矿粉和粉煤灰的掺量

合集下载

矿粉分级以及性能介绍

矿粉分级以及性能介绍

矿粉⏹⏹从1969年起,英国、德国等发达国家就开始了超细矿渣粉在混凝土中作为矿物掺合料的应用。

自上世纪90年代起,我国开始了超细矿渣粉的应用研究工作。

2000年,国家标准《用于水泥和混凝土的粒化高炉矿渣粉》GB/T18046—2000正式颁布。

2002年,国家标准《高强、高性能混凝土用矿物外加剂》颁布实施。

在该标准中,正式将超细矿渣粉命名为“矿物掺合料”,纳入混凝土第六组分。

从此,超细矿渣粉作为一个独立的新产品横空出世,并立即被广泛地接受和应用。

1.矿粉的概念⏹磨细矿粉即磨细水淬高炉矿渣粉,又称矿渣微粉,其英文缩写为GGBS 或GGBFS⏹磨细矿粉是以高炉水淬矿渣为主要原料经干燥、粉磨处理而制成的超细粉末材料;是制备高性能水泥和混凝土的优质混合材。

2.矿粉的技术指标⏹矿粉的活性指数是采用标准试验测试确定的,简单的说:矿粉替代50%水泥,拌合制作标准砂浆试件,然后测试砂浆28天强度。

含矿粉砂浆强度与不含矿粉基准砂浆强度比,就是矿粉的活性指数。

⏹常用的S95是一个矿粉等级。

其中…S‟表示矿粉,来源于英文SLAG(矿渣)。

…95‟表示活性指数不小于95%。

⏹标准:S105/95/75,7天活性指数:不小于95、75、55,28天活性指数:不小于105、95、75⏹流动度比:小于85、90、95⏹密度。

2.8g/cm3,比表面积:不小于350m2/kg2.矿粉的技术指标⏹粒化高炉矿渣的质量可用质量系数K得大小来表示:⏹K=(CaO + Al2O3 + MgO)/(SiO2 + MnO + Ti O 2)⏹式中CaO 、Al2O3 、MgO、SiO2 、MnO 、Ti O 2为相应氧化物的重量百分数。

⏹质量系数反应了矿渣中活性组分与低活性和非活性组分之间比值。

质量系数越大,则矿渣的活性越好。

3.矿粉和粉煤灰的区别⏹(1)两者来源不同:粉煤灰来源于热电厂排放的烟气经收尘处理后收集得到的飞灰;而磨细矿粉则是由炼铁高炉排出的熔融态矿渣经水淬(粒化)后再进行干燥、磨细加工而得到的超细粉末。

固体废弃物在预拌砂浆中应用阐述

固体废弃物在预拌砂浆中应用阐述

固体废弃物在预拌砂浆中应用阐述固体废弃物的高效利用是当前国内外受到高度重视的热点,固体废弃物中的粉煤灰、矿粉等应用于预拌混凝土技术已经相当成熟,也被广泛采用。

但是,预拌砂浆在我国尚处于起步阶段,而预拌砂浆的需求量则相当大,仅天津市一年预拌砂浆的需求量为1000万吨,因此,在预拌砂浆中开展固体废弃物的应用和研究,意义重大。

固体废弃物在预拌砂浆中的应用1、矿粉和粉煤灰矿粉和粉煤灰,作为具有活性的掺合料,在水泥混凝土和砂浆中主要用于替代水泥。

在预拌砂浆中,矿粉和粉煤灰具有改善砂浆工作性、延缓凝结时间、提高抗裂性、抗渗性和后期强度等优点。

根据砂浆的品种和强度等级不同,矿渣粉和粉煤灰的掺量可达20%~70%,配合砂浆保水增稠剂,配制的砂浆性能完全符合普通商品砂浆的技术要求。

但是,由于矿粉和I级粉煤灰应用技术比较成熟,已经在预拌混凝土中已经得到大量应用,市场上常常出现供不应求的现象,不宜作为预拌砂浆的主要原料。

在预拌砂浆中应重点应用II级及以下级别的粉煤灰和高钙灰。

预拌砂浆中的某些特种砂浆常用细填料主要为重钙粉,占10~40%。

重钙粉是由优质的石灰石经过粉磨而成,生产过程中需要耗费大量的电能,并带来粉尘污染。

随着石灰石资源的日益短缺和能源的紧张,重钙粉的制造成本不断增加。

粉煤灰作为预拌砂浆的细填料替代重钙粉,不仅可以消除粉煤灰堆积带来的环境污染,减少生产重钙粉的资源和能源消耗,而且粉煤灰具有火山灰活性,可以替代部分水泥,并能提高砂浆的抗开裂能力。

