中考数学试卷分类汇编规律型(图形的变化类)

合集下载

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.规律型:图形的变化类(共3小题)1.(2023•绥化)在求1+2+3+…+100的值时,发现:1+100=101,2+99=101…,从而得到1+2+3+…+100=101×50=5050.按此方法可解决下面问题.图(1)有1个三角形,记作a1=1;分别连接这个三角形三边中点得到图(2),有5个三角形,记作a2=5;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作a3=9;按此方法继续下去,则a1+a2+a3+…+a n= .(结果用含n的代数式表示)2.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为 .3.(2021•绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…依此规律,则第n个图形中三角形个数是 .二.因式分解-运用公式法(共1小题)4.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= .三.因式分解-分组分解法(共1小题)5.(2023•绥化)因式分解:x2+xy﹣xz﹣yz= .四.实数范围内分解因式(共1小题)6.(2021•绥化)在实数范围内分解因式:ab2﹣2a= .五.分式的混合运算(共1小题)7.(2023•绥化)化简:(﹣)÷= .六.分式的化简求值(共1小题)8.(2021•绥化)当x=+3时,代数式的值是 .七.二次根式有意义的条件(共1小题)9.(2023•绥化)若式子有意义,则x的取值范围是 .八.一元一次方程的应用(共1小题)10.(2022•绥化)在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为 .九.二元一次方程的应用(共1小题)11.(2022•绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元.则有 种购买方案.一十.根与系数的关系(共3小题)12.(2023•绥化)已知一元二次方程x2+x=5x+6的两根为x1与x2,则+的值为 .13.(2022•绥化)设x1与x2为一元二次方程x2+3x+2=0的两根,则(x1﹣x2)2的值为 .14.(2021•绥化)已知m,n是一元二次方程x2﹣3x﹣2=0的两个根,则= .一十一.一元一次不等式的应用(共1小题)15.(2021•绥化)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买A,B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的,则在购买方案中最少费用是 元.一十二.解一元一次不等式组(共1小题)16.(2022•绥化)不等式组的解集为x>2,则m的取值范围为 .一十三.反比例函数系数k的几何意义(共1小题)17.(2021•绥化)如图,在平面直角坐标系中,O为坐标原点,MN垂直于x轴,以MN为对称轴作△ODE的轴对称图形,对称轴MN与线段DE相交于点F,点D的对应点B恰好落在y=(k≠0,x<0)的双曲线上,点O、E的对应点分别是点C、A.若点A为OE 的中点,且S△AEF=1,则k的值为 .一十四.正方形的性质(共1小题)18.(2021•绥化)在边长为4的正方形ABCD中,连接对角线AC、BD,点P是正方形边上或对角线上的一点,若PB=3PC,则PC= .一十五.正多边形和圆(共2小题)19.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为 度.20.(2021•绥化)边长为4cm的正六边形,它的外接圆与内切圆半径的比值是 .一十六.弧长的计算(共1小题)21.(2021•绥化)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 cm.一十七.扇形面积的计算(共1小题)22.(2023•绥化)如图,⊙O的半径为2cm,AB为⊙O的弦,点C为上的一点,将沿弦AB翻折,使点C与圆心O重合,则阴影部分的面积为 .(结果保留π与根号)一十八.圆锥的计算(共1小题)23.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为 .一十九.旋转的性质(共2小题)24.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是 .25.(2023•绥化)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A′BC′,延长C′A′交直线BC于点D.则A′D的长度为 .二十.位似变换(共1小题)26.(2023•绥化)如图,在平面直角坐标系中,△ABC与△AB′C′的相似比为1:2,点A 是位似中心,已知点A(2,0),点C(a,b),∠C=90°.则点C′的坐标为 .(结果用含a,b的式子表示)二十一.特殊角的三角函数值(共1小题)27.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .二十二.概率公式(共2小题)28.(2022•绥化)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为 个.29.(2021•绥化)在单词mathematics(数学)中任意选择一个字母恰好是字母“t”的概率是 .二十三.列表法与树状图法(共1小题)30.(2023•绥化)在4张完全相同的卡片上,分别标出1,2,3,4.从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是 .黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.规律型:图形的变化类(共3小题)1.(2023•绥化)在求1+2+3+…+100的值时,发现:1+100=101,2+99=101…,从而得到1+2+3+…+100=101×50=5050.按此方法可解决下面问题.图(1)有1个三角形,记作a1=1;分别连接这个三角形三边中点得到图(2),有5个三角形,记作a2=5;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作a3=9;按此方法继续下去,则a1+a2+a3+…+a n= 2n2﹣n .(结果用含n的代数式表示)【答案】2n2﹣n.【解答】解:∵图(1)有1个三角形,记作a1=1;图(2)有5个三角形,记作a2=5=1+4=1+4×1;图(3)有9个三角形,记作a3=9=1+4+4=1+4×2;…,∴图(n)中三角形的个数为:a n=1+4(n﹣1)=4n﹣3,∴a1+a2+a3+…+a n=1+5+9+…+(4n﹣3)==2n2﹣n.故答案为:2n2﹣n.2.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为 (1+)2022 .【解答】解:由题意可得,P1K1=OP1•tan60°=1×=,P2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,…,P n K n=(1+)n﹣1,∴当n=2023时,P2023K2023=(1+)2022,3.(2021•绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…依此规律,则第n个图形中三角形个数是 n2+n﹣1 .【答案】n2+n﹣1.【解答】解:观察图中三角形的个数与图形的序号的关系,有如下规律:第一个图形:12+0,第二个图形:22+1,第三个图形:32+2,第四个图形:42+3,•,第n个图形:n2+n﹣1.故答案为:n2+n﹣1.二.因式分解-运用公式法(共1小题)4.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= (m+n﹣3)2 .【答案】(m+n﹣3)2.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.三.因式分解-分组分解法(共1小题)5.(2023•绥化)因式分解:x2+xy﹣xz﹣yz= (x+y)(x﹣z) .【答案】(x+y)(x﹣z).【解答】解:原式=(x2+xy)﹣z(x+y)=x(x+y)﹣z(x+y)=(x+y)(x﹣z),故答案为:(x+y)(x﹣z).四.实数范围内分解因式(共1小题)6.(2021•绥化)在实数范围内分解因式:ab2﹣2a= a(b+)(b﹣) .【答案】见试题解答内容【解答】解:ab2﹣2a,=a(b2﹣2)﹣﹣(提取公因式)=a(b+)(b﹣).﹣﹣(平方差公式)五.分式的混合运算(共1小题)7.(2023•绥化)化简:(﹣)÷= .【答案】.【解答】解:(﹣)÷=[﹣]•=[﹣]•=•=,故答案为:.六.分式的化简求值(共1小题)8.(2021•绥化)当x=+3时,代数式的值是  .【答案】.【解答】解:原式=[﹣]•=•=,当x=+3时,原式==,故答案为:.七.二次根式有意义的条件(共1小题)9.(2023•绥化)若式子有意义,则x的取值范围是 x≥﹣5且x≠0 .【答案】x≥﹣5且x≠0.【解答】解:由题意得x+5≥0且x≠0,解得x≥﹣5且x≠0,故答案为:x≥﹣5且x≠0.八.一元一次方程的应用(共1小题)10.(2022•绥化)在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为 1.2或者1.5 .【答案】1.2或者1.5.【解答】解:第一次操作后的两边长分别是x和(2﹣x),第二次操作后的两边长分别是(2x﹣2)和(2﹣x).当2x﹣2>2﹣x时,有2x﹣2=2(2﹣x),解得x=1.5,当2x﹣2<2﹣x时,有2(2x﹣2)=2﹣x,解得x=1.2.故答案为:1.2或者1.5.九.二元一次方程的应用(共1小题)11.(2022•绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元.则有 3 种购买方案.【答案】3.【解答】解:设购买x件甲种奖品,y件乙种奖品,依题意得:4x+3y=48,∴x=12﹣y.又∵x,y均为正整数,∴或或,∴共有3种购买方案.故答案为:3.一十.根与系数的关系(共3小题)12.(2023•绥化)已知一元二次方程x2+x=5x+6的两根为x1与x2,则+的值为 ﹣ .【答案】﹣.【解答】解:一元二次方程x2+x=5x+6整理得,x2﹣4x﹣6=0.根据题意得x1+x2=4,x1x2=﹣6,所以原式===﹣.故答案为:﹣.13.(2022•绥化)设x1与x2为一元二次方程x2+3x+2=0的两根,则(x1﹣x2)2的值为 20 .【答案】20.【解答】解:由题意可知:x1+x2=﹣6,x1x2=4,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(﹣6)2﹣4×4=36﹣16=20,故答案为:20.14.(2021•绥化)已知m,n是一元二次方程x2﹣3x﹣2=0的两个根,则= ﹣ .【答案】﹣.【解答】解:∵m、n是一元二次方程x2﹣3x﹣2=0的两个根,∴m+n=3,mn=﹣2,∴==﹣.故答案为:﹣.一十一.一元一次不等式的应用(共1小题)15.(2021•绥化)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买A,B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的,则在购买方案中最少费用是 330 元.【答案】330.【解答】解:设A种奖品的单价为x元,B种奖品的单价为y元,依题意得:,解得:.设购买A种奖品m个,则购买B种奖品(20﹣m)个.∵A种奖品的数量不小于B种奖品数量的,∴m≥(20﹣m),∴m≥,又∵m为整数,∴m≥6.设购买总费用为w元,则w=20m+15(20﹣m)=5m+300,∵5>0,∴w随m的增大而增大,∴当m=6时,w取得最小值,最小值=5×6+300=330.故答案为:330.一十二.解一元一次不等式组(共1小题)16.(2022•绥化)不等式组的解集为x>2,则m的取值范围为 m≤2 .【答案】m≤2.【解答】解:由3x﹣6>0,得:x>2,∵不等式组的解集为x>2,∴m≤2,故答案为:m≤2.一十三.反比例函数系数k的几何意义(共1小题)17.(2021•绥化)如图,在平面直角坐标系中,O为坐标原点,MN垂直于x轴,以MN为对称轴作△ODE的轴对称图形,对称轴MN与线段DE相交于点F,点D的对应点B恰好落在y=(k≠0,x<0)的双曲线上,点O、E的对应点分别是点C、A.若点A为OE 的中点,且S△AEF=1,则k的值为 ﹣24 .【答案】见试题解答内容【解答】解:如图,MN交x轴于点G,连接OB,由于Rt△DOE与Rt△BCA关于MN成轴对称,且OA=AE,由对称性可知,AG=GE,OA=AE=EC,∴AG=AC,∵S△AEF=1,∴S△AFG=S△AEF=,∵MN∥BC∥OD,∴△AFG∽△ABC,∴=()2=,∴S△ABC=×16=8,又∵OA=AC,∴S△OAB=S△ABC=4,∴S△OBC=8+4=12,∵点B在反比例函数y=的图象上,∴S△OBC=12=|k|,∵k<0,∴k=﹣24,故答案为:﹣24.一十四.正方形的性质(共1小题)18.(2021•绥化)在边长为4的正方形ABCD中,连接对角线AC、BD,点P是正方形边上或对角线上的一点,若PB=3PC,则PC= 1或或 .【答案】1或或.【解答】解:如图1,∵四边形ABCD是正方形,AB=4,∴AC⊥BD,AC=BD,OB=OD,AB=BC=AD=CD=4,∠ABC=∠BCD=90°,在Rt△ABC中,由勾股定理得:AC===4,∴OB=2,∵PB=3PC,∴设PC=x,则PB=3x,有三种情况:①点P在BC上时,如图2,∵AD=4,PB=3PC,∴PC=1;②点P在AC上时,如图3,在Rt△BPO中,由勾股定理得:BP2=BO2+OP2,(3x)2=(2)2+(2﹣x)2,解得:x=(负数舍去),即PC=;③点P在CD上时,如图4,在Rt△BPC中,由勾股定理得:BC2+PC2=BP2,42+x2=(3x)2,解得:x=(负数舍去),即PC=;综上,PC的长是1或或.故答案为:1或或.一十五.正多边形和圆(共2小题)19.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为 12 度.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.20.(2021•绥化)边长为4cm的正六边形,它的外接圆与内切圆半径的比值是 【答案】.【解答】解:连接OA,OB,作OG⊥AB于点G,∵正六边形的边长为4cm,∴正六边形的外接圆的半径4cm,内切圆的半径是正六边形的边心距,因而是GO=×4=2,因而正六边形的外接圆的半径与内切圆的半径之比为=.故答案为:.一十六.弧长的计算(共1小题)21.(2021•绥化)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 40 cm.【答案】见试题解答内容【解答】解:设弧所在圆的半径为r,由题意得,,解得,r=40cm.故应填40.一十七.扇形面积的计算(共1小题)22.(2023•绥化)如图,⊙O的半径为2cm,AB为⊙O的弦,点C为上的一点,将沿弦AB翻折,使点C与圆心O重合,则阴影部分的面积为 (π﹣)cm2 .(结果保留π与根号)【答案】(π﹣)cm2.【解答】解:如图,连接OA,OC,OC交AB于点M,由折叠性质可得OA=AC,AB⊥OC,∴OA=OC=AC=2cm,∴OM=CM=OC=1cm,∠AOC=60°,∵∠AMO=90°,∴AM===(cm),∴S阴影=S扇形AOC﹣S△AOC=﹣×2×=(π﹣)(cm2),故答案为:(π﹣)cm2.一十八.圆锥的计算(共1小题)23.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为 60πcm2 .【答案】60πcm2.【解答】解:圆锥的高为8cm,母线长为10cm,由勾股定理得,底面半径=6cm,侧面展开图的面积=πrl=π×6×10=60πcm2.故答案为:60πcm2.一十九.旋转的性质(共2小题)24.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是 3+3 .【答案】3+3.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.25.(2023•绥化)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A′BC′,延长C′A′交直线BC于点D.则A′D的长度为 或 .【答案】或.【解答】解:∵将△ABC绕点B旋转45°得到△A′BC′,∴有以下两种情况:①当△ABC绕点B逆时针旋转45°得到△A′BC′,过点B作BE⊥A'D于E,作BD的垂直平分线HF交DB于H,交A'D于F,连接BF,∵△ABC为等腰三角形,∠A=120°,AB=2,∴∠BA'C'=∠A=120°,A'B=AB=2,∠ABC=30°,∴∠DA'B=60°,由旋转的性质得:∠A'BA=45°,∴∠A'BC=∠A'BA+∠ABC=75°,又∵∠A'BC=∠DA'B+∠D,即75°=60°+∠D=15°,在Rt△A'BE中,∠DA'B=60°,A'B=2,∴∠A'BE=30°,∴,由勾股定理得:,∵HF为BD的垂直平分线,∴DF=BF,∴∠D=∠FBD=15°,∴∠EFB=∠D+∠FBD=30°,∴,故:,由勾股定理得:,∴;②当△ABC绕点B顺时针旋转45°得到△A′BC′,过点D作DM⊥A'D于M,作AD的垂直平分线PQ交A'B于Q,由旋转的性质得:∠ABA'=45°,∠BA'C'=∠A=120°,A'B=AB=2,∴∠A'BD=∠ABA'﹣∠ABC=15°,∠BA'D=60°,∵DM⊥A'D,∴∠A'DM=30°,在Rt△A'DM中,∠A'DM=30°,设A'M=x,则A'D=2A'M=2x,由勾股定理得:,∵PQ为BD的垂直平分线,∴BQ=DQ,∴∠A'BD=∠QDB=15°,∴∠DQM=∠A'BD+∠QDB=30°,∴,由勾股定理得:,∵A'M+QM+BQ=A'B,∴,∴,即.综上所述:A′D的长度为或.故答案为:或.二十.位似变换(共1小题)26.(2023•绥化)如图,在平面直角坐标系中,△ABC与△AB′C′的相似比为1:2,点A 是位似中心,已知点A(2,0),点C(a,b),∠C=90°.则点C′的坐标为 (6﹣2a,﹣2b) .(结果用含a,b的式子表示)【答案】(6﹣2a,﹣2b).【解答】解:过C作CM⊥AB于M,过C′⊥AB′于N,则∠ANC′=∠AMC=90°,∵△ABC与△AB′C′的相似比为1:2,∴,∵∠NAC′=∠CAM,∴△ACM∽△AC′N,∴,∵点A(2,0),点C(a,b),∴OA=2,OM=a,CM=b,∴AM=a﹣2,∴,∴AN=2a﹣4,C′N=2b,∴ON=AN﹣OA=2a﹣6,∴点C′的坐标为(6﹣2a,﹣2b),故答案为:(6﹣2a,﹣2b).二十一.特殊角的三角函数值(共1小题)27.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .【答案】.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=.故答案为:.二十二.概率公式(共2小题)28.(2022•绥化)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为 15 个.【答案】15.【解答】解:设箱子中黄球的个数为x个,根据题意可得:=,解得:x=15,经检验得:x=15是原方程的根.故答案为:15.29.(2021•绥化)在单词mathematics(数学)中任意选择一个字母恰好是字母“t”的概率是 .【答案】见试题解答内容【解答】解:“mathematics”中共11个字母,其中共2个“t”,任意取出一个字母,有11种情况可能出现,取到字母“t”的可能性有两种,故其概率是;故答案为:.二十三.列表法与树状图法(共1小题)30.(2023•绥化)在4张完全相同的卡片上,分别标出1,2,3,4.从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是 .【答案】.【解答】解:画树状图如下:共有16种等可能的结果,其中第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的结果有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是=,故答案为:.。

2021年江苏省中考数学真题分类汇编:图形的变化(附答案解析)

2021年江苏省中考数学真题分类汇编:图形的变化(附答案解析)

