纳米氧化锌的形貌特征

合集下载

纳米氧化锌的制备、表征和光催化性能分析

纳米氧化锌的制备、表征和光催化性能分析

液) 的紫外 一 见吸 收光谱 图 , 5为纳 米 Z ( 存 在 下经 太 阳 可 图 n) 光2 h光 催化 降解 后 的甲基橙 溶液 紫外一 可见 吸收 光谱 图 。
2 4 光 致发 光 ( L) . P 光谱
为 了探 讨 纳米 Z O粒 子光 催化 的动 , n 分别 测量 了纳 米 氧化 锌 ( 、 N) 商品 Z (( 的激 发 光 谱 。图 6是 N 的 光敛 发 n )c) 光 ( I 谱 , 中 3个 主峰分 别 是 紫色 发光 峰 ( 9 . 6 m) 较 P ) 图 33 5n 、 强 的蓝 色可 见发光 峰 ( 4 . 5 m, 4 5 5 n 该主 峰 有一 个伴 峰 ) 一 个 、 次 强的绿 色 发光峰 ( 6 . 4 m, 主 峰两侧 有多 个伴 峰 ) 4 75 n 该 。前 两个 峰 属于带 边 自由激 子发 光 , 一个 峰 可能 为 束缚 激 子 发 第 -
W ANG il n Ju i g a
( Re l g f n h n Unv r i Ii nCol eo e Ya s a iest y,Qih a g a 6 0 4 n u n d o0 6 0 )
Ab ta t sr c Na o Z O y t e ie y t em e h d o n f r p e i i t n i i h p fs h r F smi ro e , n n s n h s d b h t o fu i m r c p t i s n s a e o p e e O i l n s z o a o a
关 键 词 纳米材料 氧化锌 制备技术 光催化剂 催化特性 中 图分 类号 : 4 . 063 3 文献标识码 : A
Pr pa a i n a e r to nd Cha a t r z t0 f Na o ZnO nd I s Ana y i r c e ia i n o n a t lss o o o c t l tc Pr pe te fPh t ’ a a y i o r i s

纳米氧化锌介绍与应用

纳米氧化锌介绍与应用

纳米氧化锌介绍与应用纳米氧化锌(ZnO)粒径介于1-100 nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。

概述中文名:纳米氧化锌英文名:Zinc oxide,nanometer 别名:纳米锌白;Zinc White nanometer CAS RN.:1314-13-2 分子式:ZnO 分子量:81.37形态纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。

由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。

近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。

纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。

由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。

纳米氧化锌金属氧化物粉末如氧化锌、二氧化钛、二氧化硅、三氧化二铝及氧化镁等,将这些粉末制成纳米级时,由于微粒之尺寸与光波相当或更小时,由于尺寸效应导致使导带及价带的间隔增加,故光吸收显著增强。

各种粉末对光线的遮蔽及反射效率有不同的差异。

以氧化锌及二氧化钛比较时,波长小于350纳米(UVB)时,两者遮蔽效率相近,但是在350~400nm(UVA)时,氧化锌的遮蔽效率明显高于二氧化钛。

同时氧化锌(n=1.9)的折射率小于二氧化钛(n=2.6),对光的漫反射率较低,使得纤维透明度较高且利于纺织品染整。

纳米氧化锌还可用来制造远红外线反射纤维的材料,俗称远红外陶瓷粉。

纳米zno的形貌特征及其光催化性能

纳米zno的形貌特征及其光催化性能

江西科技师范大学学报Journal of Jiangxi Science &Technology Normal University摘要:通过低温沉淀结合热分解法和水热法制备出一系列不同形貌结构的ZnO 晶体,并对其物相组成、光学性质、微观形貌以及光催化性能进行表征。

结果表明∶80℃温度下保温3h~9h ,并经过热处理之后获得的ZnO 光催化剂,在紫外光照射120min 后甲基橙降解率为92.3%~94.4%,在紫外光照射60min 后亚甲基蓝降解率为90.6%~91.4%。

本文还初步探讨了ZnO 晶体生长行为和光催化机理。

关键词:ZnO ;形貌;生长机理;光催化性能中图分类号:TQ132.4文献标识码:A文章编号:1007-3558(2019)06-0026-05Research on Morphology Characteristics and PhotocatalyticActivity of nano-ZnOXu Weihang 1,2,Hu Liling 1,2,Zhang Ruibo 1,2,Su Kaiyu 1,2,Li Wenkui 1,2,*,Ai Jianping 1,2,*(1.School of Materials and Mechatronics Jiangxi Science &Technology Normal University,Nanchang 330038,Jiangxi,China;2.Jiangxi Key Laboratory of Surface Engineering,Nanchang 330038,Jiangxi,China )Abstract:A series of ZnO crystals with different morphologies were synthesized by combining precipitation withcalcinations method and hydrothermal method.The as-prepared samples were well-characterized by XRD,SEM,FT-IR and UV-Vis.The photocatalytic performance of photocatalyst ZnO was studied using an ultraviolet lamp as illumination deviceand methyl orange (MO ),methylene blue (MB )as stimulant pollutants.The degradation efficiency of MO solution was 92.3%~94.4%in 120min corresponding to ZnO crystals which was prepared in 80℃for 3h~9h,and the degradationefficiency of MB solution was 90.6%~91.4%in 60min.Finally,ZnO crystal growth behavior and a possible photocatalytic mechanism were proposed.Key words:ZnO;morphology;growth mechanism;photocatalytic activity纳米ZnO 的形貌特征及其光催化性能胥伟航1,2,胡丽玲1,2,张锐博1,2,苏开禹1,2,李文魁1,2,*,艾建平1,2,*(1.江西科技师范大学材料与机电学院,江西南昌330038;2.江西省材料表面工程重点实验室,江西南昌330038)收稿日期:2019-09-10修回日期:2019-11-04接受日期:2019-11-05基金项目:2019年江西省教育厅科学技术研究项目“Bi 2WO 6/石墨烯/ZnFe 2O 4磁性可见光催化剂的制备及其环境净化性能研究”、江西科技师范大学青年拔尖人才项目(2018QNBJRC005)、2019年“大学生创新训练计划项目”(201911318002和20191304093)。