高钙灰应用于水泥混凝土和预拌砂浆,应符合相应规范要求。

高钙灰用于预拌砂浆,不仅改善砂浆工作性,而且可提高强度、降低收缩。

应按规定使用高钙灰,避免其安定性不良的风险。

2、钢渣钢渣是炼钢工业的废渣,其排放量为钢产量的15%左右。

我国钢年产量接近3 亿t,钢渣的年排放量达到5000 万t 以上。

钢渣主要来自金属炉料中各元素被氧化后生成的氧化物、被侵蚀的炉衬料和炉材料、金属炉料带入的杂质和为调整钢材性质而加入的造渣材料。

C30配合比计算案例(C30混凝土配合比设计计算书)

C30配合比计算案例(C30混凝土配合比设计计算书)

一、设计依据普通混凝土配合比设计规程《JGJ55-2011》二、设计目的和要求(1)设计坍落度180±20mm;(2)混凝土设计强度为30MPa°三、材料(1)水泥:P.042.5,28d胶砂抗压强度48.6MPa,安定性合格;(2)砂:II区中砂,细度模数2.6;(3)碎石:最大粒径25mm,连续级配;(4)外加剂:聚竣酸高性能减水剂,固含量12%,掺量1.8%,减水率25%;(5)粉煤灰:F-H级粉煤灰,细度18.3%,需水量比99%;(6)粒化高炉矿渣粉:S95级,流动度比98%,28d活性指数101%;(7)拌和水:饮用水。

四、配合比设计计算(一)计算配制强度(fbu,O)由于缺乏强度标准差统计资料,因此根据《规程》表4.0.2选择强度标准差O为5.0MPa o表4.0.2C25-C45C5O-C55Σ 4.0 5.0 6.0根据公式fcu,02fcu,k+1.645B式中:fcu,0——混凝土试配强度(MPa)fcu,k ----- 设计强度(MPa)6 ----- 标准差,取5试配强度:fcu,0=fcu,k+l∙645σ230+1.645X5238.2(MPa)(二)混凝土水胶比(W/B)(1)确定矿物掺合料掺量应根据《规程》中表3.0.5-1的规定,并考虑混凝土原材料、应用部位和施工工艺等因素来确定矿物掺合料掺量。

表最大掺量(%)采用硅酸盐水泥采用普通硅酸盐水泥≤0.404535粉煤灰>0.404030粒化高炉矿渣≤0.406555粉>0.405545钢渣粉—3020磷渣粉—3020硅灰—1010≤0.406555复合掺合料>0.405545注:1采用其它通用硅酸盐水泥时,宜将水泥混合材掺量20%以上的混合材量计入矿物掺合料;2复合掺合料各组分的掺量不宜超过单掺时的最大掺量;3在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合表中复合掺合料的规定。

粉煤灰和矿粉的双掺技术在混凝土中的应用

粉煤灰和矿粉的双掺技术在混凝土中的应用

粉煤灰和矿粉的双掺技术在混凝土中的应用摘要:近年来,随着我国经济上升式的发展,加快了各类混凝土工程的发展步伐。

将粉煤灰和矿粉生产技术融入混凝土工程,不仅可以发挥双掺技术的优势,同时也能够建造更加优良的基础设施工程,因此本文主要针对混凝土双掺技术的应用做相应概述和探究。

关键词:矿粉和粉煤灰;双掺技术;混凝土;应用引言:混凝土建筑材料,对于建筑界的发展有着重要意义。

目前世界各国都开始朝着节能、环保方向发展,因此对于资源的节约以及资源利用率的提升,提出更加高质的要求。

在建筑工程中提升混凝土使用指标,并掺入矿粉和粉煤灰两种物质,可以就这两种物质对混凝土不同指标所造成的影响进行概述,在节约成本的同时,为自然环境提供更加优质的保护。

与此同时,工程前期设计以及工程后期具体实施环节所需参考依据都须以此为根据。

一、矿粉和粉煤灰双掺技术的优势在以往的混凝土施工过程当中,一般会运用大量的水泥来达到混凝土的性能需求。

但是需要注意的是,水泥存在较差的和易性以及粘聚度,尤其是在夏季施工,受夏天高温影响,混凝土本身所发出的热量不会向外排出,而是游走在混凝土结构内部,最终聚集在混凝土表面,轻则会引发混凝土局部膨胀现象,重则导致混凝土表面发生裂缝。

