导数与函数的变化率
函数在某点的导数即为函数在该点的变化率
![函数在某点的导数即为函数在该点的变化率](https://img.taocdn.com/s3/m/6767ff506fdb6f1aff00bed5b9f3f90f76c64dc6.png)
函数在某点的导数即为函数在该点的变化率1. 引言函数的导数是微积分中的重要概念之一,它代表了函数在某一点的变化率。
导数的概念在数学和实际生活中都有着重要的应用,例如在物理学中描述物体的运动规律、在经济学中分析市场的变化等。
本文将从简单到深入地讨论函数在某点的导数即为函数在该点的变化率这一主题。
2. 函数的导数函数的导数表示了函数在某一点的瞬时变化率,即函数图像在该点的切线斜率。
在数学上,函数在某一点处的导数可以通过极限来定义,这一点的导数可以用极限的形式来描述。
3. 函数的变化率函数在某一点的变化率可以用导数来表示,这一点的导数即为函数在该点的变化率。
在实际问题中,我们经常需要分析某个量的变化情况,而这个变化情况通常可以用导数来描述。
4. 实际应用举例在物理学中,我们经常需要描述物体在某一点的运动状态,而物体在某一点的速度即为其位移函数的导数,物体在某一点的加速度即为其速度函数的导数,因此导数在描述物体的运动规律中有着重要的作用。
在经济学中,我们经常需要分析市场的变化情况,而市场某一点的供求变化率即为供求函数的导数,该导数可以帮助我们分析市场的供求变化情况,为决策提供重要参考。
5. 总结回顾函数在某点的导数即为函数在该点的变化率,这一概念在数学和实际生活中都有着重要的应用。
通过本文的讨论,我们了解了导数的概念及其在描述函数变化率中的重要作用,同时也深入探讨了导数在物理学和经济学中的应用。
6. 个人观点对于函数在某点的导数即为函数在该点的变化率这一概念,我认为它在数学和实际生活中都有着极其重要的作用。
导数的概念不仅帮助我们理解函数的变化规律,还可以应用到实际问题中,为我们分析和解决问题提供重要工具。
结论在知识的文章格式中,我们将主题文字“函数在某点的导数即为函数在该点的变化率”多次提及,并按照从简到繁的方式探讨了这一主题。
文章总字数超过3000字,涵盖了函数的导数、变化率的概念、实际应用举例等内容,旨在帮助读者更全面、深入地理解这一主题。
高等数学导数
![高等数学导数](https://img.taocdn.com/s3/m/7496598ef424ccbff121dd36a32d7375a417c6e7.png)
高等数学导数
导数是高等数学中的一个重要概念,意思是表示函数的变化速率的概念,它是高等数学中的一个基本概念。
导数的定义是:当函数y=f(x)的自变量x经过一个微
小的变化时,函数y的变化量与自变量x变化量之比,记作f′(x)或y′,称为函数f(x)在x处的导数,记作d/dx[f (x)], 或f′(x)。
导数的性质可概括为:(1)函数的导数表示函数变化率
的变化,即函数变化速率;(2)函数的导数指示函数在某一
点处的变化状况,如曲线在某点的切线的斜率;(3)函数的
导数可以用来求函数的极值。
导数在微积分中具有重要的意义,它与微积分的基本概念——定积分密切相关,它使微积分中的许多定理更加清晰明了。
如果不考虑导数,微积分中的定理将是模糊的,将难以推导。
因此,导数是高等数学中非常重要的概念。
导数的应用也十分广泛,在物理、化学、经济学等多学科中都有其重要的作用。
它可以用来计算某一物体在受到力的作用时的速度变化,从而求得物体的运动轨迹;它也可以用来计算某一物体在受到力的作用时的加速度变化,从而求得物体的动量;它还可以用来计算某一物体在受到力的作用时的位置变
化,从而求得物体的位置;它在经济学中也可以用来分析某一经济指标的变化趋势。
总之,导数是高等数学中的一个重要概念,它的应用也十分广泛,具有重要的意义。
函数的导数与变化率
![函数的导数与变化率](https://img.taocdn.com/s3/m/7e997469905f804d2b160b4e767f5acfa1c783cc.png)
函数的导数与变化率函数的导数是微积分中的基础概念之一,它描述了函数在某一点上的变化率。
在实际问题中,我们经常需要了解一个函数在某一点的变化情况,以便更好地理解问题的本质和解决方法。
本文将详细介绍函数的导数的概念、性质以及在实际应用中的意义和计算方法。
一、导数的概念函数的导数是函数变化率的度量,表示了函数在某一点上的变化速度。