2021年江苏省中考数学真题分类汇编:图形的变化一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.410.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d =.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里(结果保留根号).16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=时,△AEC′是以AE为腰的等腰三角形.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)25.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.锐角A13°28°32°三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6226.(2021•无锡)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,AC与BD交于点E,PB切⊙O于点B.(1)求证:∠PBA=∠OBC;(2)若∠PBA=20°,∠ACD=40°,求证:△OAB∽△CDE.27.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).28.(2021•连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)29.(2021•苏州)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H 与P2F相交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.(1)四边形EBHP的面积四边形GPFD的面积(填“>”、“=”或“<”)(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.30.(2021•常州)在平面直角坐标系xOy中,对于A、A′两点,若在y轴上存在点T,使得∠ATA′=90°,且TA=TA′,则称A、A′两点互相关联,把其中一个点叫做另一个点的关联点.已知点M(﹣2,0)、N(﹣1,0),点Q(m,n)在一次函数y=﹣2x+1的图象上.(1)①如图,在点B(2,0)、C(0,﹣1)、D(﹣2,﹣2)中,点M的关联点是(填“B”、“C”或“D”);②若在线段MN上存在点P(1,1)的关联点P′,则点P′的坐标是;(2)若在线段MN上存在点Q的关联点Q′,求实数m的取值范围;(3)分别以点E(4,2)、Q为圆心,1为半径作⊙E、⊙Q.若对⊙E上的任意一点G,在⊙Q上总存在点G′,使得G、G′两点互相关联,请直接写出点Q的坐标.2021年江苏省中考数学真题分类汇编:图形的变化参考答案与试题解析一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,是一列两个矩形.故选:C.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.据此判断即可.【解答】解:该图是轴对称图形,不是中心对称图形.故选:A.【点评】此题主要考查了中心对称图形和轴对称图形,熟记相关定义是解答本题的关键.3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【考点】展开图折叠成几何体;简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据主视图的意义画出相应的图形,再进行判断即可.【解答】解:该组合体的主视图如下:故选:A.【点评】本题考查简单组合体的主视图,理解主视图的意义是正确判断的前提.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【考点】平行线的性质;矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】在矩形ABCD中,AD∥BC,则∠DEF=∠EFG=64°,∠EGB=∠DEG,又由折叠可知,∠GEF=∠DEF,可求出∠DEG的度数,进而得到∠EGB的度数.【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.【点评】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【考点】正方形的性质;中心投影.【专题】投影与视图;空间观念;几何直观.【分析】根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则在地面上的投影关于对角线对称,因为灯在纸板上方,所以上方投影比下方投影要长.【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,∴在地面上的投影关于对角线对称,∵灯在纸板上方,∴上方投影比下方投影要长,故选:D.【点评】本题主要考查中心投影的知识,弄清题目中光源和纸板的相对位置是解题的关键.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt △A′O′B,则下列四个图形中正确的是()A.B.C.D.【考点】旋转的性质.【专题】平移、旋转与对称;几何直观.【分析】本题主要考查旋转的性质,旋转过程中图形形状和大小都不发生变化,根据旋转性质判断即可.【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.【点评】本题主要考查旋转的性质,熟练掌握并应用旋转的性质是解题的关键,重点注意旋转的方向和角度.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥【考点】由三视图判断几何体.【专题】投影与视图;空间观念.【分析】从正视图以及左视图都为一个长方形,俯视图三角形来看,可以确定这个几何体为一个三棱柱.【解答】解:根据三视图可以得出立体图形是三棱柱,故选:A.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.4【考点】矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】由折叠的性质可得BM=MD,BN=DN,∠DMN=∠BMN,可证四边形BMDN 是菱形,在Rt△ADM中,利用勾股定理可求BM的长,由菱形的面积公式可求解.【解答】解:如图,连接BD,BN,∵折叠矩形纸片ABCD,使点B落在点D处,∴BM=MD,BN=DN,∠DMN=∠BMN,∵AB∥CD,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DM=DN,∴DN=DM=BM=BN,∴四边形BMDN是菱形,∵AD2+AM2=DM2,∴16+AM2=(8﹣AM)2,∴AM=3,∴DM=BM=5,∵AB=8,AD=4,∴BD===4,∵S菱形BMDN=×BD×MN=BM×AD,∴4×MN=2×5×4,∴MN=2,故选:B.【点评】本题考查了翻折变换,矩形的性质,菱形判定和性质,勾股定理,求出BM的长是解题的关键.10.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.【考点】相似三角形的判定与性质;解直角三角形.【专题】三角形;几何直观.【分析】过点C作BD的垂线,交BD的延长线于点E,可得△ABD∽△CED,可得==,由AD=AC,AB=2,可求出CE的长,又∠ABC=150°,∠ABD=90°,则∠CBD=60°,解直角△BCE,可分别求出BE和BD的长,进而可求出△BCD的面积.【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,∴S△BCD=•BD•CE=×=.故选:A.【点评】本题主要考查三角形的面积,相似三角形的性质与判定,解直角三角形等,看到面积或特殊角作垂线是常见的解题思路,也是解题关键.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.【考点】正方形的性质;相似三角形的判定与性质;解直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】连接AF,过点F作FG⊥AB于G,由四边形CDFE是边长为1的正方形可得AD=2,BE=3,根据勾股定理求出AB=5,AF=,BF=,设BG=x,利用勾股定理求出x=3,可得FG=1,即可得sin∠FBA的值.【解答】解:连接AF,过点F作FG⊥AB于G,∵四边形CDFE是边长为1的正方形,∴CD=CE=DF=EF=1,∠C=∠ADF=90°,∵AC=3,BC=4,∴AD=2,BE=3,∴AB==5,AF==,BF==,设BG=x,∵FG2=AF2﹣AG2=BF2﹣BG2,∴5﹣(5﹣x)2=10﹣x2,解得:x=3,∴FG==1,∴sin∠FBA==.故答案为:.【点评】此题综合考查了正方形、锐角三角函数的定义及勾股定理.根据勾股定理求出BG的长是解题的关键.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.【考点】相似三角形的判定与性质.【专题】三角形;图形的相似;推理能力;应用意识.【分析】先由==,设AD=3m,DB=2m,CE=3k,EB=2k,证明=,又∠B=∠B,可证明△DBE~△ABC.进而可得相似比为,面积比==,从而可得S△DBE:S四边形ADEC=4:21.【解答】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,∴=,=,∴=,又∠B=∠B,∴△DBE~△ABC.相似比为,面积比==,设S△DBE=4a,则S△ABC=25a,∴S四边形ADEC=25a﹣4a=21a,∴S△DBE:S四边形ADEC=.故答案为:.【点评】本题考查了相似三角形的判定与性质,证明△DBE~△ABC得出相似比是解题的关键.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.【考点】勾股定理;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由折叠的性质可得AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,在Rt△EFG中,由勾股定理可求EG=3,由锐角三角函数可求EH,HF的长,在Rt△AHF 中,由勾股定理可求AF.【解答】解:如图,过点F作FH⊥AC于H,∵将四边形ABDE沿直线DE翻折,得到四边形FGDE,∴AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,∴EG===3,∵sin∠FEG=,∴,∴HF=,∵cos∠FEG=,∴,∴EH=,∴AH=AE+EH=,∴AF===,故答案为:.【点评】本题考查了翻折变换,考查了折叠的性质,勾股定理,锐角三角函数,构造直角三角形是解题的关键.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=.【考点】线段垂直平分线的性质;旋转的性质.【专题】综合题;推理填空题;平移、旋转与对称;应用意识.【分析】设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,由OA=8,AB=5,BC是OA的垂直平分线,可得OB=5,OC=AC =4,BC=3,cos∠BOC==,sin∠BOC==,证明∠BOC=∠B'C'D=∠C'A'E,从而在Rt△B'C'D中求出C'D=,在Rt△A'C'E中,求出C'E=,得DE=C'D+C'E =,即可得到A'到ON的距离是.【解答】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:∵OA=8,AB=5,BC是OA的垂直平分线,∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',∴cos∠B'C'D=,Rt△B'C'D中,=,即=,∴C'D=,∵AE∥ON,∴∠B'OC'=∠C'A'E,∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,Rt△A'C'E中,=,即=,∴C'E=,∴DE=C'D+C'E=,而A'H⊥ON,C'D⊥ON,A'E⊥DC',∴四边形A'EDH是矩形,∴A'H=DE,即A'到ON的距离是.故答案为:.方法二:过A作AC⊥OB于C,如图:由旋转可知:点A′到射线ON的距离d=AC,∵OB•AC=OA•BD,∴AC==.【点评】本题考查线段的垂直平分线及旋转变换,涉及三角函数及矩形等知识,解题的关键是在Rt△B'C'D中和Rt△A'C'E中,求出求出C'D=,C'E=.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为25海里(结果保留根号).【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力;推理能力.【分析】过点P作PC⊥AB,在Rt△APC中由锐角三角函数定义求出PC的长,再在Rt △BPC中由锐角三角函数定义求出PB的长即可.【解答】解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.【点评】本题考查了解直角三角形的应用﹣方向角问题以及锐角三角函数定义;熟练掌握锐角三角函数定义,求出PC的长是解题的关键.16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是12.【考点】数学常识;三角形的面积;三角形中位线定理;矩形的判定;图形的剪拼.【专题】作图题;应用意识.【分析】根据图形的拼剪,求出BC以及BC边上的高即可解决问题.【解答】解:由题意,BG=CH=AF=2,DG=DF,EF=EH,∴DG+EH=DE=3,∴BC=GH=3+3=6,∴△ABC的边BC上的高为4,∴S△ABC=×6×4=12,故答案为:12.【点评】本题考查图形的拼剪,矩形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是读懂图象信息,属于中考常考题型.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=或时,△AEC′是以AE为腰的等腰三角形.【考点】等腰三角形的判定;勾股定理;矩形的性质;翻折变换(折叠问题).【专题】分类讨论;推理能力.【分析】设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x.当AE=EC′时,由勾股定理得:32+x2=(4﹣x)2;当AE=AC’时,作AH⊥EC’,由∠AEF=90°,EF平方∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即4﹣x=2x,解方程即可.【解答】解:设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x,当AE=EC′时,AE=4﹣x,∵矩形ABCD,∴∠B=90°,由勾股定理得:32+x2=(4﹣x)2,解得:,当AE=AC′时,如图,作AH⊥EC′∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△ECF,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′时,作AH⊥EC′,∴EC′=2EH,即4﹣x=2x,解得,综上所述:BE=或.故答案为:或.【点评】本题考查了矩形的性质、等腰三角形的性质、勾股定理等知识点,涉及到方程思想和分类讨论思想.当AE=AC′时如何列方程,有一定难度.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】连接DE.首先证明DE∥AB,推出S△ABE=S△ABD,推出S△AEF=S△BDF,可得S=S△ABD,求出△ABD面积的最大值即可解决问题.△AEF【解答】解:连接DE.∵CD=2BD,CE=2AE,∴==2,∴DE∥AB,∴△CDE∽△CBA,∴==,∴==,∵DE∥AB,∴S△ABE=S△ABD,∴S△AEF=S△BDF,∴S△AEF=S△ABD,∵BD=BC=,∴当AB⊥BD时,△ABD的面积最大,最大值=××4=,∴△AEF的面积的最大值=×=,故答案为:【点评】本题考查相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是证明DE∥AB,推出S△AEF=S△ABD,属于中考常考题型.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】过点E作EG∥DC交AD于G,可得△AGE∽△ADC,所以,得到DC=2GE;再根据△GFE∽△DFB,得==,所以,即=.【解答】解:如图,∵BE是△ABC的中线,∴点E是AC的中点,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴,∴DC=2GE,∵BF=3FE,∴,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴,∴=,故答案为:.【点评】本题考查了相似三角形的判定与性质,过点E作EG∥DC,构造相似三角形是解题的关键.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【考点】平行四边形的性质;旋转的性质;解直角三角形的应用.【专题】三角形;解直角三角形及其应用;运算能力.【分析】过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.BM=B′M=,由勾股定理可得,AM==,由等面积法可得,BN=,由勾股定理可得,AN===,由题可得,△AMB∽△EGC,△ANB∽△B′GE,则==,==,设CG=a,则EG=a,B′G=3+a,则=,解得a=.最后由勾股定理可得,EC===.【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠D′=∠AB′C′=∠B,∠B=∠AB′B,∴∠D′=∠B,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB’∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.【点评】本题主要考考查平行四边形的性质,等腰三角形三线合一,相似三角形的性质与判定,解直角三角形的应用等,构造正确的辅助线是解题关键.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.【考点】圆周角定理;点与圆的位置关系;切线的判定与性质;相似三角形的判定与性质.【专题】与圆有关的位置关系;图形的相似;推理能力.【分析】(1)由PC2=P A•PB得,可证得△P AC∽△PCB,根据相似三角形的性质得∠PCA=∠B,根据圆周角定理得∠ACB=90°,则∠CAB+∠B=90°,由OA=OC 得∠CAB=∠OCA,等量代换可得∠PCA+∠OCA=90°,即OC⊥PC,即可得出结论;(2)由AB=3P A可得PB=4P A,OA=OC=1.5P A,根据勾股定理求出PC=2P A,根据相似三角形的性质即可得出的值.【解答】(1)证明:连接OC,∵PC2=P A•PB,∴,∵∠P=∠P,∴△P AC∽△PCB,∴∠PCA=∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∵OA=OC,∴∠CAB=∠OCA,∴∠PCA+∠OCA=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:∵AB=3P A,∴PB=4P A,OA=OC=1.5P A,PO=2.5P A,∵OC⊥PC,∴PC==2P A,∵△P AC∽△PCB,∴===.【点评】本题考查三角形相似的判定与性质,考查切线的判定,圆周角定理,解题的关键是熟练掌握圆周角定理及相似三角形的判定等知识点的综合运用.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;应用意识.【分析】过B作BE⊥CD于E,过A作AF⊥BE于F,由已知△BCE是等腰直角三角形,设CE=x,则BE=x,DE=(80﹣x)m,在Rt△BDE中,可得=1.5,解得BE=CE=48m,在Rt△ACD中,解得AC=28m,根据四边形ACEF是矩形,可得AF=CE=48m,EF=AC=28m,BF=20m,即可在Rt△ABF中,求出AB==52(m)【解答】解:过B作BE⊥CD于E,过A作AF⊥BE于F,如图:∵∠BCD=45°,∴△BCE是等腰直角三角形,设CE=x,则BE=x,∵CD=80m,∴DE=(80﹣x)m,Rt△BDE中,∠BDC=56°19',∴tan56°19'=,即=1.5,解得x=48(m),∴BE=CE=48m,Rt△ACD中,∠ADC=19°17′,CD=80m,∴tan19°17'=,即=0.35,解得AC=28m,∵∠ACD=90°,BE⊥CD于E,AF⊥BE,∴四边形ACEF是矩形,∴AF=CE=48m,EF=AC=28m,∴BF=BE﹣EF=20m,Rt△ABF中,AB===52(m),答:A,B两点之间的距离是52m.【点评】本题考查解直角三角形的应用,涉及勾股定理、矩形判定及性质等知识,解题的关键是适当添加辅助线,构造直角三角形.23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力;模型思想.【分析】通过作垂线,构造直角三角形,利用直角三角形的边角关系分别求出DE,FG 即可.【解答】解:如图,过点B、C分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG 于点H,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,在Rt△ABH中,∠α=30°,AB=50m,∴BH=AB=25(m)=FG,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),答:山顶D的高度约为114m.【点评】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键..24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)。

重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

重庆市B卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类一.规律型:图形的变化类(共2小题)1.(2023•重庆)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.26 2.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A.15B.13C.11D.9二.整式的加减(共2小题)3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3 4.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A.0B.1C.2D.3三.分式方程的解(共2小题)5.(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13B.15C.18D.20 6.(2021•重庆)关于x的分式方程+1=的解为正数,且使关于y的一元一次不等式组有解,则所有满足条件的整数a的值之和是( )A.﹣5B.﹣4C.﹣3D.﹣2四.反比例函数系数k的几何意义(共1小题)7.(2021•重庆)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x>0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为( )A .B .C .2D .3五.反比例函数图象上点的坐标特征(共1小题)8.(2023•重庆)反比例函数y =的图象一定经过的点是( )A .(﹣3,2)B .(2,﹣3)C .(﹣2,﹣4)D .(2,3)六.平行线的性质(共1小题)9.(2023•重庆)如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=63°,则∠2的度数为( )A .27°B .53°C .63°D .117°七.正方形的性质(共2小题)10.(2022•重庆)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O .E 、F 分别为AC 、BD 上一点,且OE =OF ,连接AF ,BE ,EF .若∠AFE =25°,则∠CBE 的度数为( )A .50°B .55°C .65°D .70°11.(2021•重庆)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,∠PMN =30°,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则∠AMP 的度数为( )A .60°B .65°C .75°D .80°八.切线的性质(共1小题)12.(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为( )A.B.C.D.3重庆市B卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类参考答案与试题解析一.规律型:图形的变化类(共2小题)1.(2023•重庆)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.26【答案】B【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.2.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A.15B.13C.11D.9【答案】C【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.二.整式的加减(共2小题)3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【答案】C【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z ﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.4.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A.0B.1C.2D.3【答案】D【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.三.分式方程的解(共2小题)5.(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13B.15C.18D.20【答案】A【解答】解:解分式方程得:x=a﹣2,∵x>0且x≠3,∴a﹣2>0且a﹣2≠3,∴a>2且a≠5,解不等式组得:,∵不等式组的解集为y≥5,∴<5,∴a<7,∴2<a<7且a≠5,∴所有满足条件的整数a的值之和为3+4+6=13,故选:A.6.(2021•重庆)关于x的分式方程+1=的解为正数,且使关于y的一元一次不等式组有解,则所有满足条件的整数a的值之和是( )A.﹣5B.﹣4C.﹣3D.﹣2【答案】B【解答】解:关于x的分式方程+1=的解为x=,∵关于x的分式方程+1=的解为正数,∴a+4>0,∴a>﹣4,∵关于x的分式方程+1=有可能产生增根2,∴a≠﹣1,解关于y的一元一次不等式组得,∵关于y的一元一次不等式组有解,∴a﹣2<0,∴a<2,综上,﹣4<a<2且a≠﹣1,∵a为整数,∴a=﹣3或﹣2或0或1,∴满足条件的整数a的值之和是:﹣3﹣2+0+1=﹣4,故选:B.四.反比例函数系数k的几何意义(共1小题)7.(2021•重庆)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x>0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为( )A.B.C.2D.3【答案】D【解答】解:设A(a,0),∵矩形ABCD,∵矩形ABCD,E为AC的中点,则E也为BD的中点,∵点B在x轴上,∴E的纵坐标为,∴,∵E为AC的中点,∴点C(3a,),∴点F(3a,),∵△AEF的面积为1,AE=EC,∴S△ACF=2,∴,解得:k=3.故选:D.五.反比例函数图象上点的坐标特征(共1小题)8.(2023•重庆)反比例函数y=的图象一定经过的点是( )A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【答案】D【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.六.平行线的性质(共1小题)9.(2023•重庆)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为( )A.27°B.53°C.63°D.117°【答案】C【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.七.正方形的性质(共2小题)10.(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为( )A.50°B.55°C.65°D.70°【答案】C【解答】解:∵四边形ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠FAO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠FAO=∠EBO=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.11.(2021•重庆)如图,把含30°的直角三角板PMN放置在正方形ABCD中,∠PMN=30°,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN 与BD交于点O,且点O为MN的中点,则∠AMP的度数为( )A.60°B.65°C.75°D.80°【答案】C【解答】解:∵四边形ABCD是正方形,∴∠ABD=45°,在Rt△PMN中,∠MPN=90°,∵O为MN的中点,∴OP=,∵∠PMN=30°,∴∠MPO=30°,∴∠AMP=∠MPO+∠MBP=30°+45°=75°,八.切线的性质(共1小题)12.(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为( )A.B.C.D.3【答案】D【解答】解:如图,连结OC,∵PC是⊙O的切线,∴∠PCO=90°,∵OC=OA,∴∠A=∠OCA,∵AC=PC,∴∠P=∠A,设∠A=∠OCA=∠P=x°,在△APC中,∠A+∠P+∠PCA=180°,∴x+x+90+x=180,∴x=30,∴∠P=30°,∵∠PCO=90°,∴OP=2OC=2r,在Rt△POC中,tan P=,∴=,∴r=3,∴PB=OP﹣OB=2r﹣r=r=3.。

