,能够找出复杂图形的基本图形是学习几何的一项基本能力,后面的三角形全等和三角形相似都要这些能力,所以要让学生锻炼这方面的能力.师生活动:让学生独立完成三角形的表示,然后让学生讲一讲图4是怎么数的,教师对出现的问题及时加以强调.图1CBAD图3E CABD 图4ECA图2DCA(二)探究三角形三边的关系1.猜想问题4:长分别为3cm、4cm 、5cm、6cm、9cm的线段中,任意三条线段都能组成三角形吗?设计意图:让学生带着问题去思考.2.操作、验证问题5:满足什么条件的三条线段能组成三角形?设计意图:通过问题激发学生的求知欲.师生活动:学生拿出课前准备好的小棒,以小组为单位动手拼摆,总结结论:当任意两条线段的和小于或等于第三边时,都不能搭成三角形,只有当两边之和大于第三边时才能搭成三角形.教师板书“三角形任意两边之和大于第三边”后要强调“任意”两个字的含义,让学生更透彻地理解三边的关系,为准确应用打下基础,并让学生回忆旧知,该结论可以用一条数学原理来解释,为什么三角形任意两边之和大于第三边?(两点之间线段最短)3.证明、拓展问题6:为什么三角形的任意两边之和大于第三边?设计意图:学生对上述结论的得来只是建在动手实践的基础之上,通过这个问题的思考和探究,学生就会用学过的公理加以说明,学生将会对三角形的任意两边之和大于第三边的认识从感性认识上升到理性认识.师生活动:让学生去独立思考和讨论,回忆旧知解决问题,感受数学知识解决问题的乐趣.通过此环节让学生经历合作交流、自主探究的过程,进一步提高语言表达能力以及有条理的思考能力.c ba B图5CAa+c >b ; b+c >a ;a+b >c4.初步应用问题7:(1)长度为8cm ,2cm ,5cm 三条线段能否组成三角形?为什么?(2)长度为8cm ,6cm ,5cm 三条线段能否组成三角形?为什么?设计意图:(1)学生可能会因为8+2>5而认为能组成三角形,设计这个题目可以加深学生对任意两字的理解;(2)学生通过这两个题的计算可能会发现,只要求较短两边和与第三边进行比较就可以了.七、拓展延伸建筑工人要建造如图所示的房子,当施工到支撑梁时,他们选择了两根分别是3米和2米的横梁,现在想选择一根直梁,你能帮他确定直梁的范围吗?斜梁斜梁直设计意图:数学源于生活也服务于生活,生活离不开数学. 八、课堂小结本节课你有什么收获和体会?九、布置作业习题7.4 P26第1、2、4题. 十、教学反思通过本节课的教学,发现学生对于三角形并不陌生,学生在小学阶段已经学习了许多三角形的相关知识.如学生知道了直角三角形、钝角三角形、锐角三角形、等腰三角形、等边三角形、不等边三角形,三角形的内角和等于180度,三角形的任意两边之和大于第三边.基本学生对于三角形的这些认识,本节课教后有如下一些感想:前面说过学生已经掌握了许多三角形的相关知识,那么这节课要学什么?通过教学我发现,学生对于三角形的定义和组成要素并不清楚,因而对于三角形的认识也是比较混乱的,所以本节课的立足点就是三角形的定义和三角形的构成要素.学生虽然能够说出各种三角形的名称,但是不能准确地按照三角形的要素对这些三角形进行分类,特别是按照三角形的边将三角形分为如图5. 三角形的分类体现了分类的思想,蕴含了分类的方法.分类时要有一个统一的分类标准,分类不能重复,分类不能遗漏.这里的提升是学生后面学习四边形及对其分类的铺垫.本节课设计了数学活动,通过数学活动提高了学生学习数学的兴趣,发展了学生的动手能力和团结合作能力.特别是在数学活动中让学生将活动中出现的情况画成示意图,锻炼了学生的数学抽象能力.借助示意图培养了学生分析、观察和概括能力.(2)等边三角形有两边相等按边分:三角形本节课的教学从开始看到课题的无从下手,到通过对教材和学生的研究发现本节课内含是非常丰富的,通过本节课的教学使我深深感受到只有抓住一节课的本质,在教学中才能有的放矢.十一、板书设计7.4认识三角形(1)1.定义三角形是由3条不在同一条直线上的线段,首尾依次相接所组成的图形.有三个顶点 三角形的三要素 有三条边 有三个内角2.三角形分类c b aBCA (2)等边三角形有两边相等等腰三角形不等边三角形按边分:三角形形(1)按角分:三角3.三边关系三角形的任意两边之和大于第三边.c ba B图5CAa+c>b;b+c>a ;a+b>c十二、数学活动记录单数学实验记录单从长度分别为3cm、4cm、 5cm、 6cm和9cm的小棒中任意取3根,能否搭成一个三角形?(请同学们试一试,完成下表)实验三边的长度能否围成三角形画出示意图(标出数值)。
12.2证明-苏科版七年级数学下册教案
12.2 证明-苏科版七年级数学下册教案
教学目标
1.通过本课学习,学生将掌握证明的定义及常用证明方法;
2.培养学生的思维能力和逻辑思维能力。
教学步骤
1. 导入新知识
通过生活实例,引导学生思考证明的定义,例如:我们相信太阳东升西落,那么如何证明这一点呢?
2. 理解证明
引导学生自己思考证明的含义,如何进行证明,及证明的意义和重要性。
3. 认识常用证明方法
通过教师的讲解,介绍一些常用证明方法,如归纳法、反证法、数学归纳法等。
4. 实际案例证明
通过教师给出的实际案例,让学生尝试使用不同的证明方法,掌握证明的技巧和方法。
5. 练习自己的证明能力
学生进行练习,设计自己的证明思路,通过教师的点拨纠正错误,提升自己的证明水平。
教学重点
1.理解证明;
2.熟练掌握常用证明方法;
3.具备一定的证明思维能力。
教学难点
学生的证明思维能力不强,在实际操作中往往难以发挥证明的能力。
