(完整版)小升初简便运算奥数专题讲解

合集下载

小升初简便运算专题讲解.pdf

小升初简便运算专题讲解.pdf

小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+()+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.9434÷4÷1.7+102×7.3÷5.130.34-10.2+9.66+ 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+(); a+b-c=a+( )a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。

完整版2019年小升初简便运算专题讲解

完整版2019年小升初简便运算专题讲解

2019年小升初简便运算专题讲解1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a ×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

)- )+( );a-b-c=a-( a+b+c=a+( )+( ); a+b-c=a-()();÷() ÷b÷c=a÷();a ×() ×c=a×(b×a))÷( a×b÷c=a÷( )×( ),a÷b×c=a×( 例1:用简便算法计算+1、12.06+5.07、 2 2.944、 30.34 3、-10.2+9.66 + 125÷2×85、 34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、 8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

最新小升初简便运算奥数专题讲解

最新小升初简便运算奥数专题讲解

奥数之计算综合目录: 计算专题1小数分数运算律的运用: 计算专题2大数认识及运用计算专题3分数专题 计算专题4列项求和 计算专题5计算综合 计算专题6超大数的巧算 计算专题7利用积不变、拆数和乘法分配率巧解计算题: 计算专题8牢记设字母代入法 计算专题9利用a ÷b=b a巧解计算题: 计算专题10利用裂项法巧解计算题 计算专题11(递推法或补数法) 计算专题12.斜着约分更简单 计算专题13定义新运算 计算专题14解方程 计算专题15等差数列 计算专题16尾数与完全平方数 计算专题17加法原理、乘法原理计算专题18分数的估算求值 计算专题19简单数论 奥数专题20周期问题 在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。

下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37) 例题二:11333387797906666124⨯+⨯例题三: 32232537.96555⨯+⨯ 例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.75 13413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010 【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯6、22222392781243++++7、 1111111111111111() ()()()89101191011128910111291011+++⨯+++-++++⨯++计算专题5计算综合 【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷142431424314243个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011434214434421个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、443442144344212201242012222222444444个个⋯⋯⋯⋯443442162012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。

小升初奥数课程简便运算精选版

小升初奥数课程简便运算精选版

这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。

有余力的孩子可以学一下。

简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

例题1。

计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。

1.6.73-2 817+(3.27-1917) 2. 759-(3.8+159)-115的例题,是一定会得到启发的。

分析与解在进行四则运算时,应该注意运用加法、乘法的运算定律,减法、除法的运算性质,以便使某些运算简便。

本题就是运用乘法分配律及减法性质使运算简便的。

例2 计算9999×2222+3333×3334分析与解利用乘法的结合律和分配律可以使运算简便。

9999×2222+3333×3334=3333×(3×2222)+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000分析与解将分子部分变形,再利用除法性质可以使运算简便。

分析与解在计算时,利用除法性质可以使运算简便。

分析与解这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。

分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分由此得出原算式分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。

分析与解观察这些分数的分母,都是连续自然数的和,我们可以先求出分母来,再进行拆项,简算。

分析与解我们知道例12 计算1×2+2×3+3×4+……+10×11分析与解将这10个等式左、右两边分别相加,可以得到例13 计算1×3+2×4+3×5+4×6+……+50×52分析与解我们知道1×3=1×3-1+1=1×(3-1)+1=1×2+12×4=2×4-2+2=2×(4-1)+2==2×3+23×5=3×5-3+3=3×(5-1)+3=3×4+34×6=4×6-4+4=4×(6-1)+4=4×5+4……50×52=50×52-50+50=50×(52-1)+50=50×51+50将上面各式左、右两边分别相加,可以得到1×3+2×4+3×5+4×6+……+50×52=1×2+1+2×3+2+3×4+3+4×5+4+……+50×51+50=1×2+2×3+3×4+4×5+……+50×51+1+2+3+4+……+50=44200+1275=45475例14 计算(1+0.23+0.34)×(0.23+0.34+0.56)-(1+0.23+0.34+0.56)×(0.23+0.34)分析与解根据题中给出的数据,设1+0.23+0.34=a,0.23+0.34=b,那么a-b=1+0.23+0.34-0.23-0.34=1。