2021年山东中考数学真题分类汇编之图形的变化

2021年山东中考数学真题分类汇编之图形的变化

2021年山东中考数学真题分类汇编之图形的变化一.选择题(共12小题)1.(2021•淄博)下列几何体中,其俯视图一定是圆的有()A.1个B.2个C.3个D.4个2.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.33.(2021•淄博)如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是()A.+=B.+=C.+=D.+=4.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是()A.B.3C.3D.35.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()A.B.C.D.6.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°7.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B 的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣28.(2021•菏泽)如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π9.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配②C.搭配③D.搭配④10.(2021•聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.(,)B.(,)C.(,)D.(,)11.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米12.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB 交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.二.填空题(共10小题)13.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A 处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为.15.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.16.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为.17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为.18.(2021•烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为米.(结果精确到1米,参考数据:≈1.41,≈1.73)19.(2021•烟台)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为cm.20.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=.21.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为.22.(2021•威海)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=cm.三.解答题(共8小题)23.(2021•威海)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°=0.45,cos27°≈0.89,tan27°≈0.51)24.(2021•聊城)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF和CD的长.25.(2021•菏泽)某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?26.(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)27.(2021•枣庄)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果精确到1米,参考数据:≈1.732,≈1.414)28.(2021•聊城)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)29.(2021•济宁)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD﹣A′B′C′D′(图1),因为在平面AA′C′C中,CC′∥AA',AA′与AB 相交于点A,所以直线AB与AA′所成的∠BAA′就是既不相交也不平行的两条直线AB与CC′所成的角.解决问题如图1,已知正方体ABCD﹣A′B′C′D',求既不相交也不平行的两直线BA′与AC所成角的大小.(2)如图2,M,N是正方体相邻两个面上的点;①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是;②在所选正确展开图中,若点M到AB,BC的距离分别是2和5,点N到BD,BC的距离分别是4和3,P是AB上一动点,求PM+PN的最小值.30.(2021•东营)已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD 的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.2021年山东中考数学真题分类汇编之图形的变化参考答案与试题解析一.选择题(共12小题)1.(2021•淄博)下列几何体中,其俯视图一定是圆的有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【专题】投影与视图;空间观念.【分析】根据视图的意义,从上面看该几何体,所得到的图形进行判断即可.【解答】解:其俯视图一定是圆的有:球,圆柱,共2个.故选:B.【点评】本题考查简几何体的三视图,理解视图的意义,掌握俯视图的画法是正确判断的前提.2.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【考点】相似三角形的应用.【专题】等腰三角形与直角三角形;图形的相似;运算能力;应用意识.【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的长,利用数形结合的思想解答.3.(2021•淄博)如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是()A.+=B.+=C.+=D.+=【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】根据平行线分线段成比例,可证得,,两式相加即可得出结论.【解答】解:∵AC∥EF,∴,∵EF∥DB,∴,∴=+===1,即=1,∴.故选:C.【点评】本题主要考查了平行线分线段成比例定理的运用,通过平行线分线段成比例定理得出线段的比是解题的关键.4.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是()A.B.3C.3D.3【考点】等腰直角三角形;翻折变换(折叠问题).【专题】等腰三角形与直角三角形;推理能力.【分析】由题意可得点F是BC的中点,△ABF是等腰直角三角形,再根据EF的长度,可求出BF 的长度,进而得出结论.【解答】解:在△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,由折叠可知,EF⊥AB,BE=AE,AF=BF,∴∠B=∠BAF=45°,∴∠AFB=90°,即AF⊥BC,∴点F是BC的中点,∴BC=2BF,在△ABF中,∠AFB=90°,BE=AE,∴BE=EF=,∴BF=,∴BC=3.故选:C.【点评】本题主要考查折叠的性质,等腰直角三角形的性质与判定,得出△ABF是等腰直角三角形是解题关键.5.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数.【专题】解直角三角形及其应用;几何直观;运算能力.【分析】根据正切函数的定义,可得tan∠B=,根据计算器的应用,可得答案.【解答】解:在△ABC中,因为∠C=90°,所以tan∠B=,因为∠B=42°,BC=8,所以AC=BC•tan B=8×tan42°.故选:D.【点评】本题考查了计算器.能够正确利用锐角三角函数进行计算,熟练运用计算器是解题的关键.6.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【考点】几何体的展开图;圆心角、弧、弦的关系;由三视图判断几何体.【专题】投影与视图;空间观念.【分析】由常见几何体的三视图可得该几何体为圆锥,根据三视图知圆锥的底面圆的直径为6、半径为3,高为4,得出母线长为5,再根据扇形的弧长公式可得答案.【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5×2)×360°=216°.故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图及扇形的弧长计算.7.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B 的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【考点】坐标与图形性质;位似变换.【专题】图形的相似;推理能力.【分析】设点B′的横坐标为x,根据数轴表示出BC、B′C的水平的距离,再根据位似比列式计算即可.【解答】解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.【点评】本题考查的是位似变换、坐标与图形的性质,根据位似比的定义,利用两点间的水平距离等于对应边的比列出方程是解题的关键.8.(2021•菏泽)如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π【考点】由三视图判断几何体.【专题】投影与视图;几何直观.【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案.【解答】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2,则大圆面积为:π×22=4π,小圆面积为:π×12=π,故这个几何体的体积为:6×4π﹣6×π=24π﹣6π=18π.故选:B.【点评】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键.9.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配②C.搭配③D.搭配④【考点】图形的剪拼.【专题】几何图形;应用意识.【分析】把这四种搭配进行组合,可得出如图的九个空格的形状,即为本题的选项.【解答】解:搭配④中,有10个小正方形,显然不符合9个小正方形的条件,故选:D.【点评】本题考查图形的拼剪,解题的关键是理解题意,灵活运用所学知识解决问题.10.(2021•聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.(,)B.(,)C.(,)D.(,)【考点】勾股定理;坐标与图形变化﹣旋转.【专题】平面直角坐标系;平移、旋转与对称;推理能力.【分析】如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.解直角三角形求出OT,AT,再利用相似三角形的性质求出OR,RA1即可.【解答】解:如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.∵A(0,2),B(﹣1,0),∴OB=1,OA=2,∴AB===,∵•OB•OA=•AB•OT,∴OT==,∴AT===,∵∠AOR=∠A OB=90°,∴∠AOT=∠A1OR,∵∠ATO=∠A1RO=90°,∴△ATO∽△A1RO,∴==,∴1==,∴OR=,RA1=,∴A1(,),故选:A.【点评】本题考查坐标与图形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力.【分析】作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,在Rt△ADH中求出DH,再在Rt△EFB中求出EF,在Rt△EFC中求出CF即可解决问题.【解答】解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).故选:A.【点评】本题考查了解直角三角形,坡度,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB 交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.【考点】三角形的面积;直角三角形斜边上的中线;解直角三角形.【专题】图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】根据直角三角形的斜边中线等于斜边一半可得CE=AE=BE=AB,进而得到∠BEC=2∠A=∠BFC,从而有∠CEF=∠CBF,根据三角形的面积公式求出AF,由勾股定理,在Rt△BCF 中,求出CF,再根据锐角三角函数的定义求解即可.【解答】解:连接BF,∵CE是斜边AB上的中线,EF⊥AB,∴EF是AB的垂直平分线,∴S△AFE=S△BFE=5,∠FBA=∠A,∴S△AFB=10=AF•BC,∵BC=4,∴AF=5=BF,在Rt△BCF中,BC=4,BF=5,∴CF==3,∵CE=AE=BE=AB,∴∠A=∠FBA=∠ACE,又∵∠BCA=90°=∠BEF,∴∠CBF=90°﹣∠BFC=90°﹣2∠A,∠CEF=90°﹣∠BEC=90°﹣2∠A,∴∠CEF=∠FBC,∴sin∠CEF=sin∠FBC==,故选:A.【点评】本题考查折叠轴对称的性质,直角三角形的边角关系,掌握直角三角形的边角关系是解决问题的关键.二.填空题(共10小题)13.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A 处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为3米.【考点】相似三角形的判定与性质.【专题】图形的相似;推理能力.【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴,∴,∴CD=3米,故答案为:3.【点评】本题考查了相似三角形的判定与性质,根据题意得出△ABE∽△CDE是解决问题的关键.14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为(1,﹣1).【考点】坐标与图形变化﹣旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.15.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.【考点】正方形的性质;翻折变换(折叠问题).【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由“ASA”可证△ADE≌△DCF,可得AE=DF=5,由锐角三角函数可求DO的长,即可求解.【解答】解:设CF与DE交于点O,∵将△CDF沿CF折叠,点D落在点G处,∴GO=DO,CF⊥DG,∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=90°=∠FOD,∴∠CFD+∠FCD=90°=∠CFD+∠ADE,∴∠ADE=∠FCD,在△ADE和△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF=5,∵AE=5,AD=12,∴DE===13,∵cos∠ADE=,∴,∴DO==GO,∴EG=13﹣2×=,故答案为:.【点评】本题考查了翻折变换,正方形的性质,全等三角形的判定和性质,锐角三角函数等知识,证明△ADE≌△DCF是解题的关键.16.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【考点】坐标与图形性质;矩形的性质;轴对称﹣最短路线问题.【专题】一次函数及其应用;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE =D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为1:3.【考点】正方形的性质;相似三角形的判定与性质.【专题】矩形菱形正方形;图形的相似;推理能力.【分析】通过证明△AEM∽△ABC,可得,可求EF的长,由相似三角形的性质可得=()2=,即可求解.【解答】解:∵四边形EFGH和四边形HGNM均为正方形,∴EF=EH=HM,EM∥BC,∴△AEM∽△ABC,∴,∴,∴EF=,∴EM=5,∵△AEM∽△ABC,∴=()2=,∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,∴△AEM与四边形BCME的面积比为1:3,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,正方形的性质,利用相似三角形的性质求出EF的长是解题的关键.18.(2021•烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为14米.(结果精确到1米,参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;几何直观.【分析】过O点作OC⊥AB于C点,利用直角三角形的解法得出OC,进而解答即可.【解答】解:过O点作OC⊥AB于C点,∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,∴AC=45米,∠CAO=30°,∴OC=AC•tan30°=(米),∴旗杆的高度=40﹣15≈14(米),故答案为:14.【点评】本题考查解直角三角形的应用﹣仰角、俯角的问题,以及解直角三角形方法,解题的关键是从实际问题中构造出直角三角形,难度不大.19.(2021•烟台)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为22cm.【考点】矩形的性质;图形的剪拼.【专题】作图题;矩形菱形正方形;推理能力.【分析】延长AT交BC于点P,利用三角形的面积公式求出AP,求出BE,CD,DE,可得结论.【解答】解:延长AT交BC于点P,∵AP⊥BC,∴•BC•AP=24,∴×8×AP=24,∴AP=6(cm),由题意,AT=PT=3(cm),∴BE=CD=PT=3(cm),∵DE=BC=8cm,∴矩形BCDE的周长为8+8+3+3=22(cm).故答案为:22.【点评】本题考查图形的拼剪,矩形的性质,解题的关键是读懂图象信息,属于中考常考题型.20.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=2×()2020.【考点】规律型:图形的变化类;相似三角形的判定与性质.【专题】推理填空题;推理能力.【分析】根据题意可知图中斜边在直线l上的直角三角形都是含30度角的直角三角形,根据其性质得出三边的长度,以此类推可找到规律:A n B n=()n﹣1,A n﹣1A n=2A n B n=2×()n﹣1.【解答】解:根据题意可知AB1=AB=,∠B1AA1=90°﹣60°=30°,∴tan∠B1AA1==,∴A1B1=AB1×=×=1,AA1=2A1B1=2,A2B2=A1B2×=A1B1×=,A1A2=2A2B2=2×,A3B3=A2B3×=A2B2×=×=()2,A2A3=2A3B3=2×()2,∴A2021B2021=A2020B2021×=()2020,A2020A2021=2A2021B2021=2×()2020,故答案为:2×()2020.【点评】本题考查相似三角形的判定与性质及规律型中图形的变化类,要根据题意寻找三角形各条边分别的规律,从而求解.21.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为4+2.【考点】矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=2,想办法求出AB′,可得结论.【解答】解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,在Rt△EBF和Rt△EB′D中,,∴Rt△EBF≌Rt△EB′D(HL),∴BF=DB′,∵四边形ABCD是矩形,∴∠C=∠CDB′=∠EB′D=90°,∴四边形ECDB′是矩形,∴DB′=EC=2,∴BF=EC=2,由翻折的性质可知,BF=FG=2,∠F AG=45°,∠EGF=∠B=∠AGF=90°,∴AG=FG=2,∴AF=2.∴AB=AB′=2+2,∴AD=AB′+DB′=4+2,故答案为:4+2.【点评】本题考查翻折变换,矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(2021•威海)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=cm.【考点】矩形的性质;翻折变换(折叠问题).【专题】多边形与平行四边形;矩形菱形正方形;平移、旋转与对称;推理能力;应用意识.【分析】根据题意,先证明四边形GHEF为平行四边形,运用∠AEF的正弦和余弦的关系以及等腰三角形的性质,求出HE,【解答】解:如图,分别过G、E作GM⊥HE于M,EN⊥GH于N,延长GF、延长HE至点P,则GM=AB=2cm,由题意,∠AEF=α,由折叠性质可得∠PEF=∠AEF=α,∵四边形ABCD为矩形,∴GF∥HE,∴∠GFE=∠PEF=α,∴GE=GF.同理可得:GE=HE.∴HE=GF,∴四边形GHEF为平行四边形.∴∠GFE=∠GHE=α,∵EN⊥GH于N,HE=GE,∴由等腰三角形三线合一性质可得:HN=GN=,∵sin∠GHE=sinα==,∴HG=,在Rt△HEN中,cos∠GHE=cosα=,∴HE====.故答案为:.【点评】本题考查了轴对称的性质,平行四边形的判定与性质,矩形的性质,锐角三角函数,理解题意并作出辅助线是解题关键.三.解答题(共8小题)23.(2021•威海)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°=0.45,cos27°≈0.89,tan27°。

2021年四川省中考数学试题分类汇编——专题8图形的变化(含解析)

2021年四川省中考数学试题分类汇编——专题8图形的变化(含解析)