教学方法
通过引导学生思考、教师讲解、实际案例分析、练习等方式,帮助学生提高证明的能力。
教学资源
教材《苏科版七年级数学下册》。
教学评价
通过教师的点拨和评价,提高学生的证明水平和思维能力。
作业
设计一个实际的问题,用自己所学的证明方法进行证明,并写出证明过程。
苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2
苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2一. 教材分析《探索直线平行的条件》是苏科版数学七年级下册第七章第一节的内容。
本节课主要让学生通过探索,理解并掌握直线平行的条件。
学生在学习了直线、射线、线段的基础上,进一步探索直线平行的条件,有助于提高他们的空间想象能力和抽象思维能力。
教材通过实例引入,引导学生探究并发现直线平行的条件,然后通过练习巩固所学知识。
二. 学情分析七年级的学生已经学习了直线、射线、线段等基础知识,对图形的认识有一定的基础。
但是,他们对直线平行的条件的理解和应用还需要进一步的引导和培养。
此外,学生的空间想象能力和抽象思维能力有待提高,因此,在教学过程中,需要通过实例和操作活动,让学生在实践中理解和掌握直线平行的条件。
三. 教学目标1.理解直线平行的概念,掌握直线平行的条件。
2.能够运用直线平行的条件判断两直线是否平行。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.重点:直线平行的条件。
2.难点:直线平行的条件的运用和理解。
五. 教学方法1.实例引入:通过生活中的实例,引导学生关注直线平行的现象,激发学生的学习兴趣。
2.合作学习:分组讨论,让学生在合作中发现问题、解决问题,培养学生的团队协作能力。
3.操作活动:让学生动手操作,通过实践加深对直线平行条件的理解。
4.引导发现:教师引导学生发现直线平行的条件,培养学生的抽象思维能力。
六. 教学准备1.准备实例:收集生活中的直线平行的实例。
2.准备教学工具:黑板、粉笔、直尺、三角板等。
3.准备练习题:设计一些有关直线平行的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如自行车的车轮、铁轨等,引导学生关注直线平行的现象,激发学生的学习兴趣。
提问:你们在生活中还见过哪些直线平行的例子?2.呈现(10分钟)展示直线平行的图片,让学生观察并说出直线平行的特点。
教师引导学生用语言描述直线平行的条件。
苏教版数学七年级下册教案例文
苏教版数学七年级下册教案例文苏教版数学七年级下册教案例文1教学目的通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程一、复习1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数本利和=本金×利息×年数+本金2.商品利润等有关知识。
利润=售价-成本 ; =商品利润率二、新授问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元利息-利息税=48.6可设小明爸爸前年存了x元,那么二年后共得利息为2.43%×X×2,利息税为2.43%X×2×20%根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6问,扣除利息的20%,那么实际得到的利息是多少扣除利息的20%,实际得到利息的80%,因此可得2.43%x·2·80%=48.6解方程,得 x=1250例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元大家想一想这15元的利润是怎么来的标价的80%(即售价)-成本=15若设这种服装每件的成本是x元,那么每件服装的标价为:(1+40%)x每件服装的实际售价为:(1+40%)x·80%每件服装的利润为:(1+40%)x·80%-x由等量关系,列出方程:(1+40%)x·80%-x=15解方程,得 x=125答:每件服装的成本是125元。
苏版七年级数学下册教案范文
苏版七年级数学下册教案范文教师好像一个导演。
如果优秀青年想要做一个优秀的导演,导演好整个课堂,我们该有一个好的剧本,我们对于剧本的操作、角色的配置都该有预见性,而这个“预见性”就反映到了教案里。
今天在这里整理了一些苏版七年级数学下册教案最新范文,我们一起来呢吧!苏版七年级数学下册教案最新范文1教学目标1,三个整理前两个学段头序的整数、分数(包括小数)的知识,掌握正数和负数的概念;2,能区分两类不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学分析的兴趣。
教学难点正确区分两种不同意义意义的速率。
知识重点六种相反意义的量教学过程(师生活动) 设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们的确已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们早已是七年级的学生了,我是你们的数学老师.下面做我先向你们做一下感想,我的名字是--,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要就有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有自然数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到略去了什么数,让学生负数领略引入负数的必要性)并思考讨论,然后进行交流。