但是借助混凝土生产技术,可以有效排除水泥所产生的热量,规避混凝土表面出现裂缝问题,同时也能够缩减水泥的用量,节省大量资金。

如果仅仅是在混凝土当中掺入粉煤灰,虽然也能够明显改善混凝土性能,但是带来的弊端却是降低了混凝土的强度,针对此类问题需要实行粉煤灰和矿粉双掺技术,矿粉所具有的水硬性特性可以很好的提升混凝土的火山灰化学反应,增强整体细微颗粒感,良好改善混凝土性能[1]。

但是需要注意的是,将粉煤灰和矿粉融合需要按照一定比例。

两种物质的双掺可以取长补短,提升混凝土和易性,减少混凝土坍落度损失,硬化混凝土结构,提升混凝土密实度和粘结度。

除此之外,改善混凝土前期和后期强度,规避化学腐蚀问题,从而最终获得混凝土良好的质量效果。

混凝土掺合料(矿粉、粉煤灰)介绍

混凝土掺合料(矿粉、粉煤灰)介绍

矿粉矿渣是冶炼生铁的副产品,其主要成分为Cao、、和Mgo以及少量的Feo和硫化物。

应用于水泥混凝土领域的矿渣通常是经高温下水淬或空气急冷工艺而得,急冷后的矿渣呈0.5—5mm的颗粒形状,也称粒化高炉矿渣,内部富含玻璃体,还含有钙铝镁黄长石和少量的硅酸一钙和硅酸二钙,因此具有微弱的自水硬性。

但是当其粒径大于45pm时,矿渣颗粒很难参与到水化反应。

矿粉就是粒化高炉矿渣经过粉磨后的粉体材料,由于其本身兼具有胶凝性和火山灰活性,既可以作为水泥掺合材,也可以经过加工后作为混合材直接掺入混凝土中。

矿粉对于各种收缩的影响仍然存在着较大的争议,已有的研究结果都是基于有限材料在实验室得出的结论,没有深入揭示矿粉对于各种收缩的影响机理。

粉煤灰粉煤灰主要的化学成分是和及,其质量随煤种、煤粉细度、炉膛温度、收尘选粉效率而波动。

大量研究表明,影响粉煤灰质量的主要因素是其化学成分、矿物组成、细度和颗粒级配等,这些因素决定了粉煤灰的物理、力学性能,如密度、比表面积、需水量、28天抗压强度比等。

煤粉经燃烧、冷却的过程中会形成一些晶体,如a一石英、莫来石、磁铁矿、赤铁矿、生石灰、硫酸钙、氧化镁等,其中大部分是惰性的,粉煤灰的活性主要来源于急冷形成的大量非晶态玻璃相。

粉煤灰的颗粒特征赋予了粉煤灰许多优良的效应。

当细小的煤粉掠过炉膛高温区时,会立即燃烧,到炉膛外面受到骤冷将把熔融时因表面张力作用形成的园珠形态保持下来,粉煤灰的这种球形颗粒具有滚珠轴承的效果,赋予粉煤灰以独有的形态减水效应。

粉煤灰颗粒主要有两种,一种是玻璃微珠,一种是碳粒,优质粉煤灰中玻璃微珠是主要的,这种微珠的强度很高,薄壁空心微珠(漂珠)已可承受700MPa的静水压力,实心微珠和高铁微珠的强度更高,因此,粉煤灰颗粒是一种很好的微集料,填充于水泥基体中可提高基体的强度和耐久性,但微集料效应的发挥取决于粉煤灰火山灰活性的发挥程度。

粉煤灰玻璃微珠的结构为:最外层为一玻璃体组成的壳,壳体表面或次表面有一些盐的沉积,接近表面处交错排列着晶相,主要是莫来石,内部则为含有一些小气泡的玻璃质基体,表面玻璃体富钙,内部玻璃体富硅,富钙玻璃体活性高,与水容易质子化,富硅玻璃体不大会参与火山灰反应,主要起微集料作用。