2021年四川省中考数学试题分类汇编——专题8图形的变化一.选择题(共16小题)1.(2021•达州)在平面直角坐标系中,等边△AOB 如图放置,点A 的坐标为(1,0),每一次将△AOB 绕着点O 逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A 1OB 1,第二次旋转后得到△A 2OB 2,…,依次类推,则点A 2021的坐标为( )A .(﹣22020,−√3×22020)B .(22021,−√3×22021)C .(22020,−√3×22020)D .(﹣22021,−√3×22021) 2.(2021•广元)如图,在△ABC 中,∠ACB =90°,AC =BC =4,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .√32B .1C .√2D .32 3.(2021•广安)下列几何体的主视图既是轴对称图形又是中心对称图形的是( )A.B.C.D.4.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是()A.B.C.D.5.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π6.(2021•南充)如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:①顺次连接点A′,B′,C,D的图形是平行四边形;②点C到它关于直线AA′的对称点的距离为48;③A′C﹣B′C的最大值为15;④A′C+B′C的最小值为9√17.其中正确结论的个数是()A.1个B.2个C.3个D.4个7.(2021•资阳)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.8.(2021•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.9.(2021•凉山州)在平面直角坐标系中,将线段AB平移后得到线段A'B',点A(2,1)的对应点A'的坐标为(﹣2,﹣3),则点B(﹣2,3)的对应点B'的坐标为()A.(6,1)B.(3,7)C.(﹣6,﹣1)D.(2,﹣1)10.(2021•成都)在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)11.(2021•凉山州)如图,△ABC 中,∠ACB =90°,AC =8,BC =6,将△ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .74 12.(2021•遂宁)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,4a +2b ,13+y 中,1a ,x π,4a +2b 是分式D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是413.(2021•遂宁)如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是( )A .1B .43C .32D .53 14.(2021•泸州)在平面直角坐标系中,将点A (﹣3,﹣2)向右平移5个单位长度得到点B ,则点B 关于y 轴对称点B ′的坐标为( )A .(2,2)B .(﹣2,2)C .(﹣2,﹣2)D .(2,﹣2)15.(2021•泸州)在锐角△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:a sinA =b sinB =c sinC =2R (其中R 为△ABC 的外接圆半径)成立.在△ABC 中,若∠A=75°,∠B =45°,c =4,则△ABC 的外接圆面积为( )A .16π3B .64π3C .16πD .64π16.(2021•自贡)如图,在正方形ABCD 中,AB =6,M 是AD 边上的一点,AM :MD =1:2.将△BMA 沿BM 对折至△BMN ,连接DN ,则DN 的长是( )A .52B .9√58C .3D .6√55二.填空题(共6小题)17.(2021•资阳)将一张圆形纸片(圆心为点O )沿直径MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB 剪开,再将△AOB 展开得到如图3的一个六角星.若∠CDE =75°,则∠OBA 的度数为 .18.(2021•资阳)如图,在菱形ABCD 中,∠BAD =120°,DE ⊥BC 交BC 的延长线于点E .连结AE 交BD 于点F ,交CD 于点G .FH ⊥CD 于点H ,连结CF .有下列结论:①AF =CF ;②AF 2=EF •FG ;③FG :EG =4:5;④cos ∠GFH =3√2114.其中所有正确结论的序号为 .19.(2021•乐山)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30°,她朝石碑前行5米到达点D 处,又测得石碑顶A 点的仰角为60°,那么石碑的高度AB 的长= 米.(结果保留根号)20.(2021•乐山)如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x正半轴所夹的锐角为α,那么当sinα的值最大时,n的值为.21.(2021•成都)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.22.(2021•遂宁)如图,正方形ABCD中,点E是CD边上一点,连结BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下五个结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF⊥BD;④2BG2=BH•BD;⑤若CE:DE=1:3,则BH:DH=17:16.你认为其中正确是.(填写序号)三.解答题(共16小题)23.(2021•宜宾)全国历史文化名城宜宾有许多名胜古迹,始建于明朝的白塔是其中之一.如图,为了测量白塔的高度AB,在C处测得塔顶A的仰角为45°,再向白塔方向前进15米到达D处,又测得塔顶A的仰角为60°,点B、D、C在同一水平线上,求白塔的高度AB.(√3≈1.7,精确到1米)24.(2021•广元)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,小区楼房BC的高度为15√3米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+√3,tan15°=2−√3.计算结果保留根号)25.(2021•达州)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.26.(2021•达州)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE ⊥CF ,则DE CF 的值为 ;(2)如图2,在矩形ABCD 中,AD =7,CD =4,点E 是AD 上的一点,连接CE ,BD ,且CE ⊥BD ,则CE BD 的值为 ;【类比探究】(3)如图3,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE •AB =CF •AD ;【拓展延伸】(4)如图4,在Rt △ABD 中,∠BAD =90°,AD =9,tan ∠ADB =13,将△ABD 沿BD 翻折,点A 落在点C 处得△CBD ,点E ,F 分别在边AB ,AD 上,连接DE ,CF ,DE ⊥CF .①求DE CF 的值;②连接BF ,若AE =1,直接写出BF 的长度.27.(2021•广元)如图1,在△ABC 中,∠ACB =90°,AC =BC ,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF =BE ,连接AF 、BF .(1)求证:△ABF ∽△CBE ;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求∠PMN 的度数及MN PM 的值;(3)在(2)的条件下,若BC =√2,直接写出△PMN 面积的最大值.28.(2021•达州)2021年,达州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30°的河床斜坡边,斜坡BC 长为48米,在点D 处测得桥墩最高点A 的仰角为35°,CD 平行于水平线BM ,CD 长为16√3米,求桥墩AB 的高(结果保留1位小数).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,√3≈1.73)29.(2021•广安)图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB 与地面DE 平行,踏板CD 长为1.5m ,CD 与地面DE 的夹角∠CDE =15°,支架AC 长为1m ,∠ACD =75°,求跑步机手柄AB 所在直线与地面DE 之间的距离.(结果精确到0.1m .参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,√3≈1.73)30.(2021•眉山)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:sin24°≈25,cos24°≈910,tan24°≈920)31.(2021•乐山)在等腰△ABC 中,AB =AC ,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若∠C =60°,点D 关于直线AB 的对称点为点E ,连结AE ,DE ,则∠BDE = ;(2)若∠C =60°,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连结BE . ①在图2中补全图形;②探究CD 与BE 的数量关系,并证明;(3)如图3,若AB BC =AD DE =k ,且∠ADE =∠C .试探究BE 、BD 、AC 之间满足的数量关系,并证明.32.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A 的仰角为45°,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)求D处的竖直高度;(2)求基站塔AB的高.33.(2021•凉山州)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2√10米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF 的坡比为i=1:3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).34.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.35.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D(结果精确到1米;参考数据sin33°与N在一条直线上),求电池板离地面的高度MN的长.≈0.54,cos33°≈0.84,tan33°≈0.65)36.(2021•遂宁)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A处看到B、C处各有一棵被湖水隔开的银杏树,他在A处测得B在北偏西45°方向,C在北偏东30°方向,他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两颗银杏树B、C之间的距离(结果保留根号).37.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,√3≈1.73)38.(2021•泸州)如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25√2海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.2021年四川省中考数学试题分类汇编——专题8图形的变化参考答案与试题解析一.选择题(共16小题)1.【解答】解:由已知可得:第一次旋转后,A1在第一象限,OA1=2,第二次旋转后,A2在第二象限,OA2=22,第三次旋转后,A3在x轴负半轴,OA3=23,第四次旋转后,A4在第三象限,OA4=24,第五次旋转后,A5在第四象限,OA5=25,第六次旋转后,A6在x轴正半轴,OA6=26,......如此循环,每旋转6次,A的对应点又回到x轴正半轴,而2021=6×336+5,∴A2021在第四象限,且OA2021=22021,示意图如下:OH=12OA2021=22020,A2021H=√3OH=√3×22020,∴A2021((22020,−√3×22020),故选:C.2.【解答】解:如图在CD的下方作等边△CDT,作射线TQ.∵∠CDT=∠QDP=60°,DP=DQ,DC=DT,∴∠CDP=∠QDT,在△CDP和△TDQ中,{∠CDP=∠TDQDC=DT,∴△CDP≌△TDQ(SAS),∴∠DCP=∠DTQ=90°,∴∠CTD=60°,∴∠CTQ=30°,∴点Q在射线TQ上运动,当CQ⊥TQ时,CQ的值最小,最小值=CT•sin30°=12CT=12CD=14BC=1,故选:B.3.【解答】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选:B.4.【解答】解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.故选:A.5.【解答】解:观察图形可知:圆锥母线长为:√(2.42)2+1.62=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.6.【解答】解:如图1中,当B ′与D 不重合时,∵AB =A ′B ′,AB ∥A ′B ′,AB =CD ,AB ∥CD ,∴A ′B ′=CD ,A ′B ′∥CD ,∴四边形A ′B ′CD 是平行四边形,当点B ′与D 重合时,四边形不存在,故①错误,作点C 关于直线AA ′的对称点E ,连接CE 交AA ′于T ,交BD 于点O ,则CE =4OC . ∵四边形ABCD 是矩形,∴∠BCD =90°,CD =AB =15,∴BD =√BC 2+CD 2=√202+152=25,∵12•BD •CO =12•BC •CD , ∴OC =20×1525=12, ∴EC =48,故②正确,∵A ′C ﹣B ′C ≤A ′B ′,∴A ′C ﹣B ′C ≤15,∴A ′C ﹣B ′C 的最大值为15,故③正确,如图2中,∵B ′C =A ′D ,∴A ′C +B ′C =A ′C +A ′D ,作点D 关于AA ′的对称点D ′,连接DD ′交AA ′于J ,过点D ′作D ′E ⊥CD 交CD 的延长线于E ,连接CD ′交AA ′于A ′,此时CB ′+CA ′的值最小,最小值=CD ′, 由△AJD ∽△DAB ,可得DJ AB =AD BD , ∴DJ 15=2025,∴DJ =12,∴DD ′=24,由△DED ′∽△DAB ,可得DE DA =ED′AB =DD′BD , ∴DE 20=ED′15=2425, ∴ED ′=725,DE =965,∴CE=CD+DE=15+965=1715,∴CD′=√CE2+ED′2=√(1715)2+(725)2=9√17,∴A′C+B′C的最小值为9√17.故④正确,故选:C.7.【解答】解:主视图看到的是两列,其中左边的一列为3个正方形,右边的一列为一个正方形,因此选项C中的图形符合题意,故选:C.8.【解答】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.9.【解答】解:∵A(2,1)平移后得到点A′的坐标为(﹣2,﹣3),∴向下平移了4个单位,向左平移了4个单位,∴B(﹣2,3)的对应点B'的坐标为(﹣2﹣4,3﹣4),即(﹣6,﹣1).故选:C.10.【解答】解:点M(﹣4,2)关于x轴对称的点的坐标是(﹣4,﹣2).故选:C.11.【解答】解:设CE=x,则AE=8﹣x=EB,在Rt△BCE中,BE2=CE2+BC2,即(8﹣x)2=x2+62,解得x=7 4,故选:D.12.【解答】解:A、根据角平分线性质可得:角平分线上的点到角两边的距离相等,故正确,符合题意.B、平行四边形不是轴对称图形,但是中心对称图形,故错误,不符合题意.C、代数式1a ,2x,xπ,985,4a+2b,13+y中,1a,4a+2b是分式,故错误,不符合题意.D、一组数据2、3、x、1、5的平均数是3,则x=4,这组数据的中位数是3,故错误,不符合题意.故选:A.13.【解答】解:设CE=x,则BE=3﹣x.由折叠性质可知,EF=CE=x,DF=CD=AB=5.在Rt△DAF中,AD=3,DF=5.∴AF=4.∴BF=AB﹣AF=1.在Rt△BEF中,BE2+BF2=EF2.即(3﹣x)2+12=x2.解得x=5 3.故选:D.14.【解答】解:点A(﹣3,﹣2)向右平移4个单位长度得到的B的坐标为(﹣3+5,﹣2),即(2,﹣2),则点B关于y轴的对称点B′的坐标是:(﹣2,﹣2).故选:C .15.【解答】解:∵∠A +∠B +∠C =180°,∴∠C =180°﹣∠A ﹣∠B =180°﹣75°﹣45°=60°,∵c sinC =2R ,∴2R =4sin60°=√32=83√3, ∴R =43√3, ∴S =πR 2=π(43√3)2=163π, 故选:A . 16.【解答】解:连接AN 交BM 于点O ,作NH ⊥AD 于点H .如图:∵AB =6,AM :MD =1:2.∴AM =2,MD =4.∵四边形ABCD 是正方形.∴BM =√AB 2+AM 2=2√10.根据折叠性质,AO ⊥BM ,AO =ON .AM =MN =2.∴12AB ⋅AM =12BM ⋅AO .∴AO =2√10=3√105. ∴AN =6√105. ∵NH ⊥AD .∴AN 2﹣AH 2=MN 2﹣MH 2.∴(6√105)2−(2+MH)2=22−MH 2.∴MH =85.∴HN=√MN2−MH2=√22−(85)2=65.∴HD=AD−AM−MH=12 5.∴DN=√HD2+HN2=√(125)2+(65)2=6√55.故选:D.二.填空题(共6小题)17.【解答】解:由题知,∠AOB=16×180°=30°,由翻折知∠OAB=12∠DCE,CD=CE,∵∠CDE=75°,∴∠DCE=180°﹣75°﹣75°=30°,∴∠OAB=12∠DCE=12×30°=15°,∴∠OBA=180°﹣∠AOB﹣∠OAB=180°﹣30°﹣15°=135°,故答案为:135°.18.【解答】解:∵菱形ABCD,∴对角线BD所在直线是菱形ABCD的对称轴,沿直线BD对折,A与C重合,∴AF=CF,故①正确,∠F AD=∠FCD,∵AD∥BC,∴∠F AD=∠FEC,∴∠FCD=∠FEC,又∠CFG=∠EFC,∴△CFG∽△EFC,∴CFEF =GFCF,∴CF2=EF•GF,∴AF2=EF•GF,故②正确,∵菱形ABCD中,∠BAD=120°,∴∠BCD=120°,∠DCE=60°,∠CBD=∠CDB=30°,AD=CD=BC,设AD=CD=BC=m,∵DE ⊥BC ,∴∠DEC =90°,Rt △CDE 中,CE =CD •cos60°=12CD =12m ,∴BE =32m ,∵AD ∥BE ,∴AF EF =AD BE =m32m =23, 设AF =2n ,则CF =AF =2n ,EF =3n ,又CF 2=FG •EF ,∴(2n )2=FG •3n ,∴FG =43n ,∴EG =EF ﹣FG =53n ,∴FG :EG =(43n ):(53n )=4:5,故③正确, 设CE =t ,Rt △CDE 中,CD =2t =AD ,DE =√3t ,Rt △BDE 中,BD =2DE =2√3t ,∵AD ∥BE ,∴DF BF =AF EF =AD BE=23, ∴DF =25BD =4√35t ,Rt △DFH 中,FH =12DF =2√35t , Rt △ADE 中,AE =√AD 2+DE 2=√(2t)2+(√3t)2=√7t ,∴EF =35AE =3√75t ,∵FG :EG =4:5,∴FG =49EF =4√715t ,Rt △FHG 中,cos ∠GFH =FH FG =2√35t 4√715t =3√2114,故④正确, 故答案为:①②③④.19.【解答】解:设石碑的高度AB 的长为x 米,Rt △ABC 中,BC =AB tan30°=√3x ,Rt △ABD 中,BD =AB tan60°=√3, ∵CD =5,∴BC ﹣BD =5,即√3x x √3=5, 解得x =52√3,故答案为:52√3.20.【解答】解:过点A 作AM ⊥y 轴于点M ,作AN ⊥BN 交于点N ,∵直线y =﹣2∥x 轴,故∠ABN =α,当sin α的值最大时,则tan α=AN BN =6BN 值最大,故BN 最小,即BG 最大时,tan α最大,即当BG 最大时,sin α的值最大,设BG =y ,则AM =4,GC =n +2,CM =4﹣n ,∵∠ACM +∠MAC =90°,∠ACM +∠BCG =90°,∴∠CAM =∠BCG ,∴tan ∠CAM =tan ∠BCG ,∴CM AM =BG CG ,即4−n 4=y n+2, ∴y =−14(n ﹣3)(n +2),∵−14<0,故当n =12(3﹣2)=12时,y 取得最大值,故n =12,故答案为:12. 21.【解答】解:如图,过点F 作FT ⊥AD 于T ,则四边形ABFT 是矩形,连接FN ,EN ,设AC 交EF 于J .∵四边形ABFT 是矩形,∴AB =FT =4,BF =AT ,∵四边形ABCD 是矩形,∴AB =CD =4,AD =BC =8,∠B =∠D =90°∴AC =√AD 2+CD 2√82+42=4√5,∵∠TFE +∠AEJ =90°,∠DAC +∠AEJ =90°,∴∠TFE =∠DAC ,∵∠FTE =∠D =90°,∴△FTE ∽△ADC ,∴FT AD=TE CD =EF AC , ∴48=TE 4=4√5,∴TE =2,EF =2√5,∴BF =AT =AE ﹣ET =3﹣2=1,设A ′N =x ,∵NM 垂直平分线段EF ,∴NF =NE ,∴12+(4﹣x )2=32+x 2,∴x=1,∴FN=√B′F2+B′N2=√12+32=√10,∴MN=√FN2−FM2=√(√10)2−(√5)2=√5,故答案为:1,√5.22.【解答】解:①∵正方形ABCD和正方形BGEF,∴△ABD和△FBE都是等腰直角三角形,∴∠ABD=∠FBE=45°,∴∠ABF=∠DBE;∴①正确,符合题意;②∵△ABD和△FBE都是等腰直角三角形,∴ABBD =BFBE,又∵∠ABF=∠DBE,∴△ABF∽△DBE,∴②正确,符合题意;③∵△ABF∽△DBE,∴∠F AB=∠EDB=45°,∴AF⊥BD;∴③正确,符合题意;④∵∠BEH=∠EDB=45°,∠EBH=∠DBE,∴△BEH∽△BDE,∴BEBD =BHBE,∴BE2=BD×BH,∵BE=√2BG,∴2BG2=BD×BH,∴④正确,符合题意;⑤∵CE:DE=1:3,∴设CE=x,DE=3x,∴BC=4x,在Rt △BCE 中,由勾股定理知:BE =√17x ,∵BE 2=BD ×BH ,∴17x 2=4√2x ×BH ,∴BH =17√28, ∴DH =158√2,∴BH :DH =17:15,∴⑤错误,不符合题意;故答案为:①②③④.三.解答题(共16小题)23.【解答】解:设塔高AB =x 米,根据题意得∠BCA =45°,∠BAD =60°,CD =15米,在Rt △ABC 中,∵∠C =45°,∴BC =BA =x 米,在Rt △ABD 中,∵tan ∠BDA =AB BD, ∴BD =x tan60°=x √3=√3x 3, ∵BD +CD =BC ,∴√33x +15=x ,解得x =15(3+√3)2≈35(米). 答:白塔的高度AB 为35米.24.【解答】解:(1)过点D 作DE ⊥AB 于点E ,过点C 作CF ⊥DE 于点F ,如图所示: 则四边形BCFE 是矩形,由题意得:AB =45米,∠DAE =75°,∠DCF =45°,在Rt △ADE 中,∠AED =90°,∴tan ∠DAE =DE AE , ∴AE =DE tan75°=2+√3, ∵四边形BCFE 是矩形,∴EF =BC =15√3米,FC =BE ,在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°,∴CF=DF=DE﹣15√3,∴AB=AE+BE=DE2+√3DE﹣15√3=45,∴DE=15(2+√3)(米),答:此时无人机的高度为15(2+√3)米.(2)∵DE=15(2+√3)米,∴AE=2+√3=√3)2+√3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=15√3米,∴tan∠BAC=BCAB=15√345=√33,在Rt△AGH中,GH=DE=15米,AH=GHtan∠GAH=√3)√33=(30√3+45)米,∴DG=EH=AH﹣AE=(30√3+45)﹣15=(30√3+30)米,(30√3+30)÷5=(6√3+6)(秒),答:经过(6√3+6)秒时,无人机刚好离开了操控者的视线.25.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.△A1C1C2的面积=4×8−12×3×2−12×2×8−12×4×5=11.26.【解答】解:(1)如图1,设DE 与CF 交于点G ,∵四边形ABCD 是正方形,∴∠A =∠FDC =90°,AD =CD ,∵DE ⊥CF ,∴∠DGF =90°,∴∠ADE +∠CFD =90°,∠ADE +∠AED =90°,∴∠CFD =∠AED ,在△AED 和△DFC 中,{∠A =∠FDC ∠CFD =∠AED AD =CD,∴△AED ≌△DFC (AAS ),∴DE =CF ,∴DE CF =1;(2)如图2,设DB 与CE 交于点G ,∵四边形ABCD 是矩形,∴∠A =∠EDC =90°,∵CE ⊥BD ,∴∠DGC =90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD ,∴CE BD =DC AD =47, 故答案为:47. (3)证明:如图3,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°, ∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△DEA ∽△CFH ,∴DE CF =AD CH , ∴DE CF =AD AB ,∴DE •AB =CF •AD ;(4)①如图4,过点C 作CG ⊥AD 于点G ,连接AC 交BD 于点H ,CG 与DE 相交于点O ,∵CF ⊥DE ,GC ⊥AD ,∴∠FCG +∠CFG =∠CFG +∠ADE =90°,∴∠FCG =∠ADE ,∠BAD =∠CGF =90°,∴△DEA ∽△CFG ,∴DE CF =AD CG ,在Rt △ABD 中,tan ∠ADB =13,AD =9,∴AB =3,在Rt △ADH 中,tan ∠ADH =13,∴AH DH =13, 设AH =a ,则DH =3a ,∵AH 2+DH 2=AD 2,∴a 2+(3a )2=92,∴a =910√10(负值舍去),∴AH =910√10,DH =2710√10,∴AC =2AH =95√10,∵S △ADC =12AC ⋅DH =12AD •CG ,∴12×95√10×2710√10=12×9CG , ∴CG =275, ∴DE CF =AD CG=9275=53; ②∵AC =95√10,CG =275,∠AGC =90°,∴AG =√AC 2−CG 2=√(95√10)2−(275)2=95, 由①得△DEA ∽△CFE ,∴DE CF =AE FG ,又∵DE CF =53,AE =1, ∴FG =35,∴AF =AG ﹣FG =95−35=65, ∴BF =√AB 2+AF 2=√32+(65)2=35√29.27.【解答】(1)证明:如图1中,∵CA =CB ,∠ACB =90°,EF =EB ,∠BEF =90°,∴∠CBA =∠EBF =45°,AB =√2BC ,BF =√2BE ,∴∠CBE =∠ABF ,AB BC =BF BE =√2,∴△ABF ∽△CBE .(2)解:如图2中,延长PM 交AF 于T .∵BE ⊥CF ,∴∠CEB =90°,∵△ABF ∽△CBE ,∴∠CEB =∠AFB =90°,AF EC =AB BC =√2, ∴AF =√2EC ,∵∠EFB =45°,∴∠AFC =45°,∵AP =PC ,AM =ME ,∴PT ∥CF ,PM =12EC ,∵AM =ME ,EN =NF ,∴MN ∥AF ,MN =12AF ,∴四边形MNFT 是平行四边形,MN =√2PM ,∴∠TMN =∠AFC =45°,∴∠PMN =135°,∴MN PM =√2.(3)解:∵MN =√2PM ,∠PMN =135°,PM =12EC ,∴当EC 的值最大时,PM 的值最大,此时△PMN 的面积最大,∵当点E 与B 重合时,EC 的值最大,EC 的最大值为√2,此时PM =√22,MN =√2PM =1,∴△PMN的面积的最大值为12×√22×1×√22=14.28.【解答】解:过点C作CE⊥BM于点E,过点D作DF⊥BM于点F,延长DC交AB于点G,在Rt△CEB中,∠CBE=30°,BC=48米,∴CE=BC•sin30°=12×48=24(米),BE=BC•cos30°=48×√32≈24×1.73=41.52(米),∴DG=BF=BE+EF=BE+CD=41.52+16√3≈41.52+27.68=69.2(米),在Rt△ADG中,AG=DG•tan∠ADG=69.2×tan35°≈69.2×0.70=48.44(米),∴AB=AG+BG=AG+CE=48.44+24=72.44≈72.4(米),答:桥墩AB的高约为72.4米.29.【解答】解:如图,过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为15°,∠ACD为75°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+15°﹣75°=30°,∴∠CAF=60°,在Rt△ACF中,CF=AC•sin∠CAF=√32m,在Rt△CDG中,CG=CD•sin∠CDE=1.5·sin15°,∴FG=FC+CG=√32+1.5·sin15°≈1.3m.故跑步机手柄AB所在直线与地面DE之间的距离约为1.3m.30.【解答】解:过C作CF⊥AD于F,如图所示:则AF =CE ,由题意得:AB =20米,∠AEC =90°,∠CAE =24°,∠CBE =45°,∴△BCE 是等腰直角三角形,∴BE =CE ,设BE =CE =x 米,则AF =x 米,在Rt △ACE 中,tan ∠CAE =CE AE =tan24°≈920, ∴AE =209x 米,∵AE ﹣BE =AB ,∴209x ﹣x =20,解得:x ≈16.4,∴AF ≈16.4(米),∴DF =AD ﹣AF =60﹣16.4=43.6(米),即这栋建筑物的高度为43.6米.31.【解答】解:(1)∵AB =AC ,∠C =60°,∴△ABC 是等边三角形,∴∠B =60°,∵点D 关于直线AB 的对称点为点E ,∴DE ⊥AB ,∴∠BDE =180°﹣60°﹣90°=30°;故答案为:30°;(2)①补全图形如下:②CD =BE ,证明如下:∵AB =AC ,∠C =60°,∴△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∵线段AD 绕点A 顺时针旋转60°得到线段AE ,∴AD =AE ,∠EAD =60°,∴∠BAC =∠EAD =60°,∴∠BAC ﹣∠BAD =∠EAD ﹣∠BAD ,即∠EAB =∠DAC ,在△EAB 和△DAC 中,{AB =AC ∠EAB =∠DAC AE =AD,∴△EAB ≌△DAC (SAS ),∴CD =BE ;(3)AC =k (BD +BE ),证明如下:连接AE ,如图:∵AB =AC ,∴∠C =∠ABC ,∵∠ADE =∠C ,∴∠ABC =∠ADE ,∵AB BC =AD DE ,∴△ABC ∽△ADE ,∴∠DAE =∠BAC ,AB AD =AC AE ,∴∠DAE ﹣∠BAD =∠BAC ﹣∠BAD ,即∠EAB =∠DAC ,∵AB =AC ,∴AE =AD ,在△EAB 和△DAC 中,{AB =AC ∠EAB =∠DAC AE =AD,∴△EAB ≌△DAC (SAS ),∴CD =BE ,∴BC =BD +CD =BD +BE ,而AB BC =AC BC =k , ∴AC BD+BE =k ,即AC =k (BD +BE ).32.【解答】解:(1)如图,过点C 、D 分别作AB 的垂线,交AB 的延长线于点E 、F ,过点D 作DM ⊥CF ,垂足为M ,∵斜坡CB 的坡度为i =1:2.4,∴DM CM =12.4, 即DM CM =512,设DM =5k 米,则CM =12k 米,在Rt △CDM 中,CD =13米,由勾股定理得,CM 2+DM 2=CD 2,即(5k )2+(12k )2=132,解得k =1(米),∴DM =5(米),CM =12(米),答:D 处的竖直高度为5米;(2)斜坡CB 的坡度为i =1:2.4,设DE =12a 米,则BE =5a 米,又∵∠ACF =45°,∴AF =CF =(12+12a )米,∴AE =AF ﹣EF =12+12a ﹣5=(7+12a )米,在Rt △ADE 中,DE =12a 米,AE =(7+12a )米,∵tan ∠ADE =tan53°≈43,∴7+12a 12a=43, 解得a =74,∴DE =12a =21(米),AE =7+12a =28(米),BE =5a =354(米),∴AB =AE ﹣BE =28−354=774(米),答:基站塔AB 的高为774米.33.【解答】解:(1)过点D 作DH ⊥CE 于点H ,由题意知CD =2√10米,∵斜坡CF 的坡比为i =1:3,∴DH CH =13, 设DH =x (米),CH =3x (米),∵DH 2+CH 2=DC 2,∴x 2+(3x)2=(2√10)2,∴x =2,∴DH =2(米),CH =6(米),答:王刚同学从点C 到点D 的过程中上升的高度为2米;(2)过点D 作DG ⊥AB 于点G ,∵∠DHB =∠DGB =∠ABC =90°,∴四边形DHBG 为矩形,∴DH =BG =2米,DG =BH =(x +6)米,∵∠ACB =45°,∴BC =AB =x (米),∴AG =(x ﹣2)米,∵∠ADG =30°,∴AG DG =tan30°=√33, ∴x−2x+6=√33, ∴x =6+4√3,∴AB =(6+4√3)(米).答:大树AB 的高度是(6+4√3)米.34.【解答】解:(1)∵∠ACB =90°,AB =5,BC =3,∴AC =√AB 2−BC 2=4,∵∠ACB =90°,△ABC 绕点B 顺时针旋转得到△A ′BC ′,点A ′落在AC 的延长线上, ∴∠A 'CB =90°,A 'B =AB =5,Rt △A 'BC 中,A 'C =√A′B 2−BC 2=4,∴AA '=AC +A 'C =8;(2)过C 作CE ∥A 'B 交AB 于E ,过C 作CD ⊥AB 于D ,如图:∵△ABC 绕点B 顺时针旋转得到△A ′BC ′, ∴∠A 'BC =∠ABC ,BC '=BC =3,∵CE ∥A 'B ,∴∠A 'BC =∠CEB ,∴∠CEB =∠ABC ,∴CE =BC =3,Rt △ABC 中,S △ABC =12AC •BC =12AB •CD ,AC =4,BC =3,AB =5, ∴CD =AC⋅BC AB =125, Rt △CED 中,DE =√CE 2−CD 2=√32−(125)2=95,同理BD =95,∴BE =DE +BD =185,C 'E =BC '+BE =3+185=335, ∵CE ∥A 'B ,∴BM CE =BC′C′E ,∴BM 3=3335,∴BM =1511; (3)DE 存在最小值1,理由如下:过A 作AP ∥A 'C '交C 'D 延长线于P ,连接A 'C ,如图:∵△ABC 绕点B 顺时针旋转得到△A ′BC ′, ∴BC =BC ',∠ACB =∠A 'C 'B =90°,AC =A 'C ', ∴∠BCC '=∠BC 'C ,而∠ACP =180°﹣∠ACB ﹣∠BCC '=90°﹣∠BCC ', ∠A 'C 'D =∠A 'C 'B ﹣∠BC 'C =90°﹣∠BC 'C ,∴∠ACP =∠A 'C 'D ,∵AP ∥A 'C ',∴∠P =∠A 'C 'D ,∴∠P =∠ACP ,∴AP =AC ,∴AP =A 'C ',在△APD 和△A 'C 'D 中,{∠P =∠A ′C ′D∠PDA =∠A′DC′AP =A′C′,∴△APD ≌△A 'C 'D (AAS ),∴AD =A 'D ,即D 是AA '中点,∵点E 为AC 的中点,∴DE 是△AA 'C 的中位线,∴DE =12A 'C ,要使DE 最小,只需A 'C 最小,此时A '、C 、B 共线,A 'C 的最小值为A 'B ﹣BC =AB ﹣BC =2,∴DE 最小为12A 'C =1. 35.【解答】解:延长BC 交MN 于点H ,AD =BE =3.5,设MH =x 米,∵∠MEC =45°,故EH =x 米,在Rt △MHB 中,tan ∠MBH =MH HE+EB =x x+3.5≈0.65,解得x =6.5,则MN =1.6+6.5=8.1≈8(米),∴电池板离地面的高度MN 的长约为8米.36.【解答】解:(1)由题意得:BE∥AD,∵BE∥AD且∠EBD=60°,∴∠BDG=∠EBD=60°,∵∠BDG=∠C+∠CAD且∠CAD=30°,∴∠C=∠BDG﹣∠CAD=30°;(2)过点B作BG⊥AD于G.∵BG⊥AD,∴∠AGB=∠BGD=90°,在Rt△AGB中,AB=20米,∠BAG=45°,AG=BG=20×sin45°=10√2(米),在Rt△BGD中,∠BDG=60°,∴BD=BGsin60°=20√63(米),DG=BGtan60°=10√63(米),∵∠C=∠CAD=30°,∴CD=AD=AG+DG=(10√2+10√63)(米),∴BC=BD+CD=(10√2+10√6)米,答:两颗银杏树B、C之间的距离为(10√2+10√6)米.37.【解答】解:由题意可知AB=24米,∠BDA=53°,∴tan∠BDA=ABAD=24AD=1.33,∴AD=241.33≈18.05(米).∵tan∠CAD=tan30°=CDAD=CD18.05=√33,∴CD =18.05×√33≈10.4(米).故办公楼的高度约为10.4米.38.【解答】解:(1)如图,过点C 作CE ⊥AB 于点E ,根据题意可知:∠ACE =∠CAE =45°,AC =25√2海里, ∴AE =CE =25(海里),∵∠CBE =30°,∴BE =25√3(海里),∴BC =2CE =50(海里).答:观测点B 与C 点之间的距离为50海里;(2)如图,作CF ⊥DB 于点F ,∵CF ⊥DB ,FB ⊥EB ,CE ⊥AB ,∴四边形CEBF 是矩形,∴FB =CE =25(海里),CF =BE =25√3(海里), ∴DF =BD +BF =30+25=55(海里),在Rt △DCF 中,根据勾股定理,得CD =√CF 2+DF 2=√(25√3)2+552=70(海里), ∴70÷42=53(小时).答:救援船到达C 点需要的最少时间是53小时.。