纳米氧化锌的部分特性

纳米氧化锌的部分特性

纳米氧化锌的部分特性薛元凤051002231摘要:纳米材料的物理化学性能与其颗粒的形状、尺寸有着密切的关系。

因此,单分散纳米材料的制备及其与尺寸相关的性能研究成为近几年人们研究的热点之一。

ZnO作为一种宽禁带半导体具有独特的性质,在纳米光电器件、光催化剂、橡胶、陶瓷及化妆品领域有着广阔的应用前景,随着对不同形状的纳米ZnO的制备及其相关的性能研究不断升温,对其应用方面的研究进展不断深入,单分散纳米ZnO材料已经引起了人们越来越广泛的关注。

ZnO作为一种宽禁带,高激子结合能的氧化物半导体,以其优越的磁、光、电以及环境敏感等特性而广泛地应用于透明电子元件、UV 光发射器、压电器件、气敏元件以及传感器等领域。

ZnO 本身晶格结构特点决定了在众多的氧化物半导体中是一种晶粒形态最丰富的材料。

本文主讲纳米氧化锌紫外屏蔽、光电催化、气敏、磁性等特性,及纳米氧化锌在生活中、工厂作业中的用途。

关键词:紫外屏蔽光电催化气敏导电性磁性1 引言随着纳米科学的发展,人类对自然的认识进入到一个新的层次。

材料的新性质被逐渐发掘!认识,新的理论模型被提出"著名学者钱学森院士预言:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是二十一世纪的又一次产业革命”。

纳米ZnO具有优异的光、电、磁性能,在当今一些材料研究热点领域表现活跃。

与普通ZnO相比,纳米ZnO颗粒尺寸小,微观量子效应显著,展现出许多材料科学家渴望的优异性质,如压电性,荧光性,非迁移性,吸收和散射电磁波能力等。

大量科研工作集中于纳米ZnO材料的制备、掺杂和应用等方面。

制备均匀、稳定的纳米ZnO是首要任务,获得不同形貌的纳米结构,如纳米球、纳米棒、纳米线、纳米笼、纳米螺旋、纳米环等,将这些新颖的纳米结构材料所具有的独特性能,应用到光电、传导、传感,以及生化等领域,取得了可喜的成绩。

世界各国相继大量投入,开发和利用纳米ZnO材料,使其在国防,电子,化工,冶金,航空,生物,医学和环境等方面具发挥更大的作用。

不同形貌的纳米氧化锌

不同形貌的纳米氧化锌

简单水热法制备棒状纳米氧化锌
表面活性剂 CTAB添 加量增加,制备产物对 次甲基蓝的光降解速 率降低 ——CTAB添加量增 加导致制备的ZnO棒 径增大,光降解表面变 小
棒径尺寸对纳米氧化锌光催化性能的影响
注:a 0.01mol/L CTAB b 0.1mol/L CTAB
——水热法
ZnO 纳米线
利用微波对系统加热 反应介质为有机相
可制备形貌特殊、且纯度较高的产品
微波加热法 溶剂热法
能够获得均匀粒子,反应时间也较水浴 加热大大缩短 能制备特殊形貌
水热法制备花状纳米氧化锌
配制 前驱体
0.6gZn(AcO)2 · 2H2O溶于3omL 蒸馏水中, 0.16g咪唑类离 子液体溶于 10mL蒸馏水中, 两者混合, 并搅拌10分钟
ቤተ መጻሕፍቲ ባይዱ
聚合物乳液进 一步修饰
带正电的多环 芳烃(2h)
水/去离子水洗
Pickering
棒状ZnO
——简单水热法
棒状纳米氧化锌的世界
简单水热法制备棒状纳米氧化锌
氧化锌纳米棒具有新奇的物化特性,纳米棒及其阵列具有优异的光电磁催化性 质,将对纳米元器件构筑和高级纳米功能材料的设计研究产生深远影响。
简单水热法
水热反应
后处理
将前驱体溶 液置于反应 釜中,180℃ 下加热24h
冷却至室温 ,将所得白 色产物分离 ,并用双蒸 水洗涤,于 60℃下干燥
——Maryam Movahedi, Elaheh Kowsari. Materials Letters, Volume 62, Issue 23, 31 August 2008
——SUN Ji-feng et al. Journal of Anhui Agri Sci ,2009, 37(27)