(也可以水温出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前边带有“-”的新数。
先回顾小学里学过的数为的类型,归纳出高出该我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的母康氏密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的结构性问题情境,以尽量贴近学生的实际.问题这个问题能激发家长探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏华世七年级数学教学体系7.1探索直线平行的条件7.2探索平行线的性质7.3图形的平移7.4认识三角形第八章幂的运算8.1同底数幂的乘法8.2幂的乘方和积的乘方8.3同底数幂的除法第九章从面积到乘法公式9.1单项式乘单项式9.2单项式乘多项式9.3多项式乘多项式9.4乘法公式9.5单项式乘多项式法则的再认识)9.6乘法公式的再认识-因式分解(二)二元一次方程组10.1二元一次方程10.2二元一次方程组10.3解二元一次方程组10.4用方程组解决问题5.1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质 1.学生画直线AB 、CD 相交于点O ,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达延长线它们的另一边互为反向有一条公共边与OA ,AOD AOC ∠∠; BOD AOC ∠∠与有公共的顶点O ,而且AOC ∠的两边分别是BOD ∠两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表: 两条直线相交所形成的角分类 位置关系数量关系教师提问:如果改变AOC∠的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,∠,求4401=∠的度数。
∠,3,2∠[巩固练习]已知,如图,80=AOC,求:DOF∠COF,35=∠∠和的度数AOD∠[小结]邻补角、对顶角.[备选题]一判断题:如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( ) 二填空题1如图,直线AB 、CD 、EF 相交于点O ,AOE ∠的对顶角是 ,COF ∠的邻补角是若AOC ∠:AOE ∠=2:3, 130=∠EOD ,则BOC ∠=2如图,直线AB 、CD 相交于点O30,90=∠=∠=∠AOC FOB COE 则=∠EOF5.1.2 垂线[教学目标] 1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2. 掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]1.教学重点:垂线的定义及性质。
ABCDO2.教学难点:垂线的画法。
[教学过程设计] 一. 复习提问: 1、 叙述邻补角及对顶角的定义。
2、对顶角有怎样的性质。
二.新课: 引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB 、CD 互相垂直,记作CD AB ⊥,垂足为O 。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图).(90(垂直定义)已知),︒=∠=∠=∠=∠∴⊥AOD BOD COB AOC CD AB反之,POABC(二)垂线的画法 探究:1、用三角尺或量角器画已知直线l 的垂线,这样的垂线能画出几条?2、经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?3、经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条? 画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直。
探究:如图,连接直线l 外一点P 与直线l 上各点O , A,B,C ,……,其中l PO ⊥(我们称PO 为点P 到直线l 的垂线段)。
比较线段PO 、PA 、PB 、P C ……的长短,这些线段中,哪一条最垂直定义)已知)((90CD AB AOC ⊥∴︒=∠DBO FEDCBA 短?性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成: 垂线段最短。
(四)点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,PO 的长度叫做点 P 到直线l 的距离。
例1则下列结论:垂足为如图,,,,90D BC AD BAC ⊥︒=∠(1)AB 与AC 互相垂直; (2)AD 与AC 互相垂直;(3)点C 到AB 的垂线段是线段AB ; (4)点A 到BC 的距离是线段AD; (5)线段AB 的长度是点B 到AC 的距离; (6)线段AB 是点B 到AC 的距离。