2022年全国中考数学分类解析汇编专题14规律性问题

2022年全国中考数学分类解析汇编专题14规律性问题

2 012年全国中考数学分类解析汇编专题14:规律性问题一、选择题1.〔2022广东深圳3分〕如图,:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,假设OA1=l,那么△A6B6A7的边长为【】A.6 B.12 C.32 D.64【答案】C。

【考点】分类归纳〔图形的变化类〕,等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质。

【分析】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°。

∴∠2=120°。

∵∠MON=30°,∴∠1=180°-120°-30°=30°。

又∵∠3=60°,∴∠5=180°-60°-30°=90°。

∵∠MON=∠1=30°,∴OA1=A1B1=1。

∴A2B1=1。

∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°。

∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3。

∴∠1=∠6=∠7=30°,∠5=∠8=90°。

∴A2B2=2B1A2,B3A3=2B2A3。

∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16。

以此类推:A6B6=32B1A2=32,即△A6B6A7的边长为32。

应选C。

2.〔2022浙江丽水、金华3分〕小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.以下数中既是三角形数又是正方形数的是【】A.2022B.2012C.2022D.2022【答案】D。

03填空题(提升题)-江苏省扬州市五年(2017-2021)中考数学真题分类汇编(含答案,23题)

03填空题(提升题)-江苏省扬州市五年(2017-2021)中考数学真题分类汇编(含答案,23题)

03填空题(提升题)知识点分类一.有理数的除法(共1小题)1.(2017•扬州)若=2,=6,则= .二.科学记数法—表示较大的数(共1小题)2.(2017•扬州)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米.三.规律型:图形的变化类(共1小题)3.(2021•扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 .四.平方差公式(共1小题)4.(2021•扬州)计算:20212﹣20202= .五.提公因式法与公式法的综合运用(共1小题)5.(2017•扬州)因式分解:3x2﹣27= .六.解一元二次方程-因式分解法(共1小题)6.(2019•扬州)一元二次方程x(x﹣2)=x﹣2的根是 .七.根的判别式(共1小题)7.(2018•扬州)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是 .八.无理方程(共1小题)8.(2017•扬州)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为 .九.解一元一次不等式组(共1小题)9.(2018•扬州)不等式组的解集为 .一十.函数关系式(共1小题)10.(2017•扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为 ℃.一十一.一次函数图象上点的坐标特征(共1小题)11.(2018•扬州)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y =mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为 .一十二.平行四边形的性质(共2小题)12.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为 .13.(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A= .一十三.圆周角定理(共1小题)14.(2017•扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC = °.一十四.三角形的外接圆与外心(共1小题)15.(2018•扬州)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .一十五.正多边形和圆(共1小题)16.(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a= cm.一十六.圆锥的计算(共1小题)17.(2018•扬州)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为 cm.一十七.翻折变换(折叠问题)(共2小题)18.(2018•扬州)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 .19.(2017•扬州)如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC= cm.一十八.旋转的性质(共1小题)20.(2019•扬州)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为 cm2.一十九.中位数(共2小题)21.(2021•扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是 .22.(2017•扬州)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为 分.二十.利用频率估计概率(共1小题)23.(2019•扬州)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000优等品的频数m194791184462921137918460.9500.9400.9100.9200.9240.9210.9190.923优等品的频率从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 .(精确到0.01)参考答案与试题解析一.有理数的除法(共1小题)1.(2017•扬州)若=2,=6,则= 12 .【解析】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.二.科学记数法—表示较大的数(共1小题)2.(2017•扬州)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 1.6×104 立方米.【解析】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.三.规律型:图形的变化类(共1小题)3.(2021•扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 1275 .【解析】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:=3,第③个图形中的黑色圆点的个数为:=6,第④个图形中的黑色圆点的个数为:=10,…第n个图形中的黑色圆点的个数为,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,…,其中每3个数中,都有2个能被3整除,33÷2=16…1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即=1275,故答案为:1275.四.平方差公式(共1小题)4.(2021•扬州)计算:20212﹣20202= 4041 .【解析】解:20212﹣20202=(2021+2020)×(2021﹣2020)=4041×1=4041故答案为:4041.五.提公因式法与公式法的综合运用(共1小题)5.(2017•扬州)因式分解:3x2﹣27= 3(x+3)(x﹣3) .【解析】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).六.解一元二次方程-因式分解法(共1小题)6.(2019•扬州)一元二次方程x(x﹣2)=x﹣2的根是 x1=2,x2=1 .【解析】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:x1=2,x2=1.七.根的判别式(共1小题)7.(2018•扬州)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是 m<且m≠0 .【解析】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴Δ>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.八.无理方程(共1小题)8.(2017•扬州)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为 15 .【解析】解:由题意m=,令y=,则x=2017﹣y2,∴m==,∵m是正整数,y≥0,∴y=1时,m=12,y=2时,m=3,∴正整数m的所有取值的和为15,故答案为15.九.解一元一次不等式组(共1小题)9.(2018•扬州)不等式组的解集为 ﹣3<x≤ .【解析】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.一十.函数关系式(共1小题)10.(2017•扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为 ﹣40 ℃.【解析】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.一十一.一次函数图象上点的坐标特征(共1小题)11.(2018•扬州)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y =mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为 .【解析】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m1=,m2=(舍去),故答案为:.一十二.平行四边形的性质(共2小题)12.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为 9 .【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴=,∵DF=DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.13.(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A= 80° .【解析】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.一十三.圆周角定理(共1小题)14.(2017•扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC= 50 °.【解析】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°﹣80°)÷2=50°.故答案为:50.一十四.三角形的外接圆与外心(共1小题)15.(2018•扬州)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= 2 .【解析】解:设点D为优弧AB上一点,连接AD、BD、OA、OB,如右图所示,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.一十五.正多边形和圆(共1小题)16.(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a= cm.【解析】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∠BCD=∠BAC=30°.由AC=3,得CD=1.5.cos∠BCD==,即=,解得a=,故答案为:.一十六.圆锥的计算(共1小题)17.(2018•扬州)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为 cm.【解析】解:设圆锥的底面圆半径为rcm,依题意,得2πr=,解得r=cm.故选:.一十七.翻折变换(折叠问题)(共2小题)18.(2018•扬州)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 (,﹣) .【解析】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF==,则D(,﹣).故答案为:(,﹣)19.(2017•扬州)如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC= (2+2) cm.【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC﹣BP=(4+4)cm,∵∠EPC=180°﹣90°﹣60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.一十八.旋转的性质(共1小题)20.(2019•扬州)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为 32π cm2.【解析】解:由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,则图中阴影部分的面积=四边形ABCD的面积+扇形ABB'的面积﹣四边形AB'C'D'的面积=扇形ABB'的面积==32π;故答案为:32π.一十九.中位数(共2小题)21.(2021•扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是 5 .【解析】解:∵这组数据的平均数为5,则,解得:a=3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位数是5.故答案为:5.22.(2017•扬州)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为 135 分.【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.二十.利用频率估计概率(共1小题)23.(2019•扬州)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000优等品的频数m194791184462921137918460.9500.9400.9100.9200.9240.9210.9190.923优等品的频率从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 0.92 .(精确到0.01)【解析】解:从这批毛绒玩具中,任意抽取一个毛绒玩具是优等品的概率的估计值是0.92,故答案为0.92.。

2020年江苏省中考数学试题分类汇编(8)——图形的变化(含答案)

2020年江苏省中考数学试题分类汇编(8)——图形的变化(含答案)