纳米氧化锌材料

纳米氧化锌材料

纳米氧化锌材料本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March纳米氧化锌材料研究现状[摘要]总之,纳米ZnO作为一种新型无机功能材料,从它的许多独特的用途可发现其在日常生活和科研领域具有广阔的市场和诱人的应用前景。

随着研究的不断深入与问题的解决,将有更多的优异性能将会被发现。

同时更为廉价的工业化生产方法也将会成为现实,纳米ZnO材料将凭借其独特的性能进入我们的日常生活。

随着科技的发展,相信纳米ZnO材料的性能及应用将会得到更大的提高和普及,并在新能源、环保、信息科学技术、生物医学、安全、国防等领域发挥重要的作用。

[关键词]纳米ZnO; 表面效应; 溶胶-凝胶法;纳米复合材料一、纳米氧化锌体的制备目前,制备纳米氧化锌的方法很多,归纳起来有属于液相法的沉淀法、溶胶-凝胶法、水热法、溶剂热法等,也有属于气相法的化学气相反应法等,而固相法在纳米氧化锌的制备领域则较少见。

a、沉淀法沉淀法是指使用某些沉淀剂如OH-、CO32-、C2O42-等,或在一定的温度下使溶液发生水解反应,从而析出产物,洗涤后得到产品[2]。

沉淀法一般有分为均匀沉淀法、络合沉淀法、共沉淀法等。

均匀沉淀法工艺成本低、工艺简单,为研究纳米氧化锌结构与性能及应用之间的关系提供了方便。

曾宪华[3]等人以常见且廉价的六水硝酸锌和氢氧化钠为以甲醇溶液作为溶剂在常温常压条件下,用均匀沉淀法直接制备了平均粒径为11 nm的纳米氧化锌粉体。

以下是他们的用共沉淀法制备的纳米ZnO 的扫描电子显微镜(SEM)照片。

络合沉淀法,制备的纳米Zn0不团聚,分散性好,粒径均匀。

李冬梅[4]等人采用络合沉淀法制备了粉体平均粒径52 nm,分散性好的纳米氧化锌粉体,并对产品结构性能进行了表征。

所得ZnO粉体平均粒径48 nm.分散性好,收率高。

共沉淀法是将含两种或两种以上的阳离子加入到沉淀剂中,使所有的离子同时完全沉淀。

纳米氧化锌产品介绍

纳米氧化锌产品介绍

纳米氧化锌产品介绍纳米氧化锌(nm—ZnO)是一种新型的功能纳米材料。

因为它具有小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应的机理,其物理和化学性能如光、电、声、磁、热及耐蚀等特性得到显著改善。

主要表现为屏蔽紫外线、抗菌防霉、静电屏蔽、非线性光传导、特异催化和光催化等。

可应用于橡胶、陶瓷、塑料、纺织品、化妆品、医药、饲料、建材、涂料、造纸、电子、影像、印刷、通信、环保、军工等各行业产品。

我公司生产的金鹿牌牌纳米氧化锌无毒无味、无刺激性,平均粒径14.6nm,重金属杂质总含量0.0026%,最低抑菌浓度MIC值25mg/L,紫外线屏蔽率80~100%,质量指标和功能指标均处于国内领先地位。

应用于橡胶制品,硫化速度快,反应温域宽,硫化锌转化率高,用量仅为普通氧化锌的10—30%。

而且大幅度的增加橡胶制品的光洁度、机械强度、抗裂、抗老化、耐磨、耐温、防霉、防磁、防油等优良性能。

应用于抗菌产品的开发,具有锌离子、原子氧和光催化三重抗菌功能,具有灭杀细菌、病毒的广谱性,并且由于其海绵状多孔微结构而具有缓释长效性。

建议使用含量0.3—2%。

应用于屏蔽紫外线产品的开发,具有人体防晒和产品抗老化不易变脆变色的功能。

建议使用量:原材料配方工艺掺量0.5—1%;产品面层履膜工艺的纳米ZnO膜厚0.1—0.2mm。

用于畜禽饲养业,作为饲料添加剂为畜禽补锌、增加肉料比,建议添加0.03%;作为医治畜禽腹泻、鸡鸭瘟病,建议按其日粮量的0.3%掺混服食。

我公司纳米氧化锌品种规格及包装:(不包括复合制品)纳米氧化锌防晒添加剂产品简介纳米氧化锌是一种新型功能精细无机产品,无毒、无味、无刺激性,具有优良的紫外线屏蔽和抗菌功能。

纳米氧化锌同纳米二氧化钛一样,已成为美国目前最常用的高档防晒剂。

随着平均粒径20nm以下纳米氧化锌规模化投产,其优异的性能和卓越的性价比,使纳米氧化锌逐渐成为化妆品、纺织品、塑料制品等许多领域中抗紫外线功能的首选材料。

纳米氧化锌的综述

纳米氧化锌的综述

纳米ZnO的制备综述纳米ZnO的制备综述引言:纳米ZnO是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细ZnO。

由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米ZnO产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。

因而,纳米ZnO在磁、光、电、化学、物理学、敏感性等方面具有一般ZnO产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。

关键字:纳米ZnO 性质制备应用一.纳米ZnO的性能表征纳米级ZnO的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统ZnO的双重特性。