形式上,设函数y=f(x),若该函数在点x处的导数存在,则导数被定义为:f'(x)=lim(h→0)[f(x+h)-f(x)]/h其中,f'(x)表示函数在点x处的导数,h表示自变量x的变化量。
导数的定义是一个极限的概念,表示了自变量逐渐接近某一点时,函数变化的趋势。
二、导数的性质1. 导数的存在性函数在某一点上的导数存在的充分条件是函数在该点附近连续,并且左右导数相等。
2. 导数与函数图像的关系函数的导数可以反映函数图像的一些特征,比如导数正值表示函数在该点上升,导数负值表示函数在该点下降,导数等于零表示函数在该点取得极值。
3. 导数的计算法则导数具有一组计算法则,可以用于计算各种复杂函数的导数。
常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商数法则等。
三、变化率与导数的关系函数的导数即为函数在某一点上的变化率。
当自变量的变化量很小时,导数可以近似地表示函数的变化率。
函数的变化率可以分为平均变化率和瞬时变化率两种。
平均变化率是指函数在两个点之间的变化率,可以通过函数的增量和自变量的增量来计算。
瞬时变化率是指函数在某一点上的瞬时变化率,可以通过函数的导数来求得。
四、导数在实际应用中的意义导数在实际问题中有着广泛的应用。
以物理学为例,速度即为位移对时间的导数,加速度即为速度对时间的导数。
在经济学中,边际成本和边际收益也可以通过导数来计算和分析。
导数还可以用于优化问题、曲线拟合和图像处理等领域。
五、导数的计算方法为了计算导数,我们可以利用导数的定义进行计算,也可以利用导数的运算法则简化计算过程。
变化率及导数的概念
![变化率及导数的概念](https://img.taocdn.com/s3/m/8bc2a5383a3567ec102de2bd960590c69ec3d8bd.png)
平均变化率为
问题4:瞬时速度
(我们可以取t=3临近时间间隔内的 平均速度当作t=3时刻的瞬时速度,不过时间隔要很小很小)
如何求t=3这时刻的瞬时速度呢?
物体自由落体的运动方程是: S(t)= gt2,
能否用求平均速度的方法求某一时刻的瞬时速度?
1
2
问题4:瞬时速度
r(1)-r(0)≈ 0.62
气球平均膨胀率:
从1加2L时,半径增加了
r(2)-r(1) ≈ 0.16
气球平均膨胀率:
可以看出,随着气球体积变大,它的平均 膨胀率变小.
思考:当空气容量从V1增加到V2 时,气球的平均膨胀率是多少呢?
01
03
02
04
05
问题2:高台跳水
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间(单位:s)存在函数关系 我们可以用什么来描述在某段时间内的其运动状态呢? 平均速度
在0≤t≤0.5这段时间内, 在1≤t≤2这段时间内,
在0≤t≤ 这段时间内,
g
V =
△S
△t
(6+△t)
当△t 0时,
v 3g =29.4
瞬时速度:
(平均速度的趋向为瞬时速度)
即:lim
△t 0
S(3+△t)-S(3)
△t
= 29.4
思考:在t0时刻的瞬时速度呢?
lim
△t 0
S(t0+△t)-S(t0)
△t
例1 一辆汽车按规律: 作直线运动,求: 这辆汽车在t=3秒时的瞬时速度; t=0到t=2时的平均速度.
例2 若一物体运动方程如下: 求此物体在t=1和t=3时的瞬时速度
变化率与导数
![变化率与导数](https://img.taocdn.com/s3/m/d260e4a2d4d8d15abe234e81.png)
导数的概念
一般地, 函数 y=f(x) 在点x=x0处的瞬时变 化率是
f ( x0 + Dx ) f ( x 0 ) Dy lim lim Dx 0 D x Dx 0 Dx
我们称它为函数 y = f (x)在点x=x0处的导数, 记为 f '(x0)或 y'| x=x0 ,即
f ( x0 + Dx ) f ( x0 ) Dy f ( x0 ) lim lim Dx 0 Dx Dx 0 Dx
Dx 0
曲线在点(x0 , f(x0))处的切线的方程为: y-f (x0) = f '(x0)(x-x0)
例2 求曲线y=f(x)=x2+1在点P(1,2)处的 切线方程.
解:
y
△y
因此,切线方程为
y-2=2(x-1),
P △x
即 y = 2x.
O
1
x
【总结提升】 求曲线在某点处的切线方程的基本步骤: ①求出切点P的坐标;
变化率与导数
平均变化率
我们把式子
f ( x2 ) f ( x1 ) 称为函数 x2 x1
y=f (x)从x1到 x2的平均变化率.