2020年江苏省中考数学试题分类(8)——图形的变化一.翻折变换(折叠问题)(共3小题) 1.(2020•无锡)如图,在四边形ABCD 中(AB >CD ),∠ABC =∠BCD =90°,AB =3,BC =√3,把Rt △ABC 沿着AC 翻折得到Rt △AEC ,若tan ∠AED =√32,则线段DE 的长度( )A .√63B .√73C .√32D .2√752.(2020•南通)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE . (1)如图①,若点P 恰好在边BC 上,连接AP ,求AA AA的值;(2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.3.(2020•无锡)如图,在矩形ABCD 中,AB =2,AD =1,点E 为边CD 上的一点(与C 、D 不重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,记四边形P ADE 的面积为S . (1)若DE =√33,求S 的值;(2)设DE =x ,求S 关于x 的函数表达式.二.平移的性质(共1小题) 4.(2020•镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于 .三.旋转的性质(共1小题)5.(2020•苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°四.旋转对称图形(共1小题)6.(2020•镇江)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转°后能与原来的图案互相重合.五.中心对称图形(共1小题)7.(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.六.关于原点对称的点的坐标(共1小题)8.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)七.坐标与图形变化-旋转(共1小题)9.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限八.作图-旋转变换(共1小题) 10.(2020•常州)如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1.(1)点F 到直线CA 的距离是 ;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE =OB 时,求OF 的长.九.几何变换综合题(共1小题) 11.(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ; [思考说理](2)如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AA AA的值;[拓展延伸](3)如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ′处,折痕为CM . ①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB ′上的一个动点,将△APM 沿PM 折叠得到△A ′PM ,点A 的对应点为点A ′,A ′M 与CP 交于点F ,求AA AA的取值范围.一十.平行线分线段成比例(共1小题) 12.(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为 .一十一.相似三角形的判定(共1小题)13.(2020•南京)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AA AA=A′A′A′A′.(1)当AAA′A′=AA A′A′=AAA′A′时,求证△ABC ∽△A 'B 'C '.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当AAA′A′=AA A′A′=AAA′A′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由.一十二.相似三角形的判定与性质(共6小题)14.(2020•无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =12,有下列结论: ①CP 与QD 可能相等;②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31√316;④四边形PCDQ 周长的最小值为3+√372. 其中,正确结论的序号为( )A .①④B .②④C .①③D .②③ 15.(2020•南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则A 1A 2的值等于 .16.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AAAA的值为.17.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.18.(2020•苏州)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.19.(2020•无锡)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D =30°,DC=√3.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.一十三.相似形综合题(共2小题)20.(2020•宿迁)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AA AA=AA AA.【探究】如图②,在四边形ABCD 中,∠C =∠ADC =90°,点E 在边CD 上,点F 在边AD 的延长线上,∠FEG =∠AEB =90°,且AA AA=AA AA,连接BG 交CD 于点H .求证:BH =GH .【拓展】如图③,点E 在四边形ABCD 内,∠AEB 十∠DEC =180°,且AA AA=AA AA,过E 作EF 交AD于点F ,若∠EF A =∠AEB ,延长FE 交BC 于点G .求证:BG =CG .21.(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果AA AA=AA AA,那么称点B 为线段AC的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.一十四.解直角三角形的应用(共3小题) 22.(2020•南通)如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪的高度是1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(2020•淮安)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得∠CAB =30°,∠ABC =45°,AC =8千米,求A 、B 两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).24.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m 的筒车⊙O 按逆时针方向每分钟转56圈,筒车与水面分别交于点A 、B ,筒车的轴心O 距离水面的高度OC 长为2.2m ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P 刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P 首次到达最高点? (2)浮出水面3.4秒后,盛水筒P 距离水面多高?(3)若接水槽MN 所在直线是⊙O 的切线,且与直线AB 交于点M ,MO =8m .求盛水筒P 从最高点开始,至少经过多长时间恰好在直线MN 上. (参考数据:cos43°=sin47°≈1115,sin16°=cos74°≈1140,sin22°=cos68°≈38)一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.(2020•苏州)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作: (1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE =α; (2)量得测角仪的高度CD =a ;(3)量得测角仪到旗杆的水平距离DB =b .利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .a +b tan αB .a +b sin αC .a +A AAAAD .a +AAAAA26.(2020•镇江)如图,点E 与树AB 的根部点A 、建筑物CD 的底部点C 在一条直线上,AC =10m .小明站在点E 处观测树顶B 的仰角为30°,他从点E 出发沿EC 方向前进6m 到点G 时,观测树顶B 的仰角为45°,此时恰好看不到建筑物CD 的顶部D (H 、B 、D 三点在一条直线上).已知小明的眼睛离地面1.6m ,求建筑物CD 的高度(结果精确到0.1m ).(参考数据:√2≈1.41,√3≈1.73.)27.(2020•泰州)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)一十六.解直角三角形的应用-方向角问题(共3小题)28.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.29.(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD边AB的中点M处有一座雕塑.在某一时刻,小红到达点P处,爸爸到达点Q处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM=30m,求小红与爸爸的距离PQ.(结果精确到1m,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)30.(2020•南京)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)一十七.简单几何体的三视图(共1小题)31.(2020•淮安)下列几何体中,主视图为圆的是()A.B.C.D.一十八.简单组合体的三视图(共3小题)32.(2020•镇江)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()A.B.C.D.33.(2020•盐城)如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.34.(2020•苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.一十九.由三视图判断几何体(共1小题)35.(2020•常州)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥2020年江苏省中考数学试题分类(8)——图形的变化参考答案与试题解析一.翻折变换(折叠问题)(共3小题) 1.【解答】解:方法一:如图,延长ED 交AC 于点M ,过点M 作MN ⊥AE 于点N ,设MN =√3x , ∵tan ∠AED =√32, ∴AA AA=√32, ∴NE =2x ,∵∠ABC =90°,AB =3,BC =√3, ∴∠CAB =30°, ∴AC =2√3, 由翻折可知: ∠EAC =30°,∴AM =2MN =2√3x , ∴AN =√3MN =3x , ∵AE =AB =3, ∴5x =3, ∴x =35,∴AN =95,MN =3√35,AM =6√35, ∵AC =2√3,∴CM =AC ﹣AM =4√35, ∵MN =3√35,NE =2x =65, ∴EM =√AA 2+AA 2=3√75,∵∠ABC =∠BCD =90°, ∴CD ∥AB ,∴∠DCA =30°,由翻折可知:∠ECA =∠BCA =60°, ∴∠ECD =30°,∴CD 是∠ECM 的角平分线, ∴A △AAA A △AAA =AAAA=AA AA,∴√34√35=3√75−AA ,解得,ED =√73. 方法二:如图,过点D 作DM ⊥CE ,由折叠可知:∠AEC =∠B =90°, ∴AE ∥DM ,∴∠AED =∠EDM , ∴tan ∠AED =tan ∠EDM =√32,∵∠ACB =60°,∠ECD =30°,设EM =√3m ,由折叠性质可知,EC =CB =√3, ∴CM =√3−√3m ,∴tan ∠ECD =AA AA =√33, ∴DM =(√3−√3m )×√33=1﹣m ,∴tan ∠EDM =AA AA =√32,即√3A 1−A=√32解得,m =13,∴DM =23,EM =√33,在直角三角形EDM 中,DE 2=DM 2+EM 2,解得,DE =√73.故选:B . 2.【解答】解:(1)如图①中,取DE 的中点M ,连接PM .∵四边形ABCD 是矩形, ∴∠BAD =∠C =90°,由翻折可知,AO =OP ,AP ⊥DE ,∠2=∠3,∠DAE =∠DPE =90°, 在Rt △EPD 中,∵EM =MD , ∴PM =EM =DM , ∴∠3=∠MPD ,∴∠1=∠3+∠MPD =2∠3, ∵∠ADP =2∠3, ∴∠1=∠ADP , ∵AD ∥BC ,∴∠ADP =∠DPC , ∴∠1=∠DPC ,∵∠MOP =∠C =90°, ∴△POM ∽△DCP , ∴AA AA =AAAA =812=23,∴AA AA=2AA 2AA=23.解法二:证明△ABP 和△DAE 相似,AA AA=AA AA=23.(2)如图②中,过点P 作GH ∥BC 交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG =x ,则BG =4﹣x∵∠A =∠EPD =90°,∠EGP =∠DHP =90°, ∴∠EPG +∠DPH =90°,∠DPH +∠PDH =90°, ∴∠EPG =∠PDH , ∴△EGP ∽△PHD , ∴AA AA=AA AA=AA AA=412=13,∴PH =3EG =3x ,DH =AG =4+x , 在Rt △PHD 中,∵PH 2+DH 2=PD 2, ∴(3x )2+(4+x )2=122,解得x =165(负值已经舍弃), ∴BG =4−165=45,在Rt △EGP 中,GP =√AA 2−AA 2=125, ∵GH ∥BC ,∴△EGP ∽△EBF , ∴AA AA=AA AA,∴1654=125AA,∴BF =3.3.【解答】解:(1)∵在矩形ABCD 中,∠D =90°,AD =1,DE =√33,∴AE =√AA 2+AA 2=2√33,∴tan ∠AED =AAAA =√3,∴∠AED =60°, ∵AB ∥CD ,∴∠BAE =60°,∵四边形ABCE 关于直线AE 的对称图形为四边形ANME , ∴∠AEC =∠AEM , ∵∠PEC =∠DEM ,∴∠AEP =∠AED =60°, ∴△APE 为等边三角形, ∴S =12×(2√33+√33)×1=√32; (2)过E 作EF ⊥AB 于F ,由(1)可知,∠AEP =∠AED =∠P AE , ∴AP =PE ,设AP =PE =a ,AF =ED =x , 则PF =a ﹣x ,EF =AD =1,在Rt △PEF 中,(a ﹣x )2+1=a 2,解得:a =A 2+12A ,∴S =12⋅A ×1+12×A 2+12A ×1=12A +A 2+14A =3A 2+14A .二.平移的性质(共1小题) 4.【解答】解:取AC 的中点M ,A 1B 1的中点N ,连接PM ,MQ ,NQ ,PN , ∵将△ABC 平移5个单位长度得到△A 1B 1C 1, ∴B 1C 1=BC =3,PN =5,∵点P 、Q 分别是AB 、A 1C 1的中点, ∴NQ =12B 1C 1=32, ∴5−32≤PQ ≤5+32, 即72≤PQ ≤132, ∴PQ 的最小值等于72, 故答案为:72.三.旋转的性质(共1小题) 5.【解答】解:∵AB '=CB ', ∴∠C =∠CAB ',∴∠AB 'B =∠C +∠CAB '=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB 'C ', ∴∠C =∠C ',AB =AB ', ∴∠B =∠AB 'B =2∠C ,∵∠B +∠C +∠CAB =180°, ∴3∠C =180°﹣108°, ∴∠C =24°,∴∠C '=∠C =24°, 故选:C .四.旋转对称图形(共1小题) 6.【解答】解:连接OA ,OE ,则这个图形至少旋转∠AOE 才能与原图象重合, ∠AOE =360°5=72°.故答案为:72.五.中心对称图形(共1小题) 7.【解答】解:A 、不是中心对称图形,不是轴对称图形,故此选项不合题意; B 、不是中心对称图形,是轴对称图形,故此选项不合题意; C 、既是中心对称图形,也是轴对称图形,故此选项符合题意; D 、不是中心对称图形,不是轴对称图形,故此选项不合题意; 故选:C .六.关于原点对称的点的坐标(共1小题) 8.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2). 故选:C .七.坐标与图形变化-旋转(共1小题) 9.【解答】解:如图,∵点P (4,5)按逆时针方向旋转90°,得点Q 所在的象限为第二象限. 故选:B .八.作图-旋转变换(共1小题) 10.【解答】解:(1)如图1中,作FD ⊥AC 于D ,∵Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1. ∴∠ACB =60°,∠FCE =∠BAC =30°,AC =CF , ∴∠ACF =30°, ∴∠BAC =∠FCD , 在△ABC 和△CDF 中,{∠AAA =∠AAAAAAA =AAAA AA =AA, ∴△ABC ≌△CDF (AAS ), ∴FD =BC =1,法二:∵∠ECF =∠FCD =30°,FD ⊥CD ,FE ⊥CE , ∴DF =EF , ∵EF =BC =1,∴DF =1. 故答案为1;(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.S 阴=S △EFC +S 扇形ACF ﹣S 扇形CEH ﹣S △AHC =S 扇形ACF ﹣S 扇形ECH =30⋅A ⋅22360−30⋅A ⋅(√3)2360=A12. 故答案为A12.(3)如图2中,过点E 作EH ⊥CF 于H .设OB =OE =x .在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF , ∴EC =√3EF =√3,EH =√32,CH =√3EH =32,在Rt △BOC 中,OC =√AA 2+AA 2=√1+A 2, ∴OH =CH ﹣OC =32−√1+A 2, 在Rt △EOH 中,则有x 2=(√32)2+(32−√1+A 2)2,解得x =√73或−√73(不合题意舍弃),∴OC =1+(√73)2=43,∵CF =2EF =2,∴OF =CF ﹣OC =2−43=23. 九.几何变换综合题(共1小题)11.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC , ∴CN =BN ,∵∠MNB =∠ACB =90°, ∴MN ∥AC , ∵CN =BN , ∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6, ∴∠A =∠B ,由题意MN 垂直平分线段BC , ∴BM =CM , ∴∠B =∠MCB , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA ,∴610=AA6,∴BM =185, ∴AM =AB ﹣BM =10−185=325, ∴AA AA=325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA =AA AA∴69=AA 6,∴BM =4,∴AM =CM =5, ∴69=5AA ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′, ∴△PF A ′∽△MFC , ∴AA AA =AA′AA,∵CM =5, ∴AA AA =AA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32, ∴32≤P A ′≤154, ∴310≤AA AA≤34.一十.平行线分线段成比例(共1小题) 12.【解答】解:如图,过点D 作DF ∥AE ,则AA AA =AA AA =23,∵AA AA=13,∴DF =2EC , ∴DO =2OC , ∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC , ∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4, 此时△ABO 的面积最大为:23×4=83. 故答案为:83.一十一.相似三角形的判定(共1小题) 13.【解答】(1)证明:∵AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△ADC ∽△A ′D ′C ', ∴∠A =∠A ′, ∵AA A′A′=AAA′A′, ∴△ABC ∽△A ′B ′C ′. 故答案为:AAA′A′=AA A′A′=AAA′A′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC , ∴AA AA=AA AA=AA AA,同理,A′A′A′A′=A′A′A′A′=A′A′A′A′,∵AA AA =A′A′A′A′, ∴AA AA =A′A′A′A′,∴AAA′A′=AAA′A′,同理,AA AA =A′A′A′A′,∴AA −AA AA =A′A′−A′A′A′A′,即AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△DCE ∽△D ′C ′E ′, ∴∠CED =∠C ′E ′D ′, ∵DE ∥BC ,∴∠CED +∠ACB =180°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°, ∴∠ACB =∠A ′C ′B ′, ∵AA A′A′=AAA′A′,∴△ABC ∽△A ′B ′C ′.一十二.相似三角形的判定与性质(共6小题)14.【解答】解:①利用图象法可知PC >DQ ,或通过计算可知DQ 的最大值为√212,PC 的最小值为3√32,所以PC >DQ ,故①错误.②设AQ =x ,则BP =AB ﹣AQ ﹣PQ =3﹣x −12=52−x , ∵∠A =∠B =60°, ∴当AA AA=AA AA 或AA AA=AA AA时,△ADQ 与△BPC 相似,即1252−A=A3或123=A52−A ,解得x =1或32或514,∴当AQ =1或32或514时,两三角形相似,故②正确③设AQ =x ,则四边形PCDQ 的面积=S △ABC ﹣S △ADQ ﹣S △BCP =√34×32−12×x ×√32×12−12×3×(3﹣x −12)×√32=3√38+5√38x ,∵x 的最大值为3−12=52,∴x =52时,四边形PCDQ 的面积最大,最大值=31√316,故③正确,如图,作点D 关于AB 的对称点D ′,作D ′F ∥PQ ,使得D ′F =PQ ,连接CF 交AB 于点P ′,在射线P ′A 上取P ′Q ′=PQ ,此时四边形P ′CDQ ′的周长最小.过点C 作CH ⊥D ′F 交D ′F 的延长线于H ,交AB 于J .由题意,DD ′=2AD •sin60°=√32,HJ =12DD ′=√34,CJ =3√32,FH =32−12−14=34, ∴CH =CJ +HJ =7√34,∴CF =√AA 2+AA 2=(34)2+(7√34)2=√392, ∴四边形P ′CDQ ′的周长的最小值=3+√392,故④错误, 故选:D .15.【解答】解:∵AA AA =√22=√2, AAAA=√22+222=√2, AA AA =√22√22=√2,∴AA AA =AA AA =AA AA =√2, ∴△ABC ∽△DEF ,∴A 1A 2=AA AA=√22, 故答案为:√22. 16.【解答】解:∵BC ∥DE , ∴△ADE ∽△ABC , ∴AA AA =AA AA =AAAA ,即4AA =AA 4=AA AA , ∴AB •DE =16,∵AB +DE =10, ∴AB =2,DE =8,∴AAAA=AA AA =84=2, 故答案为:2. 17.【解答】解:(1)∵PD ∥AB , ∴AAAA=AA AA , ∵AC =3,BC =4,CP =x , ∴A4=AA 3,∴CD =34A , ∴AD =AC ﹣CD =3−34A ,即AD =−34A +3;(2)根据题意得,S =12AA ⋅AA =12A (−34A +3)=−38(A −2)2+32,∴当x ≥2时,S 随x 的增大而减小,∵0<x <4,∴当S 随x 增大而减小时x 的取值范围为2≤x <4.18.【解答】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB ,∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A ;(2)∵E 是BC 的中点,BC =4,∴BE =2,∵AB =6,∴AE =√AA 2+AA 2=√62+22=2√10,∵四边形ABCD 是矩形,∴AD =BC =4,∵△ABE ∽△DF A ,∴AA AA =AA AA ,∴AA =AA ⋅AA AA =2√10=65√10. 19.【解答】证明:(1)∵DC 是⊙O 的切线,∴∠OCD =90°,∵∠D =30°,∴∠BOC =∠D +∠OCD =30°+90°=120°,∵OB =OC ,∴∠B =∠OCB =30°,∴∠DCB =120°=∠BOC ,又∵∠B =∠B =30°,∴△BOC ∽△BCD ;(2)∵∠D =30°,DC =√3,∠OCD =90°,∴DC =√3OC =√3,DO =2OC ,∴OC =1=OB ,DO =2,∵∠B =∠D =30°, ∴DC =BC =√3,∴△BCD 的周长=CD +BC +DB =√3+√3+2+1=3+2√3.一十三.相似形综合题(共2小题)20.【解答】【感知】证明:∵∠C =∠D =∠AEB =90°,∴∠BEC +∠AED =∠AED +∠EAD =90°,∴∠BEC =∠EAD ,∴Rt △AED ∽Rt △EBC ,∴AA AA =AA AA .【探究】证明:如图1,过点G 作GM ⊥CD 于点M ,由(1)可知AA AA =AA AA ,∵AA AA =AA AA ,AA AA =AA AA , ∴AA AA =AA AA ,∴BC =GM ,又∵∠C =∠GMH =90°,∠CHB =∠MHG ,∴△BCH ≌△GMH (AAS ),∴BH =GH ,【拓展】证明:如图2,在EG 上取点M ,使∠BME =∠AFE ,过点C 作CN ∥BM ,交EG 的延长线于点N ,则∠N =∠BMG ,∵∠EAF +∠AFE +∠AEF =∠AEF +∠AEB +∠BEM =180°,∠EF A =∠AEB ,∴∠EAF =∠BEM ,∴△AEF ∽△EBM ,∴AA AA =AA AA ,∵∠AEB +∠DEC =180°,∠EF A +∠DFE =180°,而∠EF A =∠AEB ,∴∠CED =∠EFD ,∵∠BMG +∠BME =180°,∴∠N =∠EFD ,∵∠EFD +∠EDF +∠FED =∠FED +∠DEC +∠CEN =180°,∴∠EDF =∠CEN ,∴△DEF ∽△ECN ,∴AA AA =AA AA , 又∵AA AA =AA AA , ∴AA AA =AA AA ,∴BM =CN ,又∵∠N =∠BMG ,∠BGM =∠CGN ,∴△BGM ≌△CGN (AAS ),∴BG =CG .21.【解答】解:(1)∵点B 为线段AC 的黄金分割点,AC =20cm ,∴AB =√5−12×20=(10√5−10)cm .故答案为:(10√5−10).(2)延长EA ,CG 交于点M ,∵四边形ABCD 为正方形,∴DM ∥BC ,∴∠EMC =∠BCG ,由折叠的性质可知,∠ECM =∠BCG ,∴∠EMC =∠ECM ,∴EM =EC ,∵DE =10,DC =20,∴EC =√AA 2+AA 2=√102+202=10√5,∴EM =10√5,∴DM =10√5+10,∴tan ∠DMC =AA AA =10√5+10=√5+1=√5−12. ∴tan ∠BCG =√5−12, 即AA AA =√5−12, ∵AB =BC , ∴AAAA =√5−12, ∴G 是AB 的黄金分割点;(3)当BP =BC 时,满足题意.理由如下:∵四边形ABCD 是正方形,∴AB =BC ,∠BAE =∠CBF =90°,∵BE ⊥CF ,∴∠ABE +∠CFB =90°,又∵∠BCF +∠BFC =90°,∴∠BCF =∠ABE ,∴△ABE ≌△BCF (ASA ),∴BF =AE ,∵AD ∥CP ,∴△AEF ∽△BPF , ∴AAAA=AA AA , 当E 、F 恰好分别是AD 、AB 的黄金分割点时, ∵AE >DE , ∴AAAA =AA AA ,∵BF =AE ,AB =BC ,∴AA AA =AA AA =AA AA , ∴AA AA =AA AA ,∴BP =BC .一十四.解直角三角形的应用(共3小题)22.【解答】解:如图,过点D 作DE ⊥AB ,垂足为点E ,则DE =BC =5,DC =BE =1.5,在Rt △ADE 中,∵tan ∠ADE =AA AA ,∴AE =tan ∠ADE •DE =tan50°×5≈1.19×5=5.95(米),∴AB =AE +BE =5.95+1.5≈7.5(米),故答案为:7.5.23.【解答】解:过点C 作CD ⊥AB 于点D ,如图所示.在Rt △ACD 中,AC =8(千米),∠CAD =30°,∠CDA =90°,∴CD =AC •sin ∠CAD =4(千米),AD =AC •cos ∠CAD =4√3(千米)≈6.8(千米).在Rt △BCD 中,CD =4(千米),∠BDC =90°,∠CBD =45°,∴∠BCD =45°,∴BD =CD =4(千米),∴AB =AD +BD =6.8+4≈11(千米).答:A 、B 两点间的距离约为11千米.24.【解答】解:(1)如图1中,连接OA .由题意,筒车每秒旋转360°×56÷60=5°,在Rt △ACO 中,cos ∠AOC =AA AA =2.23=1115. ∴∠AOC =43°,∴180−435=27.4(秒).答:经过27.4秒时间,盛水筒P 首次到达最高点.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,∴∠POC =∠AOC +∠AOP =43°+17°=60°,过点P 作PD ⊥OC 于D ,在Rt △POD 中,OD =OP •cos60°=3×12=1.5(m ),2.2﹣1.5=0.7(m ),答:浮出水面3.4秒后,盛水筒P 距离水面0.7m .(3)如图3中,∵点P 在⊙O 上,且MN 与⊙O 相切,∴当点P 在MN 上时,此时点P 是切点,连接OP ,则OP ⊥MN ,在Rt △OPM 中,cos ∠POM =AA AA =38,∴∠POM =68°,在Rt △COM 中,cos ∠COM =AA AA =2.28=1140,∴∠COM =74°,∴∠POH =180°﹣∠POM ﹣∠COM =180°﹣68°﹣74°=38°,∴需要的时间为385=7.6(秒),答:盛水筒P 从最高点开始,至少经过7.6秒恰好在直线MN 上.一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.【解答】解:过C 作CF ⊥AB 于F ,则四边形BFCD 是矩形,∴BF =CD =a ,CF =BD =b ,∵∠ACF =α,∴tan α=AA AA =AA A , ∴AF =b •tan α,∴AB =AF +BF =a +b tan α,故选:A .26.【解答】解:如图,延长FH,交CD于点M,交AB于点N,∵∠BHN=45°,BA⊥MH,则BN=NH,设BN=NH=x,∵HF=6,∠BFN=30°,∴tan∠BFN=AAAA=AAAA+AA,即tan30°=AA+6,解得x=8.19,根据题意可知:DM=MH=MN+NH,∵MN=AC=10,则DM=10+8.19=18.19,∴CD=DM+MC=DM+EF=18.19+1.6≈19.8(m).答:建筑物CD的高度约为19.8m.27.【解答】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,在Rt△ACE中,tan C=tan23°=AAAA=15AA≈0.42,解得:CE≈35.7,在Rt△BDE中,tan∠BDE=tan50°=AAAA=21AA≈1.19,解得:DE≈17.6,∴CD=CE﹣DE=35.7﹣17.6=18.1≈18m,答:两次观测期间龙舟前进了18m.一十六.解直角三角形的应用-方向角问题(共3小题)28.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=√2x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=AA AA,∴A2−A=√3,解得x=3−√3.经检验,x=3−√3是原方程的根.∴AC=√2x=√2(3−√3)=(3√2−√6)km.答:船C离观测站A的距离为(3√2−√6)km.29.【解答】解:过点P作PN⊥BC于N,如图,则四边形ABNP是矩形,∴PN=AB,∵四边形ABCD是矩形,∴∠A=90°,∵∠APM=45°,∴△APM是等腰直角三角形,∴AM=√22PM=√22×30=15√2(m),∵M是AB的中点,∴PN=AB=2AM=30√2m,在Rt△PNQ中,∠NPQ=90°﹣∠DPQ=90°﹣60°=30°,∴NQ=√33PN=10√6m,PQ=2NQ=20√6≈49(m);答:小红与爸爸的距离PQ约为49m.30.【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=AA AAA37°,在Rt△DBH中,∠DBH=45°,∴BH=AA AAA45°,∵BC=CH﹣BH,∴AAAAA37°−AAAAA45°=6,解得DH≈18km,在Rt△DAH中,∠ADH=26°,∴AD=AAAAA26°≈20km.答:轮船航行的距离AD约为20km.一十七.简单几何体的三视图(共1小题)31.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.一十八.简单组合体的三视图(共3小题)32.【解答】解:从正面看是一个正方形,正方形的右上角是一个小正方形,故选:A.33.【解答】解:观察图形可知,该几何体的俯视图是.故选:A.34.【解答】解:从上面看,是一行三个小正方形.故选:C.一十九.由三视图判断几何体(共1小题)35.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.。