小升初简便运算专题讲解(汇编)

小升初简便运算专题讲解(汇编)

小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.94 34÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。

小升初奥数课程简便运算(精编文档).doc

小升初奥数课程简便运算(精编文档).doc

和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。

有余力的孩子可以学一下。

简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

例题1。

计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。

例2 计算9999×2222+3333×3334分析与解利用乘法的结合律和分配律可以使运算简便。

9999×2222+3333×3334=3333×(3×2222)+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000分析与解将分子部分变形,再利用除法性质可以使运算简便。

分析与解在计算时,利用除法性质可以使运算简便。

分析与解这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。

分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分由此得出原算式分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。

(完整word版)小升初简便运算奥数专题讲解(word文档良心出品)

(完整word版)小升初简便运算奥数专题讲解(word文档良心出品)

戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用: 计算专题2 大数认识及运用 计算专题3 分数专题 计算专题4 列项求和 计算专题5 计算综合 计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题: 计算专题8 牢记设字母代入法 计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题 计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单 计算专题13 定义新运算 计算专题14 解方程 计算专题15 等差数列计算专题16 尾数与完全平方数 计算专题17 加法原理、乘法原理 计算专题18 分数的估算求值 计算专题19 简单数论 奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。

下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124⨯+⨯例题三:32232537.96555⨯+⨯例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(8361971++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++⨯+++-++++⨯++计算专题5计算综合【例题精讲】 例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。

小学奥数简便计算的讲解

小学奥数简便计算的讲解

小学奥数简便计算的讲解小学奥数简便计算的讲解一、乘法:1.因数含有25和125的算式:例如①:25×42×4我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42.同样含有因数125的.算式要先用125×8=1000。

例如②:25×32此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。

例如③:72×125我们根据125×8=1000将72拆成8×9,原式变成8×125×9。

重点例题:125×32×25=(125×8)×(4×25)2.因数含有5或15、35、45等的算式:例如:35×16我们根据需要将16拆分成2×8,这样原式变为35×2×8。

因为这样就可以先得出整十的数,运算起来比较简便。

3.乘法分配率的应用:例如:56×32+56×68我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68)如果是56×132—56×32一样提出56,算是变成56×(132-32)注意:56×99+56应想99个56加上1个56应为100个56,所以原式变为56×(99+1)或者56×101-56=56×(101-1)另外注意综合运用,例如:36×58+36×41+36=36×(58+41+1)47×65+47×36-47=47×(65+36-1)4.乘法分配率的另外一种应用:例如:102×47我们先将102拆分成100+2算式变成(100+2)×47然后注意将括号里的每一项都要与括号外的47相乘,算式变为:100×47+2×47例如:99×69我们将99变成100-1算式变成(100-1)×69然后将括号里的数分别乘上69,注意中间为减号,算式变成:100×69-1×69二、除法:1.连续除以两个数等于除以这两个数的乘积:例如:32000÷125÷8我们可以将算式变为32000÷(125×8)=32000÷10002.例如:630÷18我们可以将18拆分成9×2这时原式变为630÷(9×2)注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2三、乘除综合:例如6300÷(63×5)我们需要打开括号,此时要将括号里的乘号变为除号,原式变为6300÷63÷5【小学奥数简便计算的讲解】。

(完整版)小升初简便运算奥数专题讲解

(完整版)小升初简便运算奥数专题讲解

(完整版)小升初简便运算奥数专题讲解戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用:计算专题2 大数认识及运用计算专题3 分数专题计算专题4 列项求和计算专题5 计算综合计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题:计算专题8 牢记设字母代入法计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单计算专题13 定义新运算计算专题14 解方程计算专题15 等差数列计算专题16 尾数与完全平方数计算专题17 加法原理、乘法原理计算专题18 分数的估算求值计算专题19 简单数论奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。