令△x = x2-x1 , △ y = f (x2) -f (x1) ,则
△y f ( x 2 ) f ( x1 ) = △x x 2 x1
平均变化率
例题分析
例2 将原油精练为汽油、柴油、塑胶等各 种不同产品, 需要对原油进冷却和加热. 如果第 x h时, 原油的温度(单位: oC) 为 f(x)=x2-7x+15 (0≤x≤8). 计算第2h 与低6h时原油温度的瞬时变化 率,并说明它们的意义。
解:
导数与函数的变化率与方向
![导数与函数的变化率与方向](https://img.taocdn.com/s3/m/c70de1f064ce0508763231126edb6f1aff0071ea.png)
导数与函数的变化率与方向函数在数学中扮演着非常重要的角色,它描述了数值之间的关系。
而了解函数的变化率与方向则需要运用导数的概念。
导数可以用于描述函数在某点附近的变化率和切线的斜率,从而揭示了函数变化的趋势和方向。
本文将深入探讨导数与函数的变化率与方向之间的关系。
一、导数的定义与计算导数可以被认为是函数在某一点附近的变化率。
数学上,我们用极限来定义导数。
假设有函数f(x),它在点a处有导数,则导数的定义可以表示为:$$ f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,h表示自变量x的增量。
导数的计算可以通过这一定义以及一些基本的求导规则进行。
二、导数与变化率的关系导数代表了函数在某一点上的变化率。
具体说来,对于函数y = f(x),如果f'(a) > 0,则说明函数在点a处是递增的;如果f'(a) < 0,则说明函数在点a处是递减的;如果f'(a) = 0,则说明函数在点a处是平稳的。
根据导数的正负,我们可以判断函数在不同点处的变化趋势。
三、导数与方向的关系导数还可以用于描述函数曲线在某点处的切线斜率。
但是如果我们希望了解函数曲线在不同点处的切线斜率,就需要关注函数的导数函数。
如果函数f(x)在某一点x_0处的导数f'(x_0)存在,则导数函数表示为:$$ F(x) = f'(x)$$其中,F(x)即为函数f(x)的导数函数。
导数函数可以提供函数曲线在每一点处的切线的斜率,并且可以帮助我们分析函数曲线的特征。
四、利用导数判断函数的极值导数还可以用于判断函数的极值点,即函数取得最大值或最小值的点。
对于函数f(x),如果f'(a) = 0且f''(a) ≠ 0,则点a为函数的极值点。
其中,f''(a)表示f(x)的导数函数的导数,即二阶导数。
如果f''(a) > 0,则函数在点a处取得极小值;如果f''(a) < 0,则函数在点a处取得极大值。
导数与函数的变化率
![导数与函数的变化率](https://img.taocdn.com/s3/m/60675be8250c844769eae009581b6bd97f19bc6f.png)
导数与函数的变化率引言:数学作为一门精确的科学,涵盖了众多的分支和概念。
其中,导数与函数的变化率是数学中一个重要的概念。
导数是函数的一种特殊性质,它描述了函数在某一点的变化率。
本文将深入探讨导数与函数的变化率的概念、性质以及应用。
一、导数的概念导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
在数学中,函数的导数可以通过极限的概念来定义。
具体而言,对于函数y=f(x),如果在某一点x处的导数存在,那么该导数可以表示为f'(x)或者dy/dx。
导数的定义可以表示为:f'(x) = lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx〗其中,Δx表示自变量x的增量。
二、导数的性质导数具有一系列的性质,这些性质对于求解导数和理解函数的变化率非常重要。
1. 常数函数的导数为0对于常数函数y=c,其中c为常数,其导数f'(x)=0。
这是因为常数函数在任意一点的斜率都为0,即没有变化。
2. 幂函数的导数幂函数y=x^n的导数可以通过幂函数的性质来求解。
具体而言,对于幂函数y=x^n,其中n为正整数,其导数f'(x)=nx^(n-1)。
3. 和差法则对于两个函数的和或差,其导数等于各个函数的导数的和或差。
即(f+g)'(x)=f'(x)+g'(x),(f-g)'(x)=f'(x)-g'(x)。
4. 乘法法则对于两个函数的乘积,其导数等于第一个函数的导数乘以第二个函数本身,再加上第一个函数本身乘以第二个函数的导数。
即(fg)'(x)=f'(x)g(x)+f(x)g'(x)。
5. 商法则对于两个函数的商,其导数等于分子的导数乘以分母本身,再减去分子本身乘以分母的导数,最后除以分母的平方。
即(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/g^2(x),其中g(x)≠0。
函数的导数与变化率