中考数学规律问题图形变化类汇编经典及答案

中考数学规律问题图形变化类汇编经典及答案

中考数学规律问题图形变化类汇编经典及答案一、规律问题图形变化类1.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第20个这样的图案需要黑色棋子的个数为( )A .448B .452C .544D .6022.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的12)后,得图③、④,…,记第n (n≥3)块纸板的周长为P n ,则P n -P n -1等于…( )A .112n - B .3-12n C .1-132n - D .132n -+212n -3.“科赫曲线”是瑞典数学家科赫1904构造的图案(又名“雪花曲线”).其过程是:第一次操作,将一个等边三角形每边三等分,再以中间一段为边向外作等边三角形,然后去掉中间一段,得到边数为12的图②.第二次操作,将图②中的每条线段三等分,重复上面的操作,得到边数为48的图③.如此循环下去,得到一个周长无限的“雪花曲线”.若操作4次后所得“雪花曲线”的边数是( )A .192B .243C .256D .7684.如图,都是由棱长为1的正方体叠成的图形.例如:第①个图形由1个正方体叠成,第②个图形由4个正方体叠成,第③个图形由10个正方体叠成…,低此规律,第10个图形由n 个正方体叠成,则n 的值为( )A.220B.165C.120D.555.第①图形中有2个三角形,第②图形中有8个三角形,第③个图形中有14个三角形,依此规律,第⑦个图形中三角形的个数是()A.40 B.38 C.36 D.346.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…;根据以上操作,若操作670次,得到小正方形的个数是()A.2009B.2010C.2011D.20127.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,…依此规律,如果第n个图案中正三角形和正方形的个数共有2021个,则n的值为()A.504 B.505 C.677 D.6788.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第8个图中共有点的个数是()个A .108B .109C .110D .1129.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第20个“五边形数”应该为( ),第2020个“五边形数”的奇偶性为( )A .533;偶数B .590;偶数C .533;奇数D .590;奇数10.按图示的方式摆放餐桌和椅子,图1中共有6把椅子,图2中共有10把椅子,…,按此规律,则图7中椅子把数是( )A .28B .30C .36D .4211.如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是( )A .2,20202B .4,20212C .22,20202D .2,2019212.如图,四边形OAA 1B 1是边长为1的正方形,以对角线OA 1为边作第二个正方形OA 1A 2B 2,连接AA 2,得到AA 1A 2;再以对角线OA 2为边作第三个正方形OA 2A 3B 3,连接A 1A 3,得到A 1A 2A 3,再以对角线OA 3为边作第四个正方形OA 2A 4B 4,连接A 2A 4,得到A 2A 3A 4,…,设AA 1A 2,A 1A 2A 3,A 2A 3A 4,…,的面积分别为S 1,S 2,S 3,…,如此下去,则S 2020的值为( )A .202012 B .22018 C .22018+12D .101013.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22P Q ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ P Q PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+14.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B A B ∆,是以1A ,2A ,3A ,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭15.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为( )A .2n ﹣3B .4n ﹣1C .4n ﹣3D .4n ﹣216.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n -17.下列图形都是由同样大小的圆按一定的规律组成,其中第1个图形中有5个圆,第2个图形中有9个圆,第3个图形中14个圆,……,则第7个图形中圆的个数是( )A .42B .43C .44D .4518.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,⋯按此规律作下去,若11A B O a ∠=,则20202020A B O ∠=( )A .20202a B .20192aC .4040aD .4038a19.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图形含有正方形的个数是( )A .102B .91C .55D .3120.如图,已知1111222233334,,,AB A B A B A A A B A A A B A A ==== ……,若∠A =70°,则11n n n A A B --∠的度数为( )A .702nB .1702n + C .1702n - D .2702n - 21.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,…,重复上述过程,经过2020次后,所得到的正六边形的边长是原正六边形边长的( )A .2018(3)倍B .2019(3)倍C .2020(3)倍D .2021(3)倍22.下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片…按此规律排列下去,图⑩中黑色正方形纸片的张数为( )A .17B .19C .21D .2323.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是( )A .14B .116C .132D .16424.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .11125.携带着2公斤珍贵月壤的嫦娥五号返回器于2020年12月17日凌晨1时32分,降落在内蒙古市四子王旗,实现了中国版的“空间跳跃”.在科幻电影《银河护卫队》中,星际之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成,如图所示,两个星球之间的路径只有一条,三个星际之间的路径有3条,四个星际之间的路径有6条,...,按此规律,则10个星际之间的路径有( )A .45条B .21条C .42条D .38条【参考答案】***试卷处理标记,请不要删除一、规律问题图形变化类 1.C 【分析】观察各图可知,第一个图案需要黑色棋子的个数为(1+2+3)×2(个),第二个图案需要的个数为[(1+2+3+4)×2+2×1](个),第三个图案需要的个数为[(1+2+3+4+5)×2+2×2](个),第四个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个)…由此可以推出第n 个图案需要的个数为()(){}1231[]222n n +++⋯++⨯+-(个),所以第20个图案需要的个数只需将n=20代入即可. 【详解】解:由图知第一个图案需要黑色棋子的个数为(1+2+3)×2(个); 第二个图案需要的个数为[(1+2+3+4)×2+2×1](个); 第三个图案需要的个数为[(1+2+3+4+5)×2+2×2](个);第四个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个); …第n 个图案需要的个数为()(){}1231[]222n n +++⋯++⨯+-(个) ∴第20个图案需要的个数为(1+2+3+…+22)×2+2×19=544(个) 故选C . 【点睛】本题考查了图形的变化.解题的关键是观察各个图形找到它们之间的规律. 2.A 【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P 1,P 2,P 3,P 4,然后周长相减即可得到规律,进行解答. 【详解】解:P 1=1+1+1=3, P 2=1+1+12=52, P 3=1+1+14×3=114, P4=1+1+14×2+18×3=238, … ∴P 3-P 2=114-52=211=42, P 4-P 3=238-114=311=82, ∴P n -P n -1=n-112, 故答案为:A . 【点睛】本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好. 3.D 【分析】结合图形的变化写出前3次变化所得边数,发现规律:每多一次操作边数就是上一次边数的4倍,进而可以写出操作4次后所得“雪花曲线”的边数. 【详解】解:操作1次后所得“雪花曲线”的边数为12,即3×41=12; 操作2次后所得“雪花曲线”的边数为48,即3×42=48; 操作3次后所得“雪花曲线”的边数为192,即3×43=192; 所以操作4次后所得“雪花曲线”的边数为768,即3×44=768; 故选:D .本题主要考查了规律题型图形变化类,准确判断计算是解题的关键.4.A【分析】根据题目给出的正方体的个数规律,可知第n个图形中的正方体的个数为1+3+6+…+(1)2n n+,据此可得第10个图形中正方体的个数.【详解】解:由图可得:图①中正方体的个数为1;图②中正方体的个数为4=1+3;图③中正方体的个数为10=1+3+6;图④中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+(1)2n n+.第10个图形中正方体的个数为1+3+6+10+15+21+28+36+45+55=220.故选:A.【点睛】本题考查了图形的变化类规律,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+(1)2n n+.5.B【分析】由图形可知:第①个图形有2+6×0=2个三角形;第②个图形有2+6×1=8个三角形;第③个图形有2+6×2=14个三角形;…第n个图形有2+6×(n-1)=6n-4个三角形;进一步代入求得答案即可.【详解】解:∵第①个图形有2+6×0=2个三角形;第②个图形有2+6×1=8个三角形;第③个图形有2+6×2=14个三角形;…∴第n个图形有2+6×(n-1)=6n-4个三角形;∴第⑦个图形有6×7-4=38个三角形,故选:B.【点睛】本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.C先根据题意发现规律,然后再按照规律计算即可. 【详解】解:将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作; 将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作; 将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作; ……将其中的一个正方形再剪成四个小正方形,共得到4+3(n-1)个小正方形,称为第n 次操作;令n=670,可得4+3×(670-1)=2011. 故选:C . 【点睛】本题主要考查了数字变化类规律问题,根据题意发现规律成为解答本题的关键. 7.B 【分析】根据图形的变化规律、正方形和三角形的个数可发现第n 个图案有31n +个三角形和n 个正方形,正三角形和正方形的个数共有41n +个,进而可求得当412021n +=时n 的值. 【详解】解:∵第①个图案有4个三角形和1个正方形,正三角形和正方形的个数共有5个; 第②个图案有7个三角形和2个正方形,正三角形和正方形的个数共有9个; 第③个图案有10个三角形和3个正方形,正三角形和正方形的个数共有13个; 第④个图案有13个三角形和4个正方形,正三角形和正方形的个数共有17个;∴第n 个图案有()43131n n +-=+个三角形和n 个正方形,正三角形和正方形的个数共有3141n n n ++=+个∵第n 个图案中正三角形和正方形的个数共有2021个 ∴412021n += ∴505n =. 故选:B 【点睛】本题考查了图形变化类的规律问题、利用一元一次方程求解等,解决本题的关键是观察图形的变化寻找规律. 8.B 【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n 3(1)12n n +=+个点,然后依据规律解答即可.解:第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点, …第n 个图有1+1×3+2×3+3×3+…+3n=13(123)n ++++⋯+3(1)12n n +=+个点, ∴第8个图中共有点的个数38(81)11092⨯+=+=个, 故选B. 【点睛】此题考查图形的变化规律,根据图形得出数字之间的运算规律是解题的关键. 9.B 【分析】根据前几个“五边形数”的对应图形找到规律,得出第n 个“五边形数”为23122n n -,将n=10代入可求得第20个“五边形数”,利用奇偶性判断第2020个“五边形数”的奇偶性. 【详解】解:第1个“五边形数”为1=2311122⨯-⨯, 第2个“五边形数”为5=2312222⨯-⨯, 第3个“五边形数”为12= 2313322⨯-⨯, 第4个“五边形数”为22= 2314422⨯-⨯, 第5个“五边形数”为35= 2315522⨯-⨯, ···由此可发现:第n 个“五边形数”为23122n n -, 当n=20时,23122n n -= 231202022⨯-⨯=590, 当n=2020时,232n =3×2020×1010是偶数,12n =1010是偶数,所以23122n n -是偶数,故选:B . 【点睛】本题考查数字类规律探究、有理数的混合运算,通过观察图形,发现数字的变化规律是解答的关键. 10.B观察图形变化,得出n 张餐桌时,椅子数为4n +2把(n 为正整数),代入n =7即可得出结论. 【详解】解:1张桌子可以摆放的椅子数为:2+1×4=6, 2张桌子可以摆放的椅子数为:2+2×4=10, 3张桌子可以摆放的椅子数为:2+3×4=14, …,n 张桌子可以摆放的椅子数为:2+4n , 令n =7,可得2+4×7=30(把). 故选:B . 【点睛】此题考查图形类规律探究,列式计算,根据图形的排列总结规律并运用解决问题是解题的关键. 11.A 【分析】根据题意结合等腰直角三角形的性质,即可判断出22A B 的长,再进一步推出一般规律,利用规律求解20212021OA B 的面积即可. 【详解】由题意可得:11OA AB AB ===,12OB =, ∵11OA B 为等腰直角三角形,且“直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系”,∴根据题意可得:111OA A B =∴212OB OA ==∴22222OA A B ===,,∴总结出nn OA =,∵111122△OAB S =⨯⨯=,11112△OA B S ==,2212222△OA B S =⨯⨯=,∴归纳得出一般规律:1122n nnnn OA B S -=⨯⨯=,∴2021202120202OA B S=,故选:A . 【点睛】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键.12.B【分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.【详解】解:如图∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=12⨯1×1=12,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=12⨯2×1=1,同理可求:S3=12⨯2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.13.B【分析】根据线段中点定义先求出P1Q1的长度,再由P1Q1的长度求出P2Q2的长度,从而找到P n Q n 的规律,即可求出结果.【详解】解:∵线段PQ=10,线段AP和AQ的中点P1,Q1,∴P1Q1=AP1-AQ1=12AP-12AQ=12(AP-AQ)=12PQ =12×10 =5.∵线段AP 1和AQ 1的中点P 2,Q 2; ∴P 2Q 2=AP 2-AQ 2 =12AP 1-12AQ 1 =12(AP 1-AQ 1) =12P 1 Q 1 =12×12×10 =212×10 =52. 发现规律:P n Q n =12n ×10 ∴P 1Q 1+P 2Q 2+…+P 11Q 11=12×10+212×10+312×10+…+1112×10 =10(12+212+312+…+1112) =10(1111212 )=10(1-1112) =10-11102 故选:B . 【点睛】本题考查了线段规律性问题,准确根据题意找出规律是解决本题的关键,比较有难度. 14.A 【分析】设点A 2,A 3,A 4…,A 2019坐标,结合函数解析式,寻找纵坐标规律,进而解题. 【详解】解:1(1,1)A 在直线15y x b =+, 45b ∴=, 1455y x ∴=+, 设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2019)y ,则有221455y x =+,331455y x =+,⋯,202020201455y x =+,又△11OA B ,△122B A B ,△233B A B ,⋯,都是等腰直角三角形,2122x y y ∴=+,312322x y y y =++,⋯,2020123201920202222x y y y y y =+++⋯++.将点坐标依次代入直线解析式得到: 21112y y =+,3121131222y y y =++=2y ,432y =3y ,⋯,2020201932y y =,又11y =,232y ∴=,233()2y =,343()2y =,⋯,201920203()2y =,故选:A . 【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律. 15.C 【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数. 【详解】 解:由题意得:第一个图形三角形的个数为4×1-3=1个, 第二个图形三角形的个数为4×2-3=5个, 第三个图形三角形的个数为4×3-3=9个, 第四个图形三角形的个数为4×4-3=13个, …..∴第n 个图形三角形的个数为()43n -个; 故选C . 【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可. 16.D 【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数. 【详解】 解:由题意得:第一个图形三角形的个数为4×1-3=1个, 第二个图形三角形的个数为4×2-3=5个, 第三个图形三角形的个数为4×3-3=9个, 第四个图形三角形的个数为4×4-3=13个, ……∴第n 个图形三角形的个数为()43n -个; 故选:D . 【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可. 17.C 【分析】根据图形中圆的个数变化规律,进而求出答案. 【详解】 解:如图所示:第一个图形一共有2+3=5个圆, 第二个图形一共有2+3+4=9个圆, 第三个图形一共有2+3+4+5=14个圆,∴第七个图形一共有2+3+4+5+6+7+8+9=44个圆, 故选:C . 【点睛】此题主要考查了图形变化类,根据题意得出圆的个数变化规律是解题关键. 18.B 【分析】根据等腰三角形两底角相等结合三角形外角性质用α表示出22A B O ∠,依此类推即可得到结论. 【详解】解:1212B A B B =,11A B O α∠=, 22111122A B O A B O α∴∠=∠=,同理3322211112222A B O A B O αα∠=∠=⨯=,∴44312A B O α∠=,112n n n A B O α-∴∠=, 2020202020192A B O α∴∠=,故选:B . 【点睛】本题考查了等腰三角形两底角相等的性质,和三角形外角性质,图形的变化规律,依次求出每个三角形的一个底角,得到分母成2的指数次幂变化,分子不变的规律是解题的关键. 19.B 【分析】观察发现,第①个图形有正方形的个数为1;第②个图形有正方形的个数为:1+4=5;第③个图形有正方形的个数为:1+4+9=14;…;第n 个图形有正方形的个数为:1+4+9+…+n 2,从而得到答案. 【详解】 解:观察发现:第①个图形含有正方形的个数为1, 第②个图形含有正方形的个数为:1+4=5, 第③个图形含有正方形的个数为:1+4+9=14, …第n 个图形含有正方形的个数为:1+4+9+…+n 2,∴第⑥个图形含有正方形的个数为:1+4+9+16+25+36=91, 故选:B . 【点睛】此题考查了图形的变化规律,解题的关键是仔细观察图形并找到规律,利用规律解决问题. 20.C 【分析】根据等边对等角可得∠AA 1B=∠A=70°,然后根据三角形外角的性质和等边对等角可得∠A 1A 2B 1=12∠AA 1B=702︒=35°,同理可得:∠A 2A 3B 2=12∠A 1A 2B 1=2702︒=17.5︒,∠A 3A 4B 3=12∠A 2A 3B 2=3702︒=8.75︒,找出规律即可得出结论. 【详解】∵1AB A B =,70A ∠=︒ ∴∠AA 1B=∠A=70° ∵1112A B A A = ∴∠A 1A 2B 1=∠A 1 B 1A 2 ∵∠AA 1B=∠A 1A 2B 1+∠A 1 B 1A 2∴∠A 1A 2B 1=12∠AA 1B=702︒=35° 同理可得:∠A 2A 3B 2=12∠A 1A 2B 1=2702︒=17.5︒ ∠A 3A 4B 3=12∠A 2A 3B 2=3702︒=8.75︒ ∴11n n n A A B --∠=1702n -︒故选C . 【点睛】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键. 21.C 【分析】先根据正六边形的性质得出∠1的度数,再根据AD=CD=BC 判断出△ABC 的形状及∠2的度数,求出AB 的长,进而可得出,经过2020次后,即可得出所得到的正六边形的边长. 【详解】∵此六边形是正六边形,∴∠1=180°-120°=60°,AD=CD=BC ,∴△BCD 为等边三角形, ∴BD=12AC , ∴△ABC 是直角三角形又∵BC=12AC , ∴∠2=30°,∴33CD ,同理可得,经过2次后,所得到的正六边形是原正六边形边长的23)倍, ,∴经过2020次后,所得到的正六边形的边长是原正六边形边长的20203)倍. 【点睛】本题考查了正多边形和圆,正多边形内角的性质,直角三角形的判定,含30度角的直角三角形的性质等,能总结出规律是解此题的关键.22.C【分析】设第n(n为正整数)个图形有a n张黑色正方形纸片,根据各图形中黑色正方形纸片张数的变化,可找出变化规律“a n=2n+1”,再代入n=10即可求出结论.【详解】解:设第n(n为正整数)个图形有a n张黑色正方形纸片.观察图形,可知:a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1,…,∴a n=2n+1,∴a10=2×10+1=21.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中黑色正方形纸片张数的变化,找出变化规律“a n=2n+1”是解题的关键.23.D【分析】易得第二个菱形的面积为(12)2,第三个菱形的面积为(12)4,依此类推,第n个菱形的面积为(12)2n-2,把n=4代入即可.【详解】解:已知第一个菱形的面积为1;则第二个菱形的面积为原来的(12)2,第三个菱形的面积为(12)4,依此类推,第n个菱形的面积为(12)2n-2,当n=4时,则第4个菱形的面积为(12)2×4-2=(12)6=164.故选:D.【点睛】本题考查了三角形的中位线定理及矩形、菱形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.24.D【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.25.A【分析】设n个星球之间的路径有a n条(n为正整数,且n≥2),观察图形,根据各图形中星球之间“空间跳跃”的路径的条数的变化,可得出变化规律“a n=12n(n-1)(n为正整数,且n≥2)”,再代入n=10即可求出结论.【详解】解:设n个星球之间的路径有a n条(n为正整数,且n≥2).观察图形,可知:a2=12×2×1=1,a3=12×3×2=3,a4=12×4×3=6,…,∴a n=12n(n-1)(n为正整数,且n≥2),∴a10=12×10×9=45.故选:A.【点睛】本题考查了规律型:图形的变化类,根据各图形中星球之间“空间跳跃”的路径的条数的变化,找出变化规律“a n=12n(n-1)(n为正整数,且n≥2)”是解题的关键.。

中考数学期末规律问题图形变化类汇编(解析版)

中考数学期末规律问题图形变化类汇编(解析版)