保温砂浆强度与容重随粉煤灰和矿粉掺量变化的研究

保温砂浆强度与容重随粉煤灰和矿粉掺量变化的研究
我 们 也 知 道 , 质 粉 煤 灰 有 明显 的 碱 水 作 用 , 显 著 改 优 能
2 实 验 方 法
2 1 配 合 比 的 确 定 .
采 用 水 胶 比 为 1 2 胶 材 用 量 为 5 0k / :、 0 g m。的 泡
善 砂浆 的和易 性 ;掺 人 矿 粉 代 替水 泥 , 能 降低 水 泥 既
容 重.但 矿粉 易产生 泌水 , 其 与粉 煤 灰共 同掺 人 , 将 能 改善 泌水现 象 , 增加 浆 体 的 粘 聚 性.本 文通 过 实 验 建
立 强 度 与 容 重 的关 系 , 找 出 最 合 适 的保 温 砂 浆 配 比. 寻
先 将 准 确 称 量 的 各 种 粉 状 有 机 物 与 水 泥 、 沫 球 泡 混 合 均 匀 , 后 参 照 GB T1 6 1 1 9 ( 泥 胶 砂 强 然 / 77 — 9 9 水 (
增 长 , 在 矿 粉 掺 量 为 1 、 煤 灰 掺 量 为 2 %时 , 温砂 浆 强 度 相 对 较 高 , 重 相 对 较 低 , 即是 要 找 的平 衡 砂 浆 强 度 但 O 粉 O 保 容 这
与 容 重 矛盾 的最 优 掺 量 . 关 键 词 : 保 温 砂 浆 ; 粉 ; 煤 灰 ; 度 ; 重 矿 粉 强 容 文 献 标 识 码 : A DOI 1 . 9 9 jis . 6 1 9 6 2 1 . 1 0 1 :0 3 6 /.s n 1 7 —6 0 . 0 0 0 . 0
中 图分 类号 : TU5 8 2
商 品砂浆 因其 具有 许 多 独 特 的优 点 , 年来 在 我 近 国得到 了迅速 发展 .保 温砂浆 是商 品砂 浆 的 一个 重要 类 型.随着建 筑 节 能要 求 的不 断 提 高 , 温砂 浆 近 年 保

粉煤灰、矿粉、减水剂的作用

粉煤灰、矿粉、减水剂的作用

大掺量粉煤灰混凝土的作用及其机理分析2010-4-8 15:8【大中小】【打印】【我要纠错】1.粉煤灰的主要作用粉煤灰在混凝土中的主要作用表现在以下几个方面:(1)填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。

(2)对水泥颗粒起物理分散作用,使其分布得更均匀。

当混凝土水胶比较低时,水化缓慢的粉煤灰可以提供水分,是水泥水化更充分。

(3)粉煤灰和富集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用。

(4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利。

(5)粉煤灰高性能混凝土的性能粉煤灰是一种呈玻璃态实心或空心的球状微颗粒,比水泥粒子小得多,比表面积极大,表面光滑致密,其成分主要是活性氧化硅或氧化铝。

掺入混凝土中的粉煤灰主要产生以下几方面影响:1.活性效应:在常温下,由于粉煤灰的水化反应比水泥慢,被粉煤灰取代的那部分水泥的早期强度得不到补偿,所以混凝土早期强度随粉煤灰掺量的增加而降低。

随着时间的推移,粉煤灰中活性部分SiO2和AI2O3与水泥水化生成的Ca(OH)2发生反应,生成大量水化硅酸凝胶。

粉煤灰外部的一些水化产物在成长过程中也会象树根一样伸入颗粒空隙中,填充空隙,破坏界面区Ca(OH)2的择优取向排列,大大改善了界面区,促进了混凝土后期强度的增长。

2.微集料密实填充及颗粒形态效应:均匀分散在混凝土中的粉煤灰颗粒不会大量吸水,不但起着滚珠作用,而且与水泥粒子组成了合理的微级配,减少填充水数量,影响系统的堆积状态,提高堆积密度,具有减水作用,使新拌混凝土工作性优良,硬化混凝土微结构更加均匀密实。

而且,不会发生泌水离析现象,可施工性和抹面性好,抗渗性、抗冻性好。

C30混凝土配合比计算过程

C30混凝土配合比计算过程

C30混凝土配合比计算过程一、设计依据1、普通混凝土配合比设计规程《JGJ55-2011》。

2、施工图纸等相关标准。

二、设计目的和要求1、设计坍落度180±20mm。

2、混凝土设计强度为30MPa。

三、组成材料1、水泥:P.042.5,28d抗压强度47MPa。

2、砂:II区中砂,细度模数2.7。

3、碎石:5~25mm合成级配碎石(5~10mm;10~25mm=30%:70%)。

4、外加剂:聚羧酸高性能减水剂,掺量1.8%,减水率25%。

5、粉煤灰:F-II级粉煤灰。

6、粒化高炉矿渣粉:S95级。

7、拌和水:饮用水。

四、配合比设计计算1、计算配制强度(fcu,0)根据公式 fcu,0 ≥ fcu,k+1.645δ式中:fcu,0——混凝土试配强度(MPa)fcu,k——设计强度(MPa)δ——标准差,取5试配强度 fcu,0 = fcu,k+1.645σ = 30+1.645×5 = 38.2(MPa)2、混凝土水胶比(W/B)W/B = ɑa×fb/(fcu,0+ɑa×ɑb×fb)式中:ɑa,ɑb——回归系数,分别取0.53,0.20,fb——胶凝材料强度。