![函数的导数与变化率](https://img.taocdn.com/s3/m/a384bd143a3567ec102de2bd960590c69fc3d847.png)
函数的导数与变化率函数的导数是微积分中重要的概念之一,它描述了函数在某一点的变化率。
在本文中,我们将探讨函数的导数与变化率之间的关系以及它们在实际问题中的应用。
一、导数的概念与运算法则导数的定义是函数在某一点的斜率,表示函数在该点处的变化率。
对于给定的函数f(x),它的导数可以表示为f'(x)或df(x)/dx。
导数的运算法则包括加减法则、乘法法则、除法法则和链式法则等,这些法则可以方便地求出复杂函数的导数。
二、导数与函数的单调性导数还与函数的单调性密切相关。
当导数大于零时,函数是递增的;当导数小于零时,函数是递减的。
利用导数可以确定函数的单调区间和极值点。
三、导数与函数的凹凸性函数的导数还能帮助判断函数的凹凸性。
当导数递增时,函数在该区间上是凹的;当导数递减时,函数在该区间上是凸的。
通过分析导数的变化情况,可以确定函数的拐点以及凹凸区间。
四、变化率与导数的关系导数不仅仅表示函数在某一点的变化率,还可以表示函数在整个定义域上的变化趋势。
具体来说,导数的绝对值越大,函数的变化越剧烈;导数为零时,函数处于极值点;导数的正负表示函数递增和递减的情况。
五、导数在实际问题中的应用函数的导数在物理、经济等实际问题中有广泛应用。
例如,求导可以帮助我们找到函数的最大值和最小值,从而优化生产过程或寻求最优解。
导数还可以用来描述物理量的变化速率,例如速度和加速度。
六、结论函数的导数与变化率密切相关,它不仅仅是微积分中的一个概念,还是其它学科中应用最广泛的工具之一。
通过对函数的导数的分析,我们可以研究函数的单调性、凹凸性以及变化趋势,并将其应用于实际问题中。
掌握导数的概念与运算法则,能够帮助我们更好地理解函数的性质和变化规律。
通过本文的介绍,我们希望读者能够对函数的导数与变化率有更深入的理解,并在实际问题中灵活应用这一概念,以提升问题的解决能力和分析能力。
对于想深入学习微积分和应用数学的读者来说,掌握函数的导数是一个重要的里程碑。
导数与函数的变化率
![导数与函数的变化率](https://img.taocdn.com/s3/m/634244ab5ff7ba0d4a7302768e9951e79a896944.png)
导数与函数的变化率函数是数学中的重要概念,在解决实际问题中经常用到。
而了解函数的变化率对于我们理解函数的性质、以及进一步研究函数的应用具有重要意义。
在这篇文章中,我们将探讨导数与函数的变化率之间的联系,并且阐述导数与函数变化率的定义与计算方法。
一、导数的定义与计算方法导数可以看作是函数在某一点处的变化率。
如果我们考虑一个函数f(x),并且在区间[a, a+h]上的平均变化率为:\[ \frac{{f(a+h)-f(a)}}{h} \]而当h趋近于0时,这个平均变化率就趋近于某个值,这个值便是函数f(x)在点a处的导数。
导数用f'(a)或者\[\frac{{df}}{{dx}}(a)\]来表示。
那么如何计算导数呢?一般来说,我们可以使用几种方法来计算函数的导数:1. 使用函数的定义式来计算。
根据导数的定义,我们可以将函数的表达式代入到导数的定义式中,然后求解极限,从而得到导数的值。
2. 使用导数的性质来计算。
根据导数的性质,我们可以利用一些常见函数的导数公式,比如多项式函数的导数公式、幂函数的导数公式等,来计算函数的导数。
3. 使用数值计算方法来近似计算。
当函数的表达式较为复杂时,我们可以使用数值计算方法来近似计算导数的值,比如使用微分方程或者数值微分等方法。
二、了解导数与函数的变化率之间的关系可以帮助我们更好地理解函数的性质。
具体而言,导数可以告诉我们函数在某一点处的变化趋势。
1. 导数的正负性与函数的单调性导数的正负性可以帮助我们判断函数在某一区间上的单调性。
如果函数在某一区间上的导数始终大于0,那么函数在该区间上是递增的;如果函数在某一区间上的导数始终小于0,那么函数在该区间上是递减的。
2. 导数的零点与函数的极值点函数在某一点处导数为0时,这个点称为函数的驻点。
如果函数在驻点的导数存在,那么该点为函数的极值点。
当导数从正数变为负数时,函数在该点取得极大值;当导数从负数变为正数时,函数在该点取得极小值。
函数的导数与变化率知识点总结
![函数的导数与变化率知识点总结](https://img.taocdn.com/s3/m/1356983beef9aef8941ea76e58fafab069dc44cf.png)
函数的导数与变化率知识点总结函数的导数是微积分中一个重要的概念,它在研究函数的性质和变化规律时起到了重要的作用。
导数可以用于求函数的切线方程、最值、极值等性质,因此在许多实际问题中都有广泛的应用。
本文将对函数的导数与变化率的知识点进行总结,并介绍其基本概念、计算方法以及几个典型应用。
1. 导数的基本概念导数表示了函数在某一点的瞬时变化率,也可以理解为函数的斜率。