其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 解:A例2 如图,直线AB,CD 相交于点O,的度数。
和求AOC BOE DOF AB OF CD OE ∠∠︒=∠⊥⊥,65,,例3 如图,一辆汽车在直线形公路AB 上由ACBA向B 行驶,M,N 分别是位于公路两侧的村庄, 设汽车行驶到点P 位置时,距离村庄M 最近,行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P,Q 两点位置。
即为所求。
则点垂足分别为两点分别作解:如图所示,过Q P Q P AB NQ AB MP N M ,,,,,,⊥⊥练习: 1.为钝角。
中,如图,已知BAC ABC ∠∆的距离是多少?到)点(的垂线;点画)过(的垂线段;到)画出点(AC B BC A AB C 321小结:1. 要掌握好垂线、垂线段、点到直线的距离这几个概念;2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。
5.2.1 平行线[教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系; 2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[教学重点与难点]1.教学重点:平行线的概念与平行公理;2.教学难点:对平行公理的理解.[教学过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b 平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是.2.在同一平面内,三条直线的交点个数可能是.3.下列说法正确的是()A.经过一点有且只有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行4.若∠α与∠β是同旁内角,且∠α=50°,则∠β的度数是()A.50°B.130°C.50°或130°D.不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()A.1 B.2 C.3 D.46.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1 ∠3.七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)5.2.2 直线平行的条件(第2课时)一.教学目标(1) 使学生进一步理解并掌握判定两条直线平行的方法; (2) 了解简单的逻辑推理过程. 二.教学重点与难点重点:判定两条直线平行方法的应用; 难点:简单的逻辑推理过程. 三.教学过程 复习提问:1.判定两条直线平行的方法有哪些? 2.如图(1)(1) 如果∠1=∠4,根据_________________,可得AB ∥CD ; (2) 如果∠1=∠2,根据_________________,可得AB ∥CD ; (3) 如果∠1+∠3=1800,根据______________,可得AB ∥CD .3.如图(2)(1) 如果∠1=∠D ,那么______∥________; (2) 如果∠1=∠B ,那么______∥________; (3) 如果∠A+∠B=1800,那么______∥________; (4) 如果∠A+∠D=1800,那么______∥________;新课:如图(2) A B CDEF12 3 4 如图(1)例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?答:这两条直线平行. 如图所示理由如下: ∵b ⊥a ,c ⊥a∴∠1=∠2=900(垂直定义) ∴b ∥c (同位角相等,两直线平行)思考:这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800. (1) 求∠2的度数;(2) FC 与AD 平行吗?为什么?ab c┐1 ┐2巩固练习1. 教科书19页练习2. 如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC 与DE 平行吗?AB 与CD 平行吗?3. 如图所示,已知∠D=∠A ,∠B=∠FCB ,试问ED 与CF 平行吗?4. 如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线.AB CD E1 2E D C FA B1 23 45mnlab5.2.2直线平行的条件(一)[教学目标]3.借助用直尺和三角板画平行线的过程,,得出直线平行的条件.4.会用直线平行的条件来判定直线平行.5.激发学生学习数学的兴趣.[教学重点与难点]重点: 理解直线平行的条件.难点: 直线平行的条件的应用[教学设计]提问复习题:1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.下面说法中正确的是( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种(2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线必垂直(4) 在同一平面内,不相交的两条直线一定不垂直3.如果a∥b ,b ∥c ,那么_______,理由是_____________________.