已知,水泥28d胶砂抗压强度为47.0MPa,【方案一】:粉煤灰掺量为30%,影响系数取0.75,则胶凝材料强度为:47.0×0.75=35.3MPa;【方案二】:矿粉、粉煤灰双掺,各掺20%,影响系数:粉煤灰取0.8矿粉取0.98。

则胶凝材料强度为:47.0×0.8×0.98=36.8MPa;由水胶比公式求得:方案一:W/B=0.53×35.3/(38.2+0.53×0.20×35.3)=0.45。

方案二:W/B=0.53×36.8/(38.2+0.53×0.20×36.8)=0.46。

3、确定用水量碎石最大粒径为25mm,坍落度75~90mm时,查表用水量取210kg,未掺外加剂、坍落度180mm时单位用水量为:(180-90)/20×5+210=232.5kg/m3。

不同标号混凝土水泥、粉煤灰、矿粉、砂、石用量

不同标号混凝土水泥、粉煤灰、矿粉、砂、石用量

不同标号混凝土水泥、粉煤灰、矿粉、砂、石用量不同标号混凝土的水泥、粉煤灰、矿粉、砂、石用量会根据混凝土的强度等级和工程要求而有所不同。

一般情况下,混凝土的配合比可以参考以下比例:
- 水泥:根据混凝土的设计强度等级确定,一般情况下,每立方米混凝土需要200~450千克水泥。

- 粉煤灰:在一些强度等级要求不高的混凝土中,可以适量添加粉煤灰以减少水泥用量。

一般情况下,粉煤灰的使用量为水泥用量的15~30%。

- 矿粉:矿粉是一种细颗粒物料,可以替代部分水泥用量,提高混凝土的工作性能和抗裂性能。

根据具体工程要求,矿粉的使用量一般为水泥用量的5~20%。

- 砂:砂是混凝土中的骨料之一,用于填充水泥和矿粉之间的空隙。

根据混凝土的配合比,砂的使用量一般为水泥用量的2~2.5倍。

- 石:石是混凝土中的骨料之一,用于提供混凝土的强度和承载力。

根据混凝土的配合比,砂的使用量一般为水泥用量的3~4倍。

需要注意的是,以上用量只是一个大致的范围,实际应根据具体的工程要求和实验试验结果进行调整,以达到设计要求。

另外,还要根据原材料的质量及供应情
况进行适当调整。

矿粉以及矿粉+粉煤灰对混凝土性能的影响

矿粉以及矿粉+粉煤灰对混凝土性能的影响

矿粉以及矿粉+粉煤灰对混凝土性能的影响1,矿粉比表面积在430~520m2/kg之间,掺量在30%~40%范围,增强效应表现得最为显著。

2,单掺矿粉会使混凝土的粘聚性提高,凝结时间有所延长,泌水量有增大的迹象,可能对混凝土泵送带来一定的不利影响。

3,矿粉和?级粉煤灰复配配制混凝土,可以充分发挥二者的“优势互补效应”,使混凝土的坍落度增加,和易性和粘聚性变好,泌水也得到了改善,同时混凝土成本可显著降低。

(2)矿粉以及矿粉+粉煤灰对混凝土耐久性的影响1)降低混凝土水化热。

对要求严格控温的大体积混凝土,矿粉和粉煤灰复配是理想的矿物掺合料组合,降低了混凝土的水化热,可以有效地减少混凝土早期温缩裂缝的出现。

2)大幅度提高了混凝土抗渗性能。

3)保证了抗碳化能力。

在达到相同强度的条件下掺矿粉混凝土和普通硅酸盐水泥混凝土具有相同的抗碳化能力。

4)保证了抗冻融能力。

矿粉混凝土和普通硅酸盐水泥混凝土在强度和含气量相同的条件下抗冻融能力基本相同;适当掺加引气剂,适当的含气量和间距系数对提高混凝土的抗冻融能力十分必要。

5)混凝土收缩。

考虑前3d的自收缩,无论是配制c30混凝土,还是配制c50混凝土,采用单掺矿粉,与基准混凝土相比,收缩值均无明显变化。

6)混凝土抗裂性能。

矿粉与粉煤灰复掺改善抗裂性效果优于矿粉单掺。

混凝土早期强度对混凝土早期抗裂性有重要影响,混凝土24h强度越高,混凝土早期越易开裂。

混凝土早期抗裂性与早期强度之间可能存在一个临界值,小于该强度值,混凝土不易开裂,大于该强度值,混凝土容易开裂。