下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124+?例题三:32232537.96555+?例题四:36?1.09+1.2?67.3例题五: 81.5?15.8+81.5?51.8+67.6?18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975?0.25+39769.754- 4、999999×222222+333333×3333345、 45?2.08+1.5?37.66、1391371137 138138?+?7、72?2.09-1.8?73.6 8、 53.5?35.3+53.5?43.2+78.5?46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5+?+?例题三:199319941199319921994-+?例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六:2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+?-3、99999?77776+33333?666664、30122-301125、999?274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:44374527?1526例题二:11731581164179例题三:13274155+?例题四:5152566139131813 +?+?例题五:11664120÷2010 20102010 2011÷【综合练习】1、 73?74 752、2008201020093、1157764、131441513445+? 5、13392744+? 6、1451179179+?7、238238238239÷ 8、73171131581516152+?+?计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++例题二:1111.......2446684850++++例题三:179111315131220304056-+-+-例题四:1111111 248163264128++++++例题五:(1111234+++)?(11112345+++)-(111112345++++)?(111234++)【综合练习】1、1111 ........ 1011111212134950 ++++2、111111 2612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++?+++-++++?++计算专题5计算综合【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111?111111111 例题三: 12324671421135261072135+??++??+??例题四:201012010220103111...1111222...2222333...3333=÷142431424314243个个个例题五:从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:??+????? ?????? ??+???? ?????? ??+991-1991131-131121-1211 【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011434214434421个个3、1612886443224201612108654??+??++??+?? 4、443442144344212201242012222222444444个个443442162012666666个??÷5、(1+3+5+7+...+1999)-(2+4+6+8+ (1998)6、??1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算熟记规律,常能化难为易。

小升初简便运算专题讲解

小升初简便运算专题讲解

6月 12日:小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律: a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a× b=b× a乘法结合律:( a× b)× c=a× (b×c)乘法分配律:(a+b)× c=a× c+b× c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b × c=a× ( )× ();a÷b÷c=a÷ ()÷();a× b÷ c=a÷ ( )×(),a÷b×c=a×()÷ ()例 1:用简便算法计算1、 12.06+5.07 +2.942、3、4、 30.34- 10.2+9.66 + 125÷ 2× 85、 34 ÷ 4÷ 1.7+102 × 7.3 ÷ 5.16、7× 3÷ 7× 37、8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

福建省【小升初】小升初简便运算奥数专题讲解

福建省【小升初】小升初简便运算奥数专题讲解
戴氏教育新津总校 新津县太康东路
奥 数 之 简 便 运 算
计算专题 1
目录:
小数分数运算律的运用:
计算专题 2 大数认识及运用
计算专题 3 分数专题
计算专题 4 列项求和
计算专题 5 计算综合
计算专题 6 超大数的巧算
计算专题 7 利用积不变、拆数和乘法分配率巧解计算题:
计算专题 8 牢记设字母代入法
计算专题 19 简单数论
奥数专题 20 周期问题
在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考 试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题 型只要掌握一定的解题方法和规律一点都不难。下面老师跟你支支招:
计算专题 1 小数分数运算律的运用: 【 例题精选 】
1
12 23 34
99 100
例题二: 1
1
1
1
.......
24 46 68
48 50
例题三:
1 1
7
9
11 13 15
3 12 20 30 40 56
111 1 1 1 1 例题四:
2 4 8 16 32 64 128
例题五:( 1 1 1 1 ) ( 1 1 1 1 )- (1 1 1 1 1 ) ( 1 1 1 )
8
、 53.5 35.3+53.5 43.2+78.5 46.5
计算专题 2 大数认识及运用 【 例题精讲 】
例题一: 1234+2341+3412+4123
例题二: 2 4 23.4 11.1 57.6 6.54 28 5
例题三: 1993 1994 1 1993 1992 1994