对于函数f(x),其在某一点x=a处的导数记为f'(a),可以通过下式进行计算:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中,h表示变化的增量。
导数的计算实际上是求取函数在某一点的极限。
若导数存在,则说明函数在该点可微,也就是函数在该点的图像是光滑的。
2. 导数的计算方法导数的计算方法有多种,根据函数的性质和表达式的不同而有所不同。
以下是几种常见的导数计算方法:2.1 基本初等函数的导数计算对于多项式函数、指数函数、对数函数、三角函数等基本初等函数,都有相应的导数公式可以直接使用。
例如,多项式函数f(x)=ax^n的导数为f'(x)=anx^(n-1),指数函数f(x)=e^x的导数为f'(x)=e^x,对数函数f(x)=ln(x)的导数为f'(x)=1/x,三角函数如sin(x)、cos(x)的导数分别为cos(x)和-sin(x)等。
2.2 导数的基本运算法则导数的计算还可以利用导数的基本运算法则,如和差法则、积法则、商法则等。
通过将复杂函数分解为基本初等函数的求导结果,并利用这些基本运算法则进行运算,可以较容易地求得复合函数的导数。
2.3 链式法则链式法则是求复合函数导数的常用方法。
对于函数y=f(u),u=g(x),则复合函数y=f(g(x))的导数可以通过以下公式进行计算:dy/dx = dy/du * du/dx3. 变化率与导数的关系导数不仅表示了函数在某一点的瞬时变化率,还可以用于描述函数在整个定义域上的变化规律。
(完整版)变化率与导数及导数的计算
![(完整版)变化率与导数及导数的计算](https://img.taocdn.com/s3/m/82730e5750e2524de5187efe.png)
第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。
利用导数研究函数的变化率
![利用导数研究函数的变化率](https://img.taocdn.com/s3/m/8d70d104bf1e650e52ea551810a6f524ccbfcbe6.png)
利用导数研究函数的变化率导数的定义导数是研究函数变化率的重要工具。
对于函数 $f(x)$,它在某一点 $x=a$ 的导数表示了函数在该点的变化率。
导数的定义如下:$$f'(a) = \lim_{{h \to 0}} \frac{{f(a+h) - f(a)}}{h}$$其中,$f'(a)$ 是函数 $f(x)$ 在点 $x=a$ 的导数。
导数的意义函数的导数具有一些重要的意义。
首先,导数可以帮助我们确定函数在某一点的变化趋势。
如果导数为正,表示函数在该点上升;如果导数为负,表示函数在该点下降;如果导数为零,表示函数在该点取极值。
其次,导数还可以用来求函数的斜率,从而研究函数的曲线特征。
导数的计算对于一些常见的函数,我们可以通过通用的求导规则来计算导数。
下面是一些常见规则的示例:- 常数函数:如果 $f(x) = c$,其中 $c$ 是一个常数,那么 $f'(x) = 0$。
- 幂函数:如果 $f(x) = x^n$,其中 $n$ 是一个常数,那么 $f'(x) = n \cdot x^{n-1}$。
- 指数函数:如果 $f(x) = a^x$,其中 $a$ 是常数且 $a > 0$,那么 $f'(x) = a^x \cdot \ln(a)$。
- 对数函数:如果 $f(x) = \log_a(x)$,其中 $a$ 是常数且 $a >0$ 且 $a \neq 1$,那么 $f'(x) = \frac{1}{x \cdot \ln(a)}$。
使用导数研究函数的变化率导数可以用来研究函数在特定区间上的变化率。
比如,如果函数在某一区间上的导数始终为正,那么函数在该区间上是递增的;如果导数始终为负,那么函数在该区间上是递减的。
此外,通过分析函数的导数曲线,我们可以确定函数的极值点和拐点。
极值点是函数在该点取得极大值或极小值的点,拐点是函数曲线由凹向上变为凹向下或由凹向下变为凹向上的点。
函数的导数与变化率的关系解读
![函数的导数与变化率的关系解读](https://img.taocdn.com/s3/m/0cf7a9c6951ea76e58fafab069dc5022aaea461d.png)
函数的导数与变化率的关系解读函数的导数是微积分中的重要概念之一,它描述了函数在某一点的变化率。
导数在各个学科领域中都得到了广泛应用,从物理学中的速度、加速度,到经济学中的边际效应,都离不开导数的概念。
本文将深入解读函数的导数与变化率之间的关系。
首先,我们来回顾一下函数的导数的定义。
对于函数y=f(x),在x点处的导数可以表示为f'(x),它的定义如下:f'(x) = lim(h→0) [f(x+h)-f(x)]/h这个定义可以简单理解为,当我们取x点附近一个极小的增量h时,函数值的变化量除以增量h就是函数在x点处的变化率。