该值与环境条件及约束状态有关。

粉煤灰、矿渣粉及二者复合使用存在的问题尽管粉煤灰与矿渣粉复合使用能够优势互补,但不是随便复合就能够达到应有的目的。

为了更好地发挥二者各自的优势,应选择合适的复合方式和复合比例。

本人根据以往的使用经验认为:最佳方案是?级粉煤灰与比表面积400m2/kg以上的矿渣粉复合,配制低强度等级混凝土时矿渣粉的量大于粉煤灰的量,配制高强度等级混凝土时粉煤灰的量大于矿渣粉的量;其次是?级粉煤灰与350~400m2/kg矿渣粉复合,配制低强度等级混凝土时粉煤灰的量大于矿渣粉的量;配制高强度等级混凝土时矿渣粉的量大于粉煤灰的量;最后是?级粉煤灰与比表面积350~400m2/kg的矿渣粉复合或?级粉煤灰与400m2/kg以上的矿渣粉复合,前者比较适合配制高强度等级混凝土,后者比较适合配制低强度等级混凝土。

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表矿粉粉煤灰是一种常用的混凝土掺合料,其掺量对混凝土性能有着显著的影响。

为了研究矿粉粉煤灰掺量对混凝土的影响,进行了一系列的试验,并总结出了矿粉粉煤灰掺量影响系数表。

本文将介绍这个影响系数表的内容,并分析其中的一些关键信息。

矿粉粉煤灰掺量影响系数表主要包含了矿粉粉煤灰掺量与混凝土性能之间的关系。

表中列出了不同矿粉粉煤灰掺量下混凝土的强度、抗渗性、耐久性等指标的变化情况。

我们来看矿粉粉煤灰掺量对混凝土强度的影响。

根据影响系数表可以看出,随着矿粉粉煤灰掺量的增加,混凝土的抗压强度逐渐提高。

这是因为矿粉粉煤灰中的细颗粒能填充混凝土中的孔隙,增加了混凝土的致密性,从而提高了混凝土的强度。

然而,当矿粉粉煤灰掺量超过一定范围后,混凝土强度的提高趋势会逐渐减缓,甚至出现下降。

这是因为过高的矿粉粉煤灰掺量会导致混凝土的骨料相对减少,影响了混凝土的力学性能。

除了强度,矿粉粉煤灰掺量还对混凝土的抗渗性能有一定影响。

影响系数表显示,随着矿粉粉煤灰掺量的增加,混凝土的渗透系数逐渐降低。

这是因为矿粉粉煤灰中的细颗粒能够填充混凝土中的微孔和毛细孔,减少了混凝土的渗透性。

然而,当矿粉粉煤灰掺量过高时,混凝土的抗渗性能会受到一定的影响。

这是因为过高的矿粉粉煤灰掺量会增加混凝土的孔隙率,降低混凝土的渗透抵抗能力。

矿粉粉煤灰掺量还会对混凝土的耐久性能产生一定影响。

影响系数表显示,适量的矿粉粉煤灰掺量能够提高混凝土的耐久性,如抗硫酸盐侵蚀性能和抗氯离子渗透性能等。

这是因为矿粉粉煤灰中的活性成分可以与混凝土中的游离钙离子反应,生成稳定的胶凝物质,提高混凝土的耐久性。

然而,当矿粉粉煤灰掺量过高时,混凝土的耐久性能可能会下降。

这是因为过高的矿粉粉煤灰掺量会增加混凝土中的孔隙率,降低混凝土的耐久性。

矿粉粉煤灰掺量影响系数表为我们提供了一个参考,帮助我们选择适当的矿粉粉煤灰掺量来改善混凝土性能。

在选用矿粉粉煤灰时,需要根据具体工程的要求和矿粉粉煤灰的性质来确定最佳掺量。

我国参与提出新国际标准提案86项牵头起草国际标准36项

我国参与提出新国际标准提案86项牵头起草国际标准36项

粉煤灰的微集料效应和火山灰效应综合作用的结果。

2.4矿粉和粉煤灰复掺比例对混凝土抗压强度的影响粉煤灰和矿粉以不同比例复掺时,混凝土抗压强度试验结果见表5。

由表5可见,矿粉与粉煤灰复掺时混凝土的抗压强度优于同掺量时单独掺加矿粉或粉煤灰的混凝土;当粉煤灰掺量固定为5%时,随着矿粉取代率的增加,混凝土抗压强度先增大后减小,此时,矿粉取代率最优值为15%,在此基础上,改变粉煤灰掺量,试验结果表明,随粉煤灰掺量的增加,混凝土抗压强度逐渐降低;综上可见,当矿粉取代率为15%、粉煤灰取代率为5%时,混凝土的抗压强度达到最高值。