导言:上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,如果∠4+∠2=180°, a∥b吗?例题已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.解:因为∠1=∠2,所以AB ∥CD.又因为∠3+∠1=180°,所以AB ∥EF.从而CD ∥EF (为什么?).课堂练习:1.下列判断正确的是( ).A.因为∠1和∠2是同旁内角,所以∠1+∠2=180°B.因为∠1和∠2是内错角,所以∠1=∠2C.因为∠1和∠2是同位角,所以∠1=∠2D.因为∠1和∠2是补角,所以∠1+∠2=180°2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与BC 平行吗?为什么?(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗? 为什么?(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?为什么?4.如图所示:(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,因此可知∠4+∠5= ____,所以可确定___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.第4题图第5题图5.如图,(1)如果∠1=________,那么DE∥AC;(2) 如果∠1=________,那么EF∥BC;(3)如果∠FED+ ∠________=180°,那么AC∥ED;(4) 如果∠2+ ∠________=180°,那么AB∥DF.课后作业:习题5.2 第1,2,4题.补充练习:已知:如图,AB ∥CD,EF分别交AB、CD于E、F,EG平分∠AEF ,FH平分∠EFD EG与FH平行吗?为什么?§5.3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.关键:能结合图形用符号语言表示平行线的三条性质.教学过程一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?二、新授1.实验观察,发现平行线第一个性质请学生画出下图进行实验观察.设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的. 三、例题例2如图所示,AB ∥CD ,AC ∥BD .找出图中相等的角与互补的角.87654132此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC +∠ACD =180°,∠ABD +∠CDB =180°,∠CAB +∠DBA =180°,∠ACD +∠BDC =180°.相等的角还有:∠ACD =∠ABD ,∠BAC =∠BDC .(同角的补角相等) 例3如图所示.已知:AD ∥BC ,∠AEF =∠B ,求证:AD ∥EF . 分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证. 证明:因为 AD ∥BC ,(已知)所以 ∠A +∠B =180°.(两直线平行,同旁内角互补)FED CBA AB CD因为 ∠AEF =∠B ,(已知)所以 ∠A +∠AEF =180°,(等量代换)所以 AD ∥EF .(同旁内角互补,两条直线平行) 四、练习:1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°. 证明:因为 AB ∥CD , 所以 ∠BAC +∠ACD =180°,又因为 AE 平分∠BAC ,CE 平分∠ACD , 所以112BAC ∠=∠,122ACD ∠=∠,故001112()1809022BAC ACD ∠+∠=∠+∠=⨯=.即 ∠1+∠2=90°.2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系. 作业:1.如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.5.3平行线性质(二)[教学目标]6.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力7.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论8.能够综合运用平行线性质和判定解题[教学重点与难点]重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线性质和判定灵活运用[教学设计]一.复习引入1.平行线的判定方法有哪些?2.平行线的性质有哪些?3.完成下面填空已知:BE是AB的延长线,AD//BC,AB//CD,若∠D则EBC100=,∠,C∠A∠4.b c b a ⊥⊥,那么a ,c 的位置关系如何? 二.新课1.例1,已知a//c,,b a ⊥直线b 与c 垂直吗?为什么?例2如图是一块梯形铁片的残余部分,量得 115,100=∠=∠B A ,梯形另外两个角分别是多少度?2.实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张55⨯ 个格子的方格纸。