与传统ZnO产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。

纳米ZnO粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。

纳米ZnO粉体的BET比表面积在35m2/g以上。

此外,通过调整制备工艺参数,还可以生产出棒状纳米ZnO。

本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米ZnO,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。

由于纳米ZnO具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米ZnO表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。

因此对纳米ZnO粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。

二、纳米ZnO的制备方法制备纳米ZnO材料的方法按物质的原始状态分为固相法、液相法、气相法3类。

2.1 固相法:固相法是按照一定比例混合金属盐或金属氧化物,并研磨煅烧,使其发生固相反应而直接得到纳米粉末。

(1)将摩尔比1:1的Zn(NO3)2·6H2O和Na2CO3分别研磨10min,然后再混合研磨20min,分别用去离子水和乙醇洗涤,80℃下干燥4h,待冷却后研细再置于马弗炉中,加热升温至400℃并保温3h,得到浅黄色纳米ZnO。

纳米氧化锌的形貌特征

纳米氧化锌的形貌特征

纳米氧化锌的形貌特征
纳米氧化锌的形貌特征可以根据不同的制备方法和条件而有所不同,一般有以下几种:
1. 球形纳米粒子:通过溶胶-凝胶法、水热法等方法制备的纳米氧化锌往往呈现出球形形态,粒径一般在10-50 nm之间。

2. 纳米棒状结构:通过水热法、氢离子交换法等方法制备的纳米氧化锌,往往呈现出棒状或柱状结构,纵向方向的粒径一般在20-50 nm之间,横向方向的粒径一般在5-10 nm之间。

3. 纳米管状结构:通过水热法、溶剂热法等方法制备的纳米氧化锌,往往呈现出管状或空心柱状结构,管径一般在10-30 nm之间,长度可达数百纳米。

4. 纳米片状结构:通过水热法、电化学沉积法等方法制备的纳米氧化锌,往往呈现出片状或片状堆积的结构,片厚一般在5-20 nm之间。

以上仅是纳米氧化锌形貌特征的一些典型表现形式,实际制备的过程中也会存在一些变异或调控方式,可以获得更加复杂的形貌。

纳米氧化锌(性能表征、形态、表面改性)

纳米氧化锌(性能表征、形态、表面改性)

纳米氧化锌(性能表征、形态、表面改性)纳米氧化锌粒径介于1-100 nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。

纳米氧化锌性能表征纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。

与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。

分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。

经3400比表面及孔径测定仪(北京金埃谱科技公司)测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。

此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。

本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。

纳米氧化锌形态纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。

由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。

近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。

纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。

由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。

纳米氧化锌综述

纳米氧化锌综述

纳米氧化锌综述氧化锌(Zn0)晶体是纤锌矿结构.属六方晶系,为极性晶体。

Zn0晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn--0配位四面体结构。

纳米氧化锌(Zn0)的性能和应用纳米氧化锌(Zn0)是一种白色粉末,是面向2l世纪的新型高功能精细无机产品,其粒径介于1~100nm。

由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状物料所不具有的表面效应、小尺寸效应和宏观量子隧道效应等,因而纳米氧化锌在磁、光、电、热、敏感等方面有一般氧化锌产品无法比拟的特殊性能。

1)制抗菌除臭、消炎、抗紫外线产品纳米氧化锌无毒、无味,对皮肤无刺激性,是皮肤的外用药物,能起消炎、防皱和保护等功效。

此外纳米氧化锌吸收紫外线的能力很强,对UVA(长波320~400nm)和UVB(中波280~320nm)均有良好的屏蔽作用。

可用于化妆品的防晒;也可以用于生产防臭、抗菌。

抗紫外线的纤维。

纳米氧化锌在阳光,尤其在紫外线照射下,在水和空气中,能分解出自有的带负电的电子,并同时留下带正电的空穴。

这种空血可以激活空气中的氧,使其变为活性氧,具有极强的化学活性,能与大多数有机物发生氧化反应,包括细菌体内的有机物,因而能杀死大多数的病毒。

纳米氧化锌的定量杀菌试验表明:在5min内,氧化锌的质量分数为1%试时,金黄色葡萄球菌的杀菌率为98.86%,大肠杆菌的杀菌率为99.93%。

2)用于氧化剂和光催化剂纳米氧化锌由于尺寸小、比表面积大、表面的键态与颗粒内部不同、表面原子配位不全等,导致表面的活性位臵增多,形成了凹凸不平的院原子台阶,增加了反应接触面。

因而纳米氧化锌的催化活性和选择性远远大于传统催化剂。

3)制备气体传感器及压电材料与SnO2、Fe2O3一起被称为气敏三大基体材料4)用于橡胶工业和涂料工业纳米氧化锌具有颗粒微小、比表面积大、分散性好、疏松多孔、流动性好等物理化学性质,因而,与橡胶的亲和性好,熔炼时易分散,胶料生热低、扯断变形小、弹性好,改善了材料工艺性能和物理性能。

纳米活性氧化锌

纳米活性氧化锌

纳米活性氧化锌英文名:Zinc oxide ,Nano activated 分子式:ZnO 分子量:81.37物化性质:氧化锌是一种白色微黄色的微细粉末,它与直接法间接法的氧化锌比较,具有晶粒微细,比表面积大,易分散等特点。