3结语(1)对于采用蒸汽养护的离心成型混凝土桩,石膏激发剂掺量对混凝土强度、尤其是7d 强度影响较为显著,本研究条件下以2%掺量最优,掺量增加或降低时对混凝土强度均有不同程度的负面影响,生产过程中应严格计量。

(2)矿粉与粉煤灰掺量对混凝土抗压强度亦有较大影响,二者单掺时,随掺合料掺量的增加,混凝土抗压强度均呈现先增大后减小的趋势,当采用15%取代率的矿粉和5%取代率的粉煤灰复掺时,混凝土的抗压强度达到最高值。

参考文献[1]袁泽洋.高强蒸养混凝土中大掺量矿粉的化学激发研究[D ].西安:西安建筑科技大学.2013.[2]张文海,贾会杰,崔志忱,等.C100高强混凝土的配合比设计[J ].中国港湾建设,2018(6):47-50.[3]樊俊江,於林锋,管文,等.预制构件用C100高强混凝土配合比研究[J ].混凝土与水泥制品,2017(10):24-28.[4]蒲心诚,严吴南,王冲,等.100~150MPa 超高强高性能混凝土的配制技术[J ].混凝土与水泥制品,1998(6):24-28.图1矿粉掺量对混凝土强度的影响图2粉煤灰掺量对混凝土强度的影响复合掺合料掺量对混凝土强度影响试验结果表5编号水胶比水泥/(kg ·m -3)矿粉取代率/%粉煤灰取代率/%石膏掺量/%抗压强度/MPa7d 28d 150.28417105 2.090.391.1160.28392155 2.091.593.4170.283681510 2.088.189.7180.283431515 2.087.288.7190.283682052.086.386.8[收稿日期]2018-12-19[作者简介]王策(1978-),女,沈阳人,副教授,研究方向:土木工程。

粉煤灰、矿粉、减水剂的作用

粉煤灰、矿粉、减水剂的作用

大掺量粉煤灰混凝土的作用及其机理分析1.粉煤灰的主要作用粉煤灰在混凝土中的主要作用表现在以下几个方面:(1)填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。

(2)对水泥颗粒起物理分散作用,使其分布得更均匀。

当混凝土水胶比较低时,水化缓慢的粉煤灰可以提供水分,是水泥水化更充分。

(3)粉煤灰和富集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用。

(4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利。

(5)粉煤灰高性能混凝土的性能粉煤灰是一种呈玻璃态实心或空心的球状微颗粒,比水泥粒子小得多,比表面积极大,表面光滑致密,其成分主要是活性氧化硅或氧化铝。

掺入混凝土中的粉煤灰主要产生以下几方面影响:1.活性效应:在常温下,由于粉煤灰的水化反应比水泥慢,被粉煤灰取代的那部分水泥的早期强度得不到补偿,所以混凝土早期强度随粉煤灰掺量的增加而降低。

随着时间的推移,粉煤灰中活性部分SiO2和AI2O3与水泥水化生成的Ca(OH)2发生反应,生成大量水化硅酸凝胶。

粉煤灰外部的一些水化产物在成长过程中也会象树根一样伸入颗粒空隙中,填充空隙,破坏界面区Ca(OH)2的择优取向排列,大大改善了界面区,促进了混凝土后期强度的增长。

2.微集料密实填充及颗粒形态效应:均匀分散在混凝土中的粉煤灰颗粒不会大量吸水,不但起着滚珠作用,而且与水泥粒子组成了合理的微级配,减少填充水数量,影响系统的堆积状态,提高堆积密度,具有减水作用,使新拌混凝土工作性优良,硬化混凝土微结构更加均匀密实。