而当h趋近于0时,这个变化率就趋近于一个确定的值,即函数在x点处的导数。
从这个定义中,我们可以看出函数的导数实际上描述了函数在不同点的变化率。
当导数的值为正时,表示函数在该点上升;当导数的值为负时,表示函数在该点下降;当导数的值为零时,表示函数在该点取得极值。
接下来,我们将考察一些常见函数的导数与其变化率之间的关系。
首先是线性函数,即f(x) = ax + b。
对于线性函数来说,它的导数为常数a,这表示线性函数的变化率在每个点处都是固定的。
第二个例子是幂函数,即f(x) = x^n,其中n为整数。
对于幂函数来说,它的导数为f'(x) = nx^(n-1)。
由此可以看出,幂函数的导数与自变量x的指数n和系数n之间的关系。
另一个例子是指数函数,即f(x) = a^x,其中a为常数。
对于指数函数来说,它的导数为f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数。
这个导数表达式反映了指数函数的变化率与底数a的关系。
最后,我们来看一下三角函数的导数。
对于正弦函数f(x) = sin(x)和余弦函数f(x) = cos(x),它们的导数分别为f'(x) = cos(x)和f'(x) = -sin(x)。
对于正切函数f(x) = tan(x),它的导数为f'(x) = sec^2(x),其中sec(x)表示余割函数。
导数的定义和基本性质
![导数的定义和基本性质](https://img.taocdn.com/s3/m/43f5ba1f814d2b160b4e767f5acfa1c7ab00824c.png)
导数的定义和基本性质导数是微积分学中的一个重要概念,它描述了函数变化率的性质。
在这篇文章中,我们将探讨导数的定义以及一些基本性质。
1. 定义导数衡量了函数在某一点上的变化率。
对于函数f(x),它在点x=a 处的导数可以用以下极限表示:f'(a) = lim┬(x→a)〖(f(x)-f(a))/(x-a)〗这个定义可以理解为函数f(x)在点x=a处的切线的斜率。
导数可以帮助我们理解函数在不同点上的变化情况,以及函数图像的特征。
2. 基本性质导数具有一些基本性质,包括线性性质、乘法规则和链式法则。
- 线性性质如果函数f(x)和g(x)的导数都存在,那么对于常数c,有:(cf)' = cf'(x)(f + g)' = f'(x) + g'(x)这个性质表明,导数对于常数的乘积和函数的和是可分离的。
- 乘法规则对于两个函数f(x)和g(x),它们的导数存在,则它们的乘积的导数为:(fg)' = f'(x)g(x) + f(x)g'(x)通过乘法规则,我们可以计算复杂函数的导数,只需要将函数分解为更简单的部分。
- 链式法则如果函数f(x)和g(x)的导数都存在,且g(x)是f(x)的复合函数,则复合函数g(f(x))的导数为:(g◦f)'(x) = g'(f(x)) * f'(x)链式法则可以帮助我们计算复合函数的导数,可以将复杂的函数关系简化为更易求导的函数。
3. 应用导数在实际问题中具有广泛的应用。
其中一些应用包括:- 切线和曲线的近似:导数可以帮助我们计算曲线上某一点的切线方程,从而近似描述曲线的局部特征。
- 最优化:导数可以帮助我们找到函数的最大值或最小值,这在经济学、工程学和物理学等领域有广泛的应用。
- 函数图像的研究:导数可以帮助我们分析函数的增减性、极值点和拐点等关键特征,从而帮助我们完成函数图像的研究和绘制。
变化率与导数
![变化率与导数](https://img.taocdn.com/s3/m/185bd237647d27284b7351f5.png)
记为 f ( x0 ) 或
y
x xo
,即
f ( x0 x) f ( x0 ) f f ( x0 ) lim lim x 0 x x 0 x
思考?
观察函数f(x)的图象
Y=f(x) y B
y f(x2 ) f ( x1 ) 平均变化率 x x2 x1
表示什么?
f(x2) f(x2)-f(x1)=△y A f(x1)
直线AB 的斜率
x2-x1=△x x x1 x2
O
四、导数的几何意义:
y
y=f(x) Pn
割 线
T
y
P
切线
x
o
x 我们发现,当点Pn沿着曲线无限接近点P即 Δ x→0时,割线P Pn趋近于确定位置PT.则我们 把直线PT称为曲线在点P处的切线.
因此,函数f(x)在x=x0处
y
y= Q f( x) P
的导数就是切线PT的斜率.
o
'
割 线 T 切 线 x
即:
f ( x0 x) f ( x0 ) y k切线 f ( x0 ) lim lim x 0 x x 0 x
这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质——函数在x=x0处的导数.
f ( x0 x) f ( x0 ) f lim lim x 0 x 0 x x
练习:
1.函数f(x)=x2在x=1处的瞬时变化率为( ).