本厂纳米级氧化锌是采用氨-铵凝胶沉淀法精制而成,产品主要用于代替直接法间接法氧化锌。

用 途:氧化锌用作于橡胶电缆的硫化活性剂和补强剂,白色胶的着色剂和填充剂,天然橡胶的硫化活性及氯丁胶的硫化剂等。

在塑料上,颗粒细小的活性氧化锌,可作为聚烯烃和聚氯乙稀等塑料的光稳定剂,比普通氧化锌具有更好的屏蔽紫处线功能。

同时活性氧化锌亦可用在陶瓷,搪瓷,涂料,医药,化学造纸等行业中代替直接法间接法氧化锌。

用纳米活性氧化锌代替直接法间接法氧化锌在橡胶行业中使用,不仅能使橡胶具有良好的耐磨性,耐撕裂性和弹性,而且纳米活性氧化锌代替间接法99.7%能减量30%-40%使用,活性氧化锌可以代替直接法99.5%或间接法99.7%的氧化锌使用,从而提高橡胶行业的产品质量和经济效益。

制法:氨-铵凝胶沉淀法标准:包装:25KG/件。

塑料编织袋内衬聚乙烯塑料袋。

(可根据客户要求包装) 20尺小柜装货量:20吨 毛重:25.25KG 净重:25KG 海关编码:2817001000 月产量:450吨项目Q/CAQR003-2007氧化锌ZnO %≥95 比表面积 Surface densit y ≥m 2/g 35 氧化铅Pb 3O 4 %≤ 0.05 氧化锰MnO %≤ 0.005 氧化铜CuO %≤0.003 盐酸不溶物Insoluble in Hcl Solution %≤ 0.05 灼烧减量loss on ignition %≤1-4水份Water %≤0.7 筛余物(45um ) Screen Residues through 45um mesh %≤0.4 堆积密度Accumulation density g/ml ≥ 0.35 电镜平均粒径Average dia. of the particlenm ≤100。

纳米氧化锌的形貌特征

纳米氧化锌的形貌特征

纳米氧化锌的形貌特征
纳米氧化锌作为一种重要的半导体材料,在生物医学、光电子学、能源储存等领域有着广泛的应用。

其形貌特征是指其表面形态的特点,包括形貌、尺寸、分散性等方面。

本文将从形貌特征的角度,介绍纳米氧化锌的各种形态以及其对其性能的影响。

1. 球形纳米氧化锌
球形纳米氧化锌是最常见的一种形态,其直径一般在1~100纳米之间。

由于其表面积小,具有较高的晶格稳定性和光催化性能,并且易于控制反应速率和催化效率。

球形纳米氧化锌在催化剂、生物医学和环境治理等领域都有着广泛的应用。

2. 棒状纳米氧化锌
棒状纳米氧化锌是一种尺寸较小、长度较长的形态,其长径比一般在2~10之间。

由于其较大的比表面积和较好的光学性能,棒状纳米氧化锌被广泛应用于光电子学、催化剂、生物医学等领域。

此外,棒状纳米氧化锌还可以通过改变其长度和直径来调控其光学和电学性能。

3. 多面体纳米氧化锌
多面体纳米氧化锌是一种表面具有多个不规则面的形态,其晶体结构相对复杂。

由于其较大的比表面积和较好的光电传输性能,多面
体纳米氧化锌在光催化剂、传感器、太阳能电池等领域都有着广泛的应用。

4. 纳米线状氧化锌
纳米线状氧化锌是一种直径非常细、长度较长的纳米材料,其直径一般在10~100纳米之间。

由于其较高的比表面积和优异的光学和电学性能,纳米线状氧化锌被广泛应用于纳米传感器、太阳能电池、光电器件等领域。

纳米氧化锌的形貌特征对其性能有着重要的影响。

通过控制其形貌和尺寸,可以调控其光学、电学、催化等性质,为其在各个领域的应用提供了广阔的空间。

纳米氧化锌的形貌控制及性能研究

纳米氧化锌的形貌控制及性能研究

华中科技大学博士学位论文纳米氧化锌的形貌控制及性能研究姓名:吴长乐申请学位级别:博士专业:材料科学与工程指导教师:乔学亮20080901华中科技大学博士学位论文摘要纳米氧化锌(ZnO)作为一种新型多功能无机材料,在很多领域有着广阔的应用前景,尤其是在与人类生存和健康密切相关的光催化降解有机物污染和抗菌方面有着独特的优势。

如何将光催化降解性能和抗菌性能结合起来是目前研究纳米氧化锌应用的一个重要分支,然而纳米氧化锌作为光催化材料和抗菌剂国内仍处于研究阶段。

控制纳米氧化锌的形貌、在氧化锌表面吸附金属单质或晶格中掺入外来元素都会改变氧化锌本体的很多性能,如缺陷浓度、颗粒大小等,而这些因素会在一定程度上提高氧化锌的物理和化学性能。

本文基于这一点,采用直接沉淀法和溶胶法制备特定形貌的纳米ZnO粉体和采用金属单质吸附到氧化锌表面形成金属-ZnO异质结粉体,拟通过控制形貌和形成异质结来提高纳米氧化锌的光催化和抗菌性能。