山西省【小升初】小升初简便运算讲解(奥数专题)

山西省【小升初】小升初简便运算讲解(奥数专题)

奥数之计算综合目录:计算专题1小数分数运算律的运用: 计算专题2大数认识及运用 计算专题3分数专题 计算专题4列项求和 计算专题5计算综合 计算专题6超大数的巧算计算专题7利用积不变、拆数和乘法分配率巧解计算题: 计算专题8牢记设字母代入法 计算专题9利用a ÷b=ba巧解计算题:计算专题10利用裂项法巧解计算题 计算专题11(递推法或补数法) 计算专题12.斜着约分更简单 计算专题13定义新运算 计算专题14解方程 计算专题15等差数列计算专题16尾数与完全平方数 计算专题17加法原理、乘法原理 计算专题18分数的估算求值 计算专题19简单数论 奥数专题20周期问题计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124⨯+⨯例题三:32232537.96555⨯+⨯例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(8361971++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、 1111142870130208++++4、 191113151420304256-+-+5、 201020102010201020101223344556++++⨯⨯⨯⨯⨯ 6、22222392781243++++7、 1111111111111111() ()()()89101191011128910111291011+++⨯+++-++++⨯++计算专题5计算综合 【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。

小升初简便运算专题讲解

小升初简便运算专题讲解

6月12日:小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。

2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。

我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。

4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算1、12.06+5.07+2.942、3、4、30.34-10.2+9.66 + 125÷2×85、 34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(完整word版)小升初奥数课程简便运算【精选】整理版

(完整word版)小升初奥数课程简便运算【精选】整理版

四、借来还去法看到名字,就知道这个方法的含义。

用此方法时,需要注意观察,发现规律。

还要注意还哦 ,有借有还,再借不难嘛。

9999+999+99+9 4821-998 1. 拆分法 顾名思义,拆分法就是为了方便计算把一个数拆成几个数。

这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。

分拆还要注意不要改变数的大小哦。

3.2×12.5×25 1.25×88 3.6×0.25 2. 巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。

7.6÷0.25 3.5÷0.125 七、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。

有余力的孩子可 以学一下。

简便运算(一) 专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

例题1。

计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37)小学生小升初数学常见简便计算总结要想提高计算能力,首先要学好各种运算的法则、运算定律及性质,这是计算的基础。

小升初简便运算专题讲解43563

小升初简便运算专题讲解43563

⼩升初简便运算专题讲解43563⼩升初简便运算明确三点:1、⼀般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同⼀级运算时,从左往右。

2、由于有的计算题具有它⾃⾝的特征,这时运⽤运算定律,可以使计算过程简单,同时⼜不容易出错。

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同⼀个计算题,⽤简便⽅法计算,与不⽤简便⽅法计算得到的结果相同。

我们可以⽤两种计算⽅法得到的结果对⽐,检验我们的计算是否正确。

4、熟记规律,常能化难为易:⼀、变换位置(带符号搬家)当⼀个计算题只有同⼀级运算(只有乘除或只有加减运算)⼜没有括号时,我们可以“带符号搬家”。

a+b+c=a+()+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:⽤简便算法计算12.06+5.07+2.94 34÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8⼆、结合律法1、加括号法(1)当⼀个计算模块(同级运算)只有加减运算⼜没有括号时,我们可以在加号后⾯直接添括号,括到括号⾥的运算原来是加还是加,是减还是减。

但是在减号后⾯添括号时,括到括号⾥的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

小升初数学简便运算专题(含解析)

小升初数学简便运算专题(含解析)

小升初专题 (简便运算)教学目标;1.使学生理解、掌握四则运算的五大定律和两个性质;2.掌握积、商的变化规律;3.能运用这些定律、性质和规律进行简便计算,提高计算能力。