中考数学期末规律问题图形变化类汇编(解析版)一、规律问题图形变化类1.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n -2.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的12)后,得图③、④,…,记第n (n≥3)块纸板的周长为P n ,则P n -P n -1等于…( )A .112n - B .3-12nC .1-132n - D .132n -+212n -3.如图,在第一个1ABA ∆中,20B ∠=︒,1AB A B =,在1A B 上取一点C ,延长1AA 到2A ,使得121A A AC =,得到第二个12A A C ∆;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,则第5个三角形中,以点4A 为顶点的等腰三角形的顶角的度数为( )A .170︒B .175︒C .10︒D .5︒4.如图,已知3343111122224,,,AB A B A B A A A B A A A B A A ====,若68A ︒∠=,则11n n n A A B --∠的度数为( )A .682nB .1682n - C .1682n + D .2682n + 5.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A .21nB .21n -C .()211n +-D .52n -6.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 7.下面是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第⑨个这样的图案黑色棋子的个数是( )A .148B .152C .174D .2028.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是( )A .360B .363C .365D .3699.按图示的方式摆放餐桌和椅子,图1中共有6把椅子,图2中共有10把椅子,…,按此规律,则图7中椅子把数是( )A .28B .30C .36D .4210.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y 4x=(x >0)的图象上.则y 1+y 2+…+y 10的值为( )A .10B .6C .2D .711.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .12812.如图,四边形OAA 1B 1是边长为1的正方形,以对角线OA 1为边作第二个正方形OA 1A 2B 2,连接AA 2,得到AA 1A 2;再以对角线OA 2为边作第三个正方形OA 2A 3B 3,连接A 1A 3,得到A 1A 2A 3,再以对角线OA 3为边作第四个正方形OA 2A 4B 4,连接A 2A 4,得到A 2A 3A 4,…,设AA 1A 2,A 1A 2A 3,A 2A 3A 4,…,的面积分别为S 1,S 2,S 3,…,如此下去,则S 2020的值为( )A .202012 B .22018 C .22018+12D .101013.携带着2公斤珍贵月壤的嫦娥五号返回器于2020年12月17日凌晨1时32分,降落在内蒙古市四子王旗,实现了中国版的“空间跳跃”.在科幻电影《银河护卫队》中,星际之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成,如图所示,两个星球之间的路径只有一条,三个星际之间的路径有3条,四个星际之间的路径有6条,...,按此规律,则10个星际之间的路径有( )A .45条B .21条C .42条D .38条14.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……,则正方形A 2020B 2020C 2020D 2020的边长是( )A .(12)2017B .(12)2018C .(3)2019 D .(3)2020 15.把圆形按如图所示的规律拼图案,其中第①个图案中有1个圆形,第②个图案中有5个圆形,第③个图案有11个圆形,第④个图案有19个圆形,…,按此规律排列下去,第7个图案中圆形的个数为( )A .42B .54C .55D .5616.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,…,按此规律,第5个图的蜂巢总数的个数是( )A .61B .62C .63D .6517.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形……按这样的规律下去,第9幅图中正方形正的个数为( )A .180B .204C .285D .38518.如图,已知∠MON=30°,点123......A A A 、、在射线ON 上,点123......B B B 、、在射线OM 上,111OA A B =,12B A OM ⊥,222OA A B =,23B A OM ⊥,以此类推,若11OA =,则66A B 的长为( )A.6 B.152C.32 D.7296419.按如图方式摆放餐桌和椅子:桌子张数1234…n可坐人数6810…n张餐桌可坐的人数为()A.n+5 B.2n+6 C.2n D.2n+420.如图1,已知 AB=AC,D为∠BAC 的平分线上一点,连接 BD、 CD;如图2,已知 AB= AC,D、E为∠BAC的平分线上两点,连接 BD、CD、BE、CE;如图3,已知 AB=AC,D、E、F为∠BAC的平分线上三点,连接BD、CD、BE、CE、 BF、CF;…,依次规律,第 n个图形中全等三角形的对数是()A.n B.2n-1 C.()12n n+D.3(n+1)21.下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片…按此规律排列下去,图⑩中黑色正方形纸片的张数为()A.17 B.19 C.21 D.2322.如图,在坐标系中放置一菱形 OABC ,已知∠ABC =60°,点 B 在 y 轴上,OA =1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60°,连续翻转2019次,点 B 的落点依次为 B 1,B 2,B 3,…,则 B 2 019 的坐标为( )A .(1010,0)B .(1310.5,32) C .(1345, 32) D .(1346,0)23.如图,8AOB ∠=︒,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点O 不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点P 不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P ;…按照这样的方法一直画下去,得到点n P ,若之后就不能再画出符合要求的点1n P +,则n 等于( )A .13B .12C .11D .1024.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B A B ∆,是以1A ,2A ,3A ,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭25.长度相同的木棒按一定规律拼搭图案,第1个需7根木棒,第2个需13根木棒,…,第11个需要木棒的个数为( )A .156B .157C .158D .159【参考答案】***试卷处理标记,请不要删除一、规律问题图形变化类 1.D 【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数. 【详解】 解:由题意得:第一个图形三角形的个数为4×1-3=1个, 第二个图形三角形的个数为4×2-3=5个, 第三个图形三角形的个数为4×3-3=9个, 第四个图形三角形的个数为4×4-3=13个, ……∴第n 个图形三角形的个数为()43n -个; 故选:D . 【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可. 2.A 【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P 1,P 2,P 3,P 4,然后周长相减即可得到规律,进行解答. 【详解】解:P 1=1+1+1=3, P 2=1+1+12=52,P 3=1+1+14×3=114, P4=1+1+14×2+18×3=238, … ∴P 3-P 2=114-52=211=42, P 4-P 3=238-114=311=82, ∴P n -P n -1=n-112, 故答案为:A . 【点睛】本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好. 3.A 【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A 5的度数. 【详解】解:∵在△ABA 1中,∠B=20°,AB=A 1B ,∴∠BA 1A= 1802B︒-∠=80°,∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角,∴∠CA 2A 1=18022BA A ︒∠==40°; 同理可得∠DA 3A 2=20°,∠EA 4A 3=10°,∴∠A n =1802n ︒-,以点A 4为顶点的等腰三角形的底角为∠A 5,则∠A 5=4802︒=5°,∴以点A 4为顶点的等腰三角形的顶角的度数为180°-5°-5°=170°. 故选:A . 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键. 4.B 【分析】根据三角形的外角性质和等腰三角形的性质可以写出前面几个11n n n A A B --∠的度数及其与顶点下标的关系,然后通过类比和不完全归纳法可以得到 11n n n A A B --∠ . 【详解】解:∵116868A AB A B BA A ∠=︒=∴∠=︒,,, ∵11211121112,BA A A A B A B A A B A A ∠=∠+∠=,∴ 121682A AB ︒∠=, 同理可得:23234323686822A A B A A B ︒︒∠=∠=,, ∴111682n n n n A A B ---︒∠=, 故选B . 【点睛】本题考查图形类规律探索,熟练掌握三角形的外角性质、等腰三角形的性质及不完全归纳法的运用是解题关键. 5.C 【分析】前3个图形中小正方形的个数分别是22-1,32-1,42-1,从而可得答案. 【详解】解:第1个图形中小正方形的个数是3=22-1, 第2个图形中小正方形的个数是8=32-1, 第3个图形中小正方形的个数是15=42-1, ……;所以第n 个图形中小正方形的个数是()211n +-. 故选:C . 【点睛】本题考查了图形的规律探求,属于常考题型,由前几个图形中小正方形的个数找到规律是解题的关键. 6.D 【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点; 3条直线相交有1+2=3个交点; 4条直线相交有1+2+3=6个交点; 5条直线相交有1+2+3+4=10个交点; 6条直线相交有1+2+3+4+5=15个交点; …n 条直线相交有1+2+3+4+…+(n-1)=()112n n - 故选:D【点睛】 本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 7.A【分析】 观察各图可知,第①个图案需要黑色棋子的个数为(1+2+3)×2(个),第②个图案需要的个数为[(1+2+3+4)×2+2×1](个),第③个图案需要的个数为[(1+2+3+4+5)×2+2×2](个),第④个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个)…由此可以推出第n 个图案需要的个数为()(){}1231[]222n n +++⋯++⨯+-(个),所以第⑨个图案需要的个数只需将n=9代入即可.【详解】解:由图知第①个图案需要黑色棋子的个数为(1+2+3)×2(个);第②个图案需要的个数为[(1+2+3+4)×2+2×1](个);第③个图案需要的个数为[(1+2+3+4+5)×2+2×2](个);第④个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个);…第n 个图案需要的个数为()(){}1231[]222n n +++⋯++⨯+-(个)∴第⑨个图案需要的个数为[(1+2+3+4+5+6+7+8+9+10+11)×2+2×8=148(个)故选A .【点睛】本题考查了图形的变化.解题的关键是观察各个图形找到它们之间的规律.8.C【分析】观察求出图案中地砖的块数,找到规律再求出黑色的地砖的数量即可.【详解】第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块, 第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n 个图案有黑色与白色地砖共(2n ﹣1)2,其中黑色的有12[(2n ﹣1)2+1],当n =14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365. 故选:C.【点睛】 此题考查图形类规律的探究,有理数的混合运算,根据所给图案总结出图案排列的规律由此进行计算是解题的关键.9.B【分析】观察图形变化,得出n 张餐桌时,椅子数为4n +2把(n 为正整数),代入n =7即可得出结论.【详解】解:1张桌子可以摆放的椅子数为:2+1×4=6,2张桌子可以摆放的椅子数为:2+2×4=10,3张桌子可以摆放的椅子数为:2+3×4=14,…,n 张桌子可以摆放的椅子数为:2+4n ,令n =7,可得2+4×7=30(把).故选:B .【点睛】此题考查图形类规律探究,列式计算,根据图形的排列总结规律并运用解决问题是解题的关键.10.A【分析】先利用等腰直角三角形的性质、反比例函数的解析式分别求出1234,,,y y y y 的值,再归纳类推出一般规律,由此即可得.【详解】如图,分别过点123,,,C C C 作x 轴的垂线,垂足分别为123,,,D D D ,11OA B 是等腰直角三角形,1145A B O ∴∠=︒,11OC D ∴是等腰直角三角形,同理:122233,,AC D A C D 都是等腰直角三角形,11x y ∴=,点111(,)C x y 在反比例函数()40y x x=>的图象上, 114x y ∴=,将11x y =代入114x y =得:214y =,解得12y =或120y =-<(不符题意,舍去),112x y ∴==,点111(,)C x y 是1OB 的中点,111(2,2)B x y ∴,1124OA x =∴=,设12A D a =,则22C D a =,此时2(4,)C a a +,将点2(4,4)C a +代入()40y x x =>得:(4)4a a +=, 解得222a =-或2220a =--<(不符题意,舍去),2222y a ∴==-,同理可得:32322y =-,42423y =-,归纳类推得:221n y n n =--,其中n 为正整数,则1210y y y +++()()()2222232221029=+-+-++ 210=,故选:A .【点睛】本题考查了反比例函数的几何应用、等腰直角三角形的性质等知识点,正确归纳出一般规律是解题关键.11.C【分析】根据三角形的外角性质以及等边三角形的判定和性质得出OA 1=B 1A 1=1,OA 2=B 2A 2=2,OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而得出答案.【详解】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=60°,∵∠MON=30°,∴∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1= A1A2=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,同理;OA3=B3A3=224=,OA4=B4A4=328=,OA5=B5A5=4216=,…,以此类推:=,所以OA7=B7A7=6264故选:C.【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA2=B2A2=2,OA3=B3A3=224=,…进而发现规律是解题的关键.=,OA4=B4A4=32812.B【分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.【详解】解:如图∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=12⨯1×1=12,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=12⨯2×1=1,同理可求:S3=12⨯2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.13.A【分析】设n个星球之间的路径有a n条(n为正整数,且n≥2),观察图形,根据各图形中星球之间“空间跳跃”的路径的条数的变化,可得出变化规律“a n=12n(n-1)(n为正整数,且n≥2)”,再代入n=10即可求出结论.【详解】解:设n个星球之间的路径有a n条(n为正整数,且n≥2).观察图形,可知:a2=12×2×1=1,a3=12×3×2=3,a4=12×4×3=6,…,∴a n=12n(n-1)(n为正整数,且n≥2),∴a10=12×10×9=45.故选:A.【点睛】本题考查了规律型:图形的变化类,根据各图形中星球之间“空间跳跃”的路径的条数的变化,找出变化规律“a n=12n(n-1)(n为正整数,且n≥2)”是解题的关键.14.C【分析】利用正方形的性质结合锐角三角形函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】∵正方形A1B1C1D1的边长为1,∠∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin 30°=12,则B 2C 2=22cos30B E ︒=133⎛= ⎝⎭,同理可得:B 3C 3=2133⎛= ⎝⎭,故正方形A n B n C n D n 的边长是:1n -⎝⎭,则正方形A 2020B 2020C 2020D 2020的边长是:2019⎝⎭,故选C .【点睛】 本题主要考查了正方形的性质以及锐角三角函数,根据已知条件推导出正方形的边长与序号的变化规律是解题的关键.15.C【分析】根据题意找到图案中圆形个数的规律,从而求解【详解】解:第①个图案中有0+12=1个圆形,第②个图案中有1+22=5个圆形,第③个图案有2+32=11个圆形,第④个图案有3+42=19个圆形,第n 个图案有(n -1)+n 2个圆形,∴第7个图案中圆形的个数为:6+72=55故选:C .【点睛】本题考查了规律型:图形的变化类,根据图形中圆形个数的变化找出变化规律是解题的关键.16.A【分析】根据前几个图形,可以写出蜂巢的个数,从而可以发现蜂巢个数的变化规律,进而得到第五个图形中蜂巢总的个数,本题得以解决.【详解】解:由图可得,第一个图有1个蜂巢,第二个图有1+6×1=7个蜂巢,第三个图有1+6×1+6×2=19个蜂巢,…,则第五个图中蜂巢的总数为:1+6×1+6×2+6×3+6×4=61,故选:A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中蜂巢个数的变化规律,求出相应的图形中蜂巢总的个数.17.C【分析】从特殊情况开始,先算出前几幅图中正方形的个数,找出其中的规律,归纳得出一般情况,第n 幅图中正方形个数的规律,于是可算出当n =9时的正方形的个数.【详解】第1幅图中有1个正方形;第2幅图中有1+4=12+22=5个正方形;第3幅图中有1+4+9=11+22+32=14个正方形;第4幅图中有1+4+9+16=12+22+32+42=30个正方形;…第n 幅图中有12+22+32+42+…+n 2个正方形.于是,当n =9时,正方形的个数为:12+22+32+42+52+62+72+82+92=30+25+36+49+64+81=285(个)故选:C【点睛】本题考查了图形的变化规律,利用图形间的联系,得出数字间的运算规律,从而问题解决,体现了由特殊到一般的数学思想.18.C【分析】根据等腰三角形的性质以及平行线的性质,=30MON ∠︒,111OA A B =,得到1=30∠︒,由12B A OM ⊥,得到1OA 的长度,进而得到22122A B B A =,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而得出答案.【详解】∵=30MON ∠︒,111OA A B =,12B A OM ⊥∴1=30∠︒,∴===60︒∠3∠4∠12,∵11OA =,∴111A B =,∴21121A B A A ==,∴22OA =,∵222OA A B =,∴22122A B B A =∵23B A OM ⊥,∴122334////B A B A B A∴1===30︒∠∠6∠7,==90︒∠5∠8∴3323324A B B A OA ===,∴331244A B B A ==,441288A B B A ==,55121616A B B A ==,以此类推:66123232A B B A ==.故选:C .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而发现规律是解题关键.19.D【分析】根据桌子左右总有4把椅子,前后的椅子数是桌子的2倍,表示出n 张桌子时的椅子数目即可.【详解】解:由图可得1张桌子时,有4+2=6把椅子;2张桌子时,有4+2×2=8把椅子;3张桌子时,有4+3×2=10把椅子;4张桌子时,有4+4×2=12把椅子;…n 张桌子时,有(4+n ×2)把椅子.故选:D .【点睛】本题考查了图形的规律性问题;得到不变的量及变化的量与n 的关系是解决本题的关键. 20.C【分析】根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n 个图形中全等三角形的对数.【详解】解:∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .在△ABD 与△ACD 中,AB=AC ,∠BAD=∠CAD ,AD=AD ,∴△ABD ≌△ACD .∴图1中有1对三角形全等;同理图2中,△ABE ≌△ACE ,∴BE=EC ,∵△ABD ≌△ACD .∴BD=CD ,又DE=DE ,∴△BDE ≌△CDE ,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n 个图形中全等三角形的对数是(1)2n n +. 故选:C .【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.21.C【分析】设第n (n 为正整数)个图形有a n 张黑色正方形纸片,根据各图形中黑色正方形纸片张数的变化,可找出变化规律“a n =2n +1”,再代入n =10即可求出结论.【详解】解:设第n (n 为正整数)个图形有a n 张黑色正方形纸片.观察图形,可知:a 1=3=2×1+1,a 2=5=2×2+1,a 3=7=2×3+1,…,∴a n =2n +1,∴a 10=2×10+1=21.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中黑色正方形纸片张数的变化,找出变化规律“a n =2n +1”是解题的关键.22.D【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点3B 向右平移1344(即3364⨯)即可到达点2019B ,根据点3B 的坐标就可求出点2019B 的坐标.【详解】连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故选:D【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.23.C【分析】先观察题目,可知画出的三角形为等腰三角形,可依次算出第一个第二个第三个等腰三角形的底角的度数,发现规律:第n 个等腰三角形的底角度数为(8)n ︒,再根据等腰三角形的底角度数小于90°,即可算出答案.【详解】解:根据题意可得出:∵11223OP PP PP P P === ∴画出的三角形为等腰三角形∵8AOB ∠=︒ ∴18AOB PPO ∠=∠=︒∴121216PPP PP P ∠==︒∴21323132P PP P P P ∠==︒依次推算可发现规律:第n 个等腰三角形的底角度数为(8)n ︒∵等腰三角形的底角度数小于90°∴(8)90n ︒<︒ ∴908n <(n 为正整数) ∴11n =.故选:C .【点睛】本题主要考查规律探索和等腰三角形的性质,知道三角形的外角度数等于其它两个内角和的度数以及等腰三角形的底角小于90°是解题的关键.24.A【分析】设点A 2,A 3,A 4…,A 2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.【详解】解:1(1,1)A 在直线15y x b =+, 45b ∴=, 1455y x ∴=+, 设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2019)y , 则有221455y x =+,331455y x =+,⋯,202020201455y x =+, 又△11OA B ,△122B A B ,△233B A B ,⋯,都是等腰直角三角形, 2122x y y ∴=+,312322x y y y =++,⋯,2020123201920202222x y y y y y =+++⋯++. 将点坐标依次代入直线解析式得到:21112y y =+,3121131222y y y =++=2y ,432y =3y ,⋯,2020201932y y =, 又11y =, 232y ∴=,233()2y =,343()2y =,⋯,201920203()2y =, 故选:A .【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.25.B【分析】分别求出每一个图形的木棒数,然后再找出一般规律求解即可.【详解】解:第1个图形共有7=1×(1+3)+3根木棒,第2个图形共有13=2×(2+3)+3根木棒,第3个图形共有21=3×(3+3)+3根木棒,第4个图形共有31=4×(4+3)+3根木棒,…第n个图形共有n×(n+3)+3根木棒,第11个图形共有11×(11+3)+3=157根木棒,故选:B【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015中考数学真题分类汇编:规律型(图形的变化类)一.选择题(共7小题)1.(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒2.(2015•宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A.231πB.210πC.190πD.171π3.(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 21 B.24 C.27 D. 304.(2015•十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A. 222 B.280 C.286 D. 2925.(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A. 32 B.29 C.28 D. 266.(2015•广西)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A. 160 B.161 C.162 D. 1637.(2015•绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14 B.15 C.16 D. 17二.填空题(共14小题)8.(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)9.(2015•莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是.10.(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒根.11.(2015•福建)观察下列图形的构成规律,依照此规律,第10个图形中共有个“•”.12.(2015•聊城)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.13.(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.14.(2015•舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=.15.(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.16.(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有根小棒.17.(2015•山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)18.(2015•安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.(2015•桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有个点.20.(2015•随州)观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.21.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.三.解答题(共2小题)22.(2015•自贡)观察下表:序号 1 2 3 …图形20.(2015•随州)观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.考点:规律型:图形的变化类.分析:首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.解答:解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.点评:此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.21.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是a,并运用这个公式求得图2中多边形的面积是17.5.考点:规律型:图形的变化类.分析:分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.解答:解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.点评:本题考查了图形的变化类问题,解题的关键是能够仔细读题,找到图形内和图形外格点的数目,难度不大.三.解答题(共2小题)22.(2015•自贡)观察下表:序号 1 2 3 …图形…第n格的“特征多项式”为4nx+n2y;(2)∵第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,∴,解得:x=﹣3;y=2,∴x、y的值分别为﹣3和2.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,发现图形变化的规律,难度不大.23.(2015•六盘水)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:名称及图形几何点数层数三角形数正方形数五边形数六边形数第一层几何点数 1 1 1 1第二层几何点数 2 3 4 5第三层几何点数 3 5 7 9……………第六层几何点数6111621……………第n层几何点数n2n﹣13n﹣24n﹣3请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.考点:规律型:图形的变化类.分析:首先看三角形数,根据前三层的几何点数分别是1、2、3,可得第六层的几何点数是6,第n层的几何点数是n;然后看正方形数,根据前三层的几何点数分别是1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,可得第六层的几何点数是2×6﹣1=11,第n层的几何点数是2n﹣1;再看五边形数,根据前三层的几何点数分别是1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,可得第六层的几何点数是3×6﹣2=16,第n层的几何点数是3n﹣2;最后看六边形数,根据前三层的几何点数分别是1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,可得第六层的几何点数是4×6﹣3=21,第n层的几何点数是4n﹣3,据此解答即可.解答:解:∵前三层三角形的几何点数分别是1、2、3,∴第六层的几何点数是6,第n层的几何点数是n;∵前三层正方形的几何点数分别是:1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,∴第六层的几何点数是:2×6﹣1=11,第n层的几何点数是2n﹣1;∵前三层五边形的几何点数分别是:1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,∴第六层的几何点数是:3×6﹣2=16,第n层的几何点数是3n﹣2;前三层六边形的几何点数分别是:1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,∴第六层的几何点数是:4×6﹣3=21,第n层的几何点数是4n﹣3.名称及图形几何点数层数三角形数正方形数五边形数六边形数第一层几何点数 1 1 1 1第二层几何点数 2 3 4 5第三层几何点数 3 5 7 9……………第六层几何点数 6 11 16 21……………第n层几何点数n 2n﹣1 3n﹣2 4n﹣3故答案为:6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.点评:此题主要考查了图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。

相关文档
最新文档