首先概述了ZnO在光催化和抗菌方面的研究进展以及纳米ZnO的制备方法,重点回顾了液相法制备特定形貌的纳米氧化锌的研究进展。

然后采用直接沉淀法和溶胶法分别制备不同形貌纳米ZnO和纳米金属-ZnO异质结,研究了制备工艺参数和金属吸附对粉体的形貌、颗粒大小、结构和缺陷浓度的影响。

最后,研究了不同形貌的纳米ZnO粉体和金属-ZnO异质结粉体的光催化和抗菌性。

主要研究包括以下几个方面:通过直接沉淀法,制备了三种形貌的纳米氧化锌粉体;并研究了反应温度、溶液的PH值、不同锌盐和表面活性剂对纳米氧化锌形貌的影响。

用NaOH作为沉淀剂,未加表面活性剂的条件下制备了柱状纳米氧化锌粉体,实验结果显示:纤锌矿结构的氧化锌晶体,长度方向上增长比直径方向上增长所需要能量少,生长更快。

因此,反应温度从60 ℃升高到90 ℃,制备氧化锌的溶液中反应分子能量升高,使得生成氧化锌的趋势变大,氧化锌形貌从短柱状变为长柱状;溶液中阴离子离子半径大小顺序为:CH3CO2- > SO42- > NO3- > Cl-,离子半径越大,在氧化锌(0001)晶面上吸附量越少,对氧化锌(0001)晶面生长速度抑制越弱,其抑制顺序为:CH3CO2- < SO42- < NO3- < Cl-,选用的锌盐不同,粉体形貌从针状(以Zn(Ac)2·2H2O制备)变化到柱状(以ZnSO4制备),然后到笋状(以Zn(NO3)2·6H2O制备),最后为短柱状(以华中科技大学博士学位论文ZnCl2制备),其中长径比分别为6.5:1—5:1—3.5:1—2:1。

纳米氧化锌的形貌及性质演化研究

纳米氧化锌的形貌及性质演化研究

纳米氧化锌的形貌及性质演化研究应该与普通氧化锌一样。

纳米氧化锌受热温度到一定程度时,会类是烧结的情况,逐渐变成非纳米颗粒。

以大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌为受试菌株,通过悬液定量杀灭试验和抑菌圈试验检测纳米抗菌剂的抗菌、抑菌能力;并对纳米薄膜抗菌性能进行研究。

在本文的研究工作中,首先测定纳米TiO_2、纳米ZnO抗菌剂的最低抑菌浓度(MIC)与最高杀菌浓度(MBC),这为纳米抗菌剂在实际应用中的添加量给出了一个参考值;通过试验对影响抗菌剂的抗菌性能的几个因素(抗菌剂浓度、光照时间、pH值与抗菌剂煅烧温度)进行探讨;通过抑菌圈试验更直接展现纳米抗菌剂的抗菌性能。

在纳米薄膜抗菌试验中,比较经过不同热处理的纳米材料的抗菌性能的差异,以及探讨了不同介质浸泡对抗菌剂性能的影响;检测抗菌剂作用时间的长短对抗菌性能的影响。

结果表明,当纳米抗菌剂在其浓度为1000ppm(最低抑菌浓度)以上时,对1×107~2×107cfu/mL(最高杀菌浓度)受试菌株的抑菌率可高达99.99%。

在纳米薄膜抗菌试验中,测的热处理温度为400℃时候,抗菌效果最好,热处理温度越高,抗菌效率越低;通过对纳米TiO_2薄膜的XRD、SEM分析,400℃热处理制得的纳米薄膜表面致密均匀,薄膜的厚度300~400nm,小于可见光波长,具有良好的透光性。

另外,经过1d与7d作用时间抗菌剂的抗菌效果无明显变化,说明纳米抗菌剂具有良好的抗菌耐久性。

1、纳米涂层指纳米无毒涂层的先进工艺,科技含量高的纳米涂层技术。

2、这种高科技纳米涂层不仅无毒无害,还可以缓慢释放出一种物质,降解室甲醛、二甲苯等有害物质。

纳米涂层产生与功用:一是在硬度高的,耐磨涂层中添加纳米相,可进一步提高涂层的硬度和耐磨性能,并保持较高的韧性。

二是将纳米颗粒加入到表面涂层中,可以达到减小摩擦系数的效果,形成自润滑材料,甚至获得超润滑功能。

在一些涂层中复合C60,巴基管等,制备出超级润滑新材料。

球形纳米氧化锌

球形纳米氧化锌

嘿,朋友们,你们知道吗?在这个五彩斑斓的世界里,有一种东西,它看起来黑不溜秋的,像个小黑球,但实际上,它可不是什么简单的“黑球”,而是个科技界的“小明星”——球形纳米氧化锌!
你说这氧化锌吧,咱们平时可能不太注意,但它可是个好东西,能抗菌、能防晒,还能在各种高科技产品里露脸。