(1)741941733953732++-+ (2)12×4 +14×6 +16×8 +…..+ 148×50 745= 256=(3)75.07%75254322⨯-⨯+⨯(4)11711473⨯⨯⎪⎭⎫⎝⎛+ =30 =61【学科分析】(结合考纲要求)1、理解并运用加法交换律进行简便计算;2、理由减法的性质进行凑整简便运算;3、根据乘法分配律的逆运算进行简便计算;4、利用乘法分配律进行拆项计算。

【学生分析】学生认知方式(老师自行预设):整体型/分析型,场依存型/场独立型; 学生风格:听觉型/视觉型/动觉型/混合型 2、先行知识分析:①不熟悉加法交换律的移动时要带上前面的符号; ①利用减法性质计算的时候忘记转变括号里的符号; ①乘法分配律的时候漏掉其中的某一项。

根据问题定位部分的题目,对学生可能出现的错误进行原因分析。

根据学生对各知识点的掌握情况,针对相关知识点进行详细讲解。

(学生掌握得很好的知识点可略过不讲。

)精讲1 乘法分配律学习目标:1.熟练、灵活运用乘法分配律进行小数、分数、整数的简便计算目标分解:1.利用积的变化规律和乘法分配律使计算简便2.通过找因数中倍数关系进行乘法分配律拆分3.找因数中的和差关系进行乘法分配律拆分、逆运算4.先分组提取公因数,再第二次提取公因数,使计算简便教学过程:考点一:积的变化规律和乘法分配律的结合 例题1.1 计算:41666617907921333387⨯+⨯原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25 =(33338.75+66661.25)×790 =100000×790 =79000000考点二:找因数中倍数关系进行乘法分配律拆分 例题1.2 计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3) =1.2×(32.7+67.3) =1.2×100=120考点三:找因数中的和差关系进行乘法分配律拆分、逆运算 例题1.3 计算:5269.375225533⨯+⨯原式=()4.65.124.255225533⨯++⨯=4.65.124.64.255225533⨯+⨯+⨯=(3.6+6.4)×25.4+12.5×8×0.8 =254+80 =334考点四:先分组提取公因数,再第二次提取公因数 例题1.4: 计算:81.5×15.8+81.5×51.8+67.6×18.5原式=81.5×(15.8+51.8)+67.6×18.5=81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6 =6760精讲2 乘法分配律与除法学习目标:1.记住并掌握一些特殊数值的拆分,从而进行简便运算2.形成先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算目标分解:1.根据特殊数的特点,类比进行简便运算2.根据积不变性质及多次分配进行简便运算3.观察分子、分母特点,创造相同的分子、分母进行简便运算4.熟练运用两个数平方的差进行拆分简便运算5.懂得在被除数中找到与除数中一样的公因数教学过程:考点五:理由特殊数的特点进行简便运算 例题2.1 计算:1234+2341+3412+4123原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111 =10×1111 =11110考点六:积不变与多次分配例题2.2 计算:2854.66.571.114.23542⨯+⨯+⨯原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8× 7.2 =2.8×88.8+88.8×7.2 =88.8×(2.8+7.2) =88.8×10 =888考点七:分子、分母转换 例题2.3 计算:199419921993119941993⨯+-⨯原式=()1994199219931199411992⨯+-⨯+=1994199219931199419941992⨯+-+⨯=1考点八:平方差公式的转换例题2.4 有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?这串数中第2000个数是20002,而第2001个数是20012,它们相差:20012-20002,即20012-20002=2001×2000-20002+2001 =2000×(2001-2000)+2001 =2000+2001=4001考点九:在被除数中提取除数的公因数 例题2.5 计算:⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛+9575927729原式=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫⎝⎛+9575965765 =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯÷⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+⨯91715917165 =65÷5 =13精讲3 分数除法简便运算学习目标:1.掌握特殊分数的除法简算技巧目标分解:1.熟练并掌握除数是整数的除法简算2.熟练并掌握除数是分数的除法简算教学过程:考点十:除数是整数的除法简算 例题3.1 计算:166120÷41原式=(164+2120)÷41=164÷41+4120 ÷41=4+120=4120考点十一:除数是分数的除法简算 例题3.2 计算:1998÷199819981999原式=1998÷1998×1999+19981999=1998÷1998×20001999=1998×19991998×2000=19992000提前对本节课的教学目标所涉及的所有知识点准备巩固练习,再根据学生的具体情况抽调相关题目进行巩固练习。