2.函数f(x)=1-3x在x=x0处的瞬时变化率为( ) 3.质点运动规律s=t2+3,则在t=3秒的瞬时速度为
三、导数
一般地,函数 y =f(x) 在x=x0处的瞬时变化率 称为函数 y = f (x)在点x=x0处的导数,
高考数学一轮复习变化率与导数、导数的计算
![高考数学一轮复习变化率与导数、导数的计算](https://img.taocdn.com/s3/m/430fb27f59fafab069dc5022aaea998fcc224073.png)
第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.。
导数与函数的变化率与速率
![导数与函数的变化率与速率](https://img.taocdn.com/s3/m/3ff4049fd05abe23482fb4daa58da0116c171fed.png)
导数与函数的变化率与速率函数是数学中的重要概念,用于描述变量之间的关系。
而函数的变化率与速率是衡量函数变化程度的重要指标。
在微积分中,导数成为研究函数变化率与速率的核心工具。
本文将介绍导数的概念、计算方法以及与函数的变化率与速率之间的关系。
一、导数的概念导数是函数在某一点处的变化率,用数学符号表示为f'(x),其中f(x)为函数。
导数的定义是函数在某点处的切线斜率,即函数曲线在该点的瞬时变化速率。
二、导数的计算方法1. 使用极限定义导数的极限定义是:当自变量的增量趋向于零时,函数在该点的导数等于函数值的极限值。
具体计算公式是:f'(x) = lim(∆x->0) [f(x+∆x) - f(x)] / ∆x。
2. 常见函数导数的计算规则- 常数函数的导数为0;- 幂函数的导数为幂函数的指数乘以常数;- 指数函数的导数为自身乘以常数;- 对数函数的导数为1除以函数自身;- 三角函数的导数有特定的计算公式。
三、导数与函数的变化率函数的变化率可以通过导数来描述。
如果一个函数在某一点的导数为正,那么函数在该点上升;如果导数为负,函数在该点下降;如果导数为零,则函数在该点达到极值。
四、导数与函数的速率函数的速率是描述函数变化速度的概念。
导数正好能够反映函数的瞬时变化速率。
例如,当我们需要计算物体的瞬时速度时,可以通过求位移函数的导数来得到。
五、应用实例导数在实际问题中具有广泛的应用,以下列举几个常见例子:1. 经济学中的边际效应分析;2. 物理学中的速度、加速度计算;3. 生物学中的变化率分析。
六、总结本文介绍了导数的概念、计算方法以及与函数的变化率与速率之间的关系。
导数作为微积分的重要内容,广泛应用于各个学科领域,帮助我们理解和分析问题,解决实际应用中的复杂计算。
对于进一步深入学习和应用微积分具有重要意义。
导数与函数的傅里叶级数与变换
![导数与函数的傅里叶级数与变换](https://img.taocdn.com/s3/m/9fbaaf2da55177232f60ddccda38376baf1fe087.png)
导数与函数的傅里叶级数与变换导数是微积分中的重要概念之一,而函数的傅里叶级数与变换则是数学中处理周期性函数和信号的工具。
本文将探索导数与函数的傅里叶级数与变换之间的关系和应用。
一、导数的定义与性质导数是用来描述函数的变化率的概念。
对于函数f(x),在某个点x 处的导数可以通过以下定义计算得到:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示变化的量。
导数表征了函数在该点的切线斜率,通过导数可以推导出函数的极值、凹凸性以及函数图像的性质。
在计算导数时,可以利用基本导数公式和导数的性质。
例如,对于常数函数f(x) = c,其导数恒为0;对于多项式函数f(x) = ax^n,其导数为f'(x) = anx^(n-1);另外,导数满足导数的和差法则和导数的乘法法则等性质。
二、函数的傅里叶级数傅里叶级数是一种用三角函数的无限级数表示周期性函数的方法。
周期为T的周期性函数f(x)可以表示为如下的傅里叶级数形式:f(x) = a0/2 + Σ(an*cos(nωx) + bn*sin(nωx))其中,an和bn为傅里叶系数,nyω为频率,n为正整数。
傅里叶级数展开将周期函数转化为一系列三角函数的叠加,通过调整n的取值,可以逐渐逼近原函数的形状。
三、函数的傅里叶变换函数的傅里叶变换是将一个非周期函数表示为连续频谱的方法。
对于函数f(x),其傅里叶变换F(w)定义如下:F(w) = ∫[f(x) * e^(-iwx)]dx在傅里叶变换中,w表示频率,-i表示虚数单位。
通过傅里叶变换,可以将一个函数转化为频率域上的复数函数,从而实现对函数的频谱分析。
傅里叶变换具有线性性质和平移性质。