但加上“纳米”和“球形”这两个词,嘿,这家伙立马就变得高大上了起来。

你可能会想,这小黑球能有啥特别的?不就是个小不点儿嘛!但你可别小看了它,它虽然小,但本事可大了去了。

首先啊,它超级能“打”,抗菌能力杠杠的,就像是给细菌们准备了一场“拳击赛”,一拳一个,毫不留情。

而且啊,这小黑球还特别“环保”,能吸收紫外线,保护咱们的皮肤不受伤害。

你说这像不像咱们夏天出门必备的防晒霜?但人家可不仅仅是防晒霜那么简单,它还能在各种高科技领域里大展身手呢!
更神奇的是,这小黑球还有个“隐身术”。

虽然它看起来黑不溜秋的,但在某些特定条件下,它却能变得“透明”起来,就像是穿上了隐身衣,让人根本看不出它的存在。

你说这像不像咱们小时候看的科幻片里的隐形技术?但人家这可是真材实料的科技产品哦!
当然啦,这小黑球也不是没有缺点。

比如说啊,它有时候可能会“调皮”,跟其他材料“打架”,不太容易相处。

但科学家们可不怕这个,他们有的是办法把这小黑球“驯服”得服服帖帖的,让它在各种应用中都能发挥出最大的作用。

所以啊,朋友们,下次你要是再看到这种小黑球,可别忙着嫌弃
它“长得丑”,你得知道,它可是个深藏不露的“小明星”呢!说不定哪天,你就能在某个高科技产品里看到它的身影哦!。

纳米氧化锌PPT课件

纳米氧化锌PPT课件

.
21
水热法制纳米氧化锌阵列
清洗基片
乙酸锌
乙醇 混合溶液
涂布甩膜
烘干 晶种
水浴加热 高温退火
纳米ZnO阵列
HMT 硝酸锌
.
22
n 纳米ZnO粉体(零维) n 纳米ZnO阵列(一维) n 纳米ZnO薄膜(二维) n 纳米ZnO晶体(三维)
模板法、化学气相沉积法、微
分子束外波延法法、(溶M液BE法);金属有机物 化学气相沉积法(MOCVD);激光脉 冲沉积法(PLD);喷雾热分解法( SP);磁控非溅晶射晶法化(法MS、)球磨法
.
33
2 纺织和日化工业
食品级纳米氧化锌
在合于优良制造过程或喂食过程前提下,一般被 认为安全的食物添加物。锌广泛存在于活体中, 也是人体含量最多的微量金属元素,所有生物皆 需要锌,而锌是所有细胞成分之一,以作为许多 基本酵素系统的共同因子(Cofactor)。每天锌 需求量成人建议要有15mg,而哺乳中母亲则要 有25mg。纳米氧化锌因其粒径细度为纳米级别 ,更容易被人体吸收。
.
5
其晶格中可能产生的 本征点缺陷有6 种: 氧空位、锌空位、反 位氧、反位锌、氧填 隙以及锌填隙。从能 级角度分类,点缺陷 可分为浅能级缺陷和 深能级缺陷, 其中深 能级对氧化锌的光学 性质影响较大。研究 认为, 位于465~ 520nm 的蓝-绿可见 发光带主要是氧化锌 的深能级缺陷引起的 。
.
23
纳米氧化锌的应用
.
24
主要应用
1 电子、光伏工业 2 纺织、日化工业 3 玻璃、陶瓷工业 4 橡胶、涂料工业
.
25
1 电子22 光纺纺伏织织产3、、玻业日日璃4化化陶橡工工瓷胶业业工、业涂料工业

纳米氧化锌晶体概述

纳米氧化锌晶体概述

纳米氧化锌晶体概述作者姓名:00班级:00学号:*********联系方式:000000000000****************纳米氧化锌晶体概述钱学森91 马博摘要:纳米氧化锌是一种具有特异性能并且用途广泛的新材料,同时也是一种重要的基础化工原料。

本文首先介绍了纳米氧化锌晶体的基本物理和化学性质,基于这些性质,进一步阐述了纳米氧化锌在各个行业的应用。

其次,本文对纳米氧化锌的制备方法进行了较为详细和系统的介绍。

于此同时,为了对纳米氧化锌的性质进行改进,以扩大其应用领域,最后,我们又对纳米氧化锌的表面改型进行了较为深入地分析。

关键词:纳米ZnO;性质;应用;制备;改性目录1 纳米氧化性概述 (5)1.1氧化锌的基本性质 (5)1.2氧化锌晶体的结构 (5)1.3纳米氧化锌的基本性能[3] (5)1.3.1表面效应 (5)1.3.2体积效应 (5)1.3.3量子尺寸效应 (6)1.3.4宏观量子隧道效应 (6)2 纳米氧化锌的应用 (6)2.1纳米氧化锌在橡胶轮胎中的应用[6] (6)2.2纳米氧化锌在陶瓷中的应用[8] (6)2.3纳米氧化锌在防晒化妆品中的应用 (6)2.4纳米氧化锌在油漆涂料中的应用 (7)2.5纳米氧化锌在纺织中的应用 (7)2.6纳米氧化锌在催化剂和光催化剂中的应用 (7)2.7纳米氧化锌在磁性材料中的应用[5] (7)2.8作为填充剂的应用 (8)3 纳米氧化锌的制备方法 (8)3.1固相法 (8)3.1.1燃烧法[14] (8)3.1.2固相合成法[14] (8)3.2液相法 (8)3.2.1直接沉淀法 (8)3.2.2均匀沉淀法[16] (9)3.2.3并流沉淀法[17] (9)3.2.4溶胶-凝胶法[18] (9)3.2.5水热合成法[19] (10)3.2.6微乳液法[20] (10)3.3气相法[21,22] (10)3.3.1激光诱导气相沉积法 (10)3.3.2气相反应合成法 (10)3.3.3喷雾热解法 (10)3.3.4化学气相氧化法 (10)4 纳米氧化锌的表面改性 (11)4.1表面物理修饰法 (11)4.1.1表面活性剂法[24] (11)4.1.2表面沉积法 (11)4.2表面化学修饰法 (11)4.2.1酯化反应法[27] (11)4.2.2 偶联剂法[24] (11)4.2.3表面接枝改性法[28] (12)4.2.4 机械化学修饰[29] (12)4.2.5外层膜修饰 (12)4.2.6 高能量表面修饰 (12)4.2.7其它方法[30] (13)1 纳米氧化性概述1.1 氧化锌的基本性质氧化锌,俗称锌白,属六方晶系纤锌矿结构,白色或浅黄色晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中能吸收二氧化碳和水[1]。