小升初奥数课程简便运算【精选】整理版

小升初奥数课程简便运算【精选】整理版

小升初奥数课程简便运算【精选】整理版1、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;abc=acb,abc=acb,abc=acb,abc=acb)二、结合律法(一)加括号法1、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。

但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。

(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

) a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c), a-b-c= a-( b +c);2、当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。

但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。

(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

) abc=a(bc), abc=a(bc), abc=a(bc), abc=a(bc)(二)去括号法1、当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。

但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。

(现在没有括号了,可以带符号搬家了哈)(注:去掉括号是添加括号的逆运算)a+(b+c)= a+b+c a+(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c2、当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用: 计算专题2 大数认识及运用 计算专题3 分数专题 计算专题4 列项求和 计算专题5 计算综合 计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题: 计算专题8 牢记设字母代入法 计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题 计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单 计算专题13 定义新运算 计算专题14 解方程 计算专题15 等差数列计算专题16 尾数与完全平方数 计算专题17 加法原理、乘法原理 计算专题18 分数的估算求值 计算专题19 简单数论 奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。

下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124⨯+⨯例题三:32232537.96555⨯+⨯例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++⨯+++-++++⨯++计算专题5计算综合【例题精讲】 例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。

① 25×4=100, ②125×8=1000,③41=0.25=25%,④43=0.75=75%,⑤81=0.125=12.5%,⑥83=0.375=37.5%, ⑦85=0.625=62.5%,⑧87=0.875=87.5% 利用①12321=111×111,1234321=1111×1111,123454321=11111×11111②123123=123×1001,12341234=1234×10001 ③12345679×9=111111111等规律巧解题:9999966666123454321⨯×108 11234565432999999888888⨯÷36 525525252252252525525525252252⨯⨯20102010×1999-2010×19991999 12345679×63= 72×12345679=计算专题7利用积不变、拆数和乘法分配率巧解计算题:28.67×67+3.2×286.7+573.4×0.05 314×0.043+3.14×7.2-31.4×0.1541.2×8.1+11×9.25+53.7×1.9 19931993×1993-19931992×1992-199319921.993×1993000+19.92×199200-199.3×19920-1992×1991333×332332333-332×333333332计算专题8牢记设字母代入法(1+0.21+0.32)×(0.21+0.32+0.43)-(1+0.21+0.32+0.43)×(0.21+0.32)(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)(1+21+31+41)×(21+31+41+51)-(1+21+31+41+51)×(21+31+41)(111+211+311+411)×(211+311+411+511)-(111+211+311+411+511)×(211+311+411)(135531+357579+975753)×(357579+975753+531135)-(135531+357579+975753+531135)×(357579+975753)计算专题9利用a ÷b=b a巧解计算题:①(6.4×480×33.3)÷(3.2×120×66.6) (514+415)÷(43+53)计算专题10利用裂项法巧解计算题211⨯+321⨯+431⨯+……+100991⨯ 311⨯+531⨯+751⨯+……+1191⨯ 21+61+121+201+301+421 1×2+2×3+3×4+……99×1001×2×3+2×3×4+3×4×5+……+9×10×11计算专题11(递推法或补数法) 1.111111112483162124248496+++++++2. 21+41+81+161+321+……+5121+10241.。

相关文档
最新文档