对于函数的线性组合,其傅里叶变换等于各个函数傅里叶变换的线性组合;对于函数的平移和伸缩,其傅里叶变换也会相应地发生平移和伸缩。
四、导数与傅里叶级数的关系在一定条件下,函数的导数与其傅里叶级数存在一定的关系。
导数与函数的增减性
![导数与函数的增减性](https://img.taocdn.com/s3/m/dcfe0611443610661ed9ad51f01dc281e43a564a.png)
导数与函数的增减性引言:导数是微积分的重要概念之一,它描述了函数在各个点上的变化率。
而函数的增减性则揭示了函数在不同区间上的升降特征。
本次教案将介绍导数的定义及其与函数增减性的关系,并通过具体例子和思考题来加深学生对这一概念的理解和应用。
一、导数的定义与性质1. 导数的定义导数的定义是:对于函数f(x),如果极限lim(h→0)[f(x+h)-f(x)]/h存在,则称该极限为函数f(x)在点x处的导数,记作f'(x)或dy/dx。
2. 导数的意义导数表示函数在某一点的瞬时变化率,也可以理解为曲线在该点处的斜率。
3. 导数的求法常见函数的求导法则包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
学生可通过实际例子来感受这些法则的应用。
二、导数与函数的增减性1. 函数的增减性函数的增减性描述了函数值的增减规律。
当函数递增时,其函数值随着自变量的增大而增大;当函数递减时,其函数值随着自变量的增大而减小。
2. 导数与函数的增减性的关系若函数在某区间内导数始终大于零(f'(x)>0),则函数在该区间内递增;若导数始终小于零(f'(x)<0),则函数在该区间内递减。
3. 导数与函数极值的关系函数在极值点处的导数为零。
当导数从正变为负时,函数在该点由增转减,此时为极大值点;当导数从负变为正时,函数在该点由减转增,此时为极小值点。
三、应用实例与思考题1. 实例1考虑函数f(x) = x^3 - 3x^2 + 2x,求函数的极值点和区间。
2. 实例2函数f(x) = sin x在何处递增?在何处递减?3. 思考题对于函数f(x) = x^2 - 2x + 3,求函数的极值点和区间。
提示:通过计算导数,求出导函数f'(x)。
然后,对f'(x)进行因式分解,找到f'(x)的根(即函数f(x)的极值点),进一步分析导数的取值区间。
结语:导数与函数的增减性是微积分中重要的概念,它们揭示了函数变化和变化率之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与函数的变化率
在微积分中,导数是一个十分重要且常见的概念。
导数可用于描述函数在某一点处的变化率,如何计算导数、导数的应用以及导数与函数的关系是微积分学习中的基本内容。
在本文中,我们将探讨导数与函数的变化率。
一、导数的定义及计算方法
导数的定义可描述为函数$f(x)$在某一点$x_0$处的变化率,它表示函数在该点处的瞬时变化率。
一般来说,导数的计算包括以下几种方法:
1.使用导数定义公式$$f'(x_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$
其中,$\Delta x$取极限时表示函数$f(x)$在$x_0$处的微小增量,即无穷小。
它也可以表达为$\frac{dy}{dx}$ 或$\frac{df}{dx}$。
2.使用常用导数公式,这是一些几乎所有微积分学生都需要熟记的公式。
例如:
$$\frac{d}{dx}(c)=0$$
$$\frac{d}{dx}(x^n)=nx^{n-1}$$
$$\frac{d}{dx}(\sin x)=\cos x$$
$$\frac{d}{dx}(\ln x)=\frac{1}{x}$$
其中 $c$ 为常数,$n$ 为整数,$\sin$ 和 $\ln$ 分别表示正弦函数和
自然对数。
3.使用基本的微积分运算法则,包括链式法则、求导法则和反求导
法则等。
二、导数的应用
导数在其他学科中也有许多应用,例如:
1.物理学中,利用导数可以求解物体的速度和加速度。
2.经济学中,利用导数可以求解生产函数和边际收益。
3.生命科学中,利用导数可以解决动力学问题,例如药物的生物利
用度和峰浓度时刻。
三、导数与函数的关系
导数和函数之间的关系也十分重要,它们之间存在很多有趣的特性,例如:
1.导数可以揭示函数的增长趋势和极值,帮助人们了解函数的行为。
2.函数的导数是连续的,导数为0的点对应着函数的极值(局部极
大值或局部极小值)。
3.导数也可以用于图像的绘制和分析。
例如,我们通过函数的导数
可以知道其图像是否有拐点以及拐点的位置。
总之,导数是微积分学习中至关重要的概念,它可以帮助人们更好地了解函数的变化率以及在其他学科领域中的应用。
学习和掌握导数的计算方法和应用对于理解微积分学习中的其他概念和应用也有很大的帮助。