纳米氧化锌综述

纳米氧化锌综述

纳米氧化锌综述概述纳米氧化锌是一种多功能性的新型无机材料,晶体为六方结构,其颗粒大小约在1~100纳米。

纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点[1]。

近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。

纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。

由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。

纳米氧化锌的性质纳米氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。

激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死[2]。

纳米氧化锌的制备1.纳米氧化锌的液相化学制备技术除了能够准确控制粒子的化学组成外,液相法与其它化学制备技术相比还具有设备简单、批量大、原料易得、相对来说粒子大小集中、晶相结构及形状容易控制、产物活性好、成本低等特点。

液相法可以分为沉淀法、溶胶-凝胶法、微乳液法、水热合成法、溶剂蒸发法等。

1.1化学沉淀法1.1.1直接沉淀法直接沉淀法是直接混合制备氧化锌的锌盐与沉淀剂溶液的方法,特点是条件易于控制,操作简单,适于大批量制备粉体材料,其缺点是副产物离子的洗涤较困难,且产物粒径分布较宽,干燥过程中粒子易于团聚。

郭志峰等[3]向乙酸锌溶液滴加草酸,同时搅拌,伴有草酸锌沉淀生成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米氧化锌的形貌特征
纳米氧化锌是一种具有广泛应用前景的纳米材料,其形貌特征对其性能和应用具有重要影响。

本文将从纳米氧化锌的形貌特征入手,探讨其在不同领域的应用。

一、纳米氧化锌的形貌特征
纳米氧化锌的形貌特征主要包括粒径、形状、表面结构等方面。

其中,粒径是影响纳米氧化锌性能的重要因素。

一般来说,纳米氧化锌的粒径越小,比表面积越大,表面活性位点越多,其催化、光催化、光电性能等就越好。

此外,纳米氧化锌的形状也对其性能有影响。

不同形状的纳米氧化锌具有不同的表面能和晶面结构,从而影响其光学、电学、磁学等性质。

例如,球形纳米氧化锌具有较高的比表面积和光吸收能力,适用于光催化和光电转换等领域;棒状纳米氧化锌则具有较好的电学性能,适用于传感器和电子器件等领域。

二、纳米氧化锌在催化领域的应用
纳米氧化锌在催化领域的应用主要体现在光催化和催化剂两个方面。

光催化是指利用光能激发纳米氧化锌表面的电子,从而促进化学反应的进行。

纳米氧化锌具有较高的光吸收能力和光催化活性,可用于水处理、空气净化、有机废气处理等领域。

催化剂是指在化学反应中起催化作用的物质,纳米氧化锌作为一种催化剂,具有较高的
催化活性和选择性,可用于有机合成、氧化还原反应等领域。

三、纳米氧化锌在光电领域的应用
纳米氧化锌在光电领域的应用主要体现在太阳能电池、光电传感器、光电器件等方面。

太阳能电池是指利用光能转化为电能的装置,纳米氧化锌作为一种光电转换材料,具有较高的光吸收能力和光电转换效率,可用于太阳能电池的制备。

光电传感器是指利用光电效应将光信号转化为电信号的装置,纳米氧化锌作为一种光敏材料,具有较高的光电响应能力和灵敏度,可用于光电传感器的制备。

光电器件是指利用光电效应实现电子器件功能的装置,纳米氧化锌作为一种光电转换材料,可用于制备光电晶体管、光电场效应晶体管等器件。

四、纳米氧化锌在生物医学领域的应用
纳米氧化锌在生物医学领域的应用主要体现在生物成像、药物传递、抗菌等方面。

生物成像是指利用成像技术观察生物体内部结构和功能的方法,纳米氧化锌作为一种生物成像探针,具有较高的荧光强度和生物相容性,可用于生物成像。

药物传递是指利用纳米材料将药物传递到靶细胞或组织的方法,纳米氧化锌作为一种药物传递载体,具有较高的药物负载能力和靶向性,可用于药物传递。

抗菌是指利用纳米材料抑制细菌生长的方法,纳米氧化锌作为一种抗菌材料,具有较高的抗菌活性和生物相容性,可用于医疗器械和医用材
料的制备。

纳米氧化锌的形貌特征对其性能和应用具有重要影响,其在催化、光电、生物医学等领域的应用前景广阔。

随着纳米技术的不断发展,纳米氧化锌的应用前景将会更加广阔。

相关文档
最新文档