而且,不会发生泌水离析现象,可施工性和抹面性好,抗渗性、抗冻性好。

3.交互作用:水泥、粉煤灰、外加剂等不同粉料间会产生物理、化学的交互作用。

粉煤灰和矿粉对混凝土性能影响的试验研究

粉煤灰和矿粉对混凝土性能影响的试验研究

鳃 霞 各混 蛩l。混 块含 量l
意 瀛 程霞 竭 ÷ 瘫 霞{ I
模数
% 薯 。 %| |
( k g / m  ̄ )
( k g / m 3 )
经济 的配 合 比¨ 1 1 。
1 原 材料 及试 验 方案
1 . 1 原 材 料 及 其 主 要 性 能
试 验所用原材 料为 : 冀东普 通硅酸盐 4 2 . 5级 水
表 2 粉煤 灰的 试验 结果
| j 一 名称 爱j 囊 - 睨轰 面
阪 。
话牲撩 %
点探 讨 粉 煤 灰与 矿 粉 的最 佳 掺合 比列 , 进 而 确定 最 佳
双掺 比例 对 同一 强 度 等级 混凝 土常 规性 能 的影 响 , 在 保 证 混凝 土 质量 和施工 可 操作 性 的前 提 下 , 获 得较 为
工 程 材 料 与 设 备 器
Eng i n eer i n g Ma t e r i al & Equ i p me nt
粉 煤 灰 和 矿 粉 对 混 凝 土性 能 影 响 的试 验 研 究
武永 志 , 邹 晓侠
( 青 岛 第 一 市 政 工 程 有 限公 司 , 山 东 青 岛 2 6 6 0 0 0 )
中图分类号 : T U 5 2 8 . 2 文 献标 志 码 : B 文章 编 号 : 1 0 0 9 — 7 7 6 7 ( 2 0 1 4 ) 0 2 — 0 1 6 3 — 0 5
Ex p e r i me n t a l I n v e s t i g a t i o n o f Fl y As h a n d Mi n e r a l Po wd e r I n lu f e n c e s o n Co n c r e t e Pe r f o r ma n c e

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表

矿粉粉煤灰掺量影响系数表矿粉粉煤灰掺量影响系数表是描述矿粉粉煤灰掺量对材料性能影响程度的一种表格。

本文将就矿粉粉煤灰掺量与材料性能之间的关系进行探讨,并根据相关研究结果给出一份参考影响系数表。

矿粉粉煤灰是一种常用的水泥掺合料,其加入水泥中可以改善混凝土的各项性能,降低成本,提高可持续性。

然而,矿粉粉煤灰的掺量对混凝土性能的影响是复杂的,需要进行深入的研究。

在研究中,我们选取了常见的混凝土性能指标,包括抗压强度、抗折强度、抗渗性能、收缩性能等,通过大量的试验和数据分析,得出了不同矿粉粉煤灰掺量下这些性能指标的影响系数。

首先是抗压强度。

根据实验结果,我们发现随着矿粉粉煤灰掺量的增加,混凝土的抗压强度会逐渐下降。

这是因为矿粉粉煤灰的颗粒细小、比表面积大,会填充水泥颗粒之间的空隙,导致混凝土的致密度降低,从而降低了抗压强度。

其次是抗折强度。

研究表明,矿粉粉煤灰的掺量对混凝土的抗折强度影响较小。

在一定范围内,适量的矿粉粉煤灰可以填充混凝土中的微裂缝,提高其抗折强度。

但当矿粉粉煤灰掺量过高时,由于其颗粒细小,会增加混凝土的内部孔隙,导致抗折强度下降。

再次是抗渗性能。

矿粉粉煤灰的掺入可以改善混凝土的抗渗性能。

矿粉粉煤灰中的玻璃体和其他活性物质可以填充混凝土中的毛细孔,减少渗透压,提高抗渗能力。

随着矿粉粉煤灰掺量的增加,混凝土的渗透系数逐渐降低。

最后是收缩性能。

矿粉粉煤灰的掺入可以减少混凝土的收缩。

这是因为矿粉粉煤灰中的活性物质可以填充混凝土中的毛细孔,减少水分迁移,降低收缩。

然而,过高的矿粉粉煤灰掺量也会增加混凝土的内部孔隙,导致收缩性能下降。

综合以上实验结果,我们得出了一份矿粉粉煤灰掺量影响系数表,以供工程设计和混凝土施工参考。

在这份表格中,我们将不同矿粉粉煤灰掺量下的抗压强度、抗折强度、抗渗性能、收缩性能等指标的影响程度进行了量化描述,帮助工程师和施工人员更好地选择合适的矿粉粉煤灰掺量,以满足工程要求。

矿粉粉煤灰掺量影响系数表是一份重要的参考工具,可以帮助工程设计和混凝土施工人员更好地了解矿粉粉煤灰掺量对材料性能的影响。

矿粉与粉煤灰双掺技术在混凝土中的应用

矿粉与粉煤灰双掺技术在混凝土中的应用

魏 育 云
摘 要 :从分析矿 粉和粉煤灰 应用现状入手 ,就矿粉 与粉煤 灰的化学成分 、复掺矿粉 与粉煤 灰混凝土 的优 良性能进 行 了
论述 ,并 总结 了复掺矿粉 与粉煤 灰混凝土在施工 中应注意 的问题 ,试验 与实践证 明:该双掺 技术在 降低 成本 、保 护环境 、
提 高混凝 土各 项性能等方面取得 了显著效果 。
· 168 ·
第 36卷 第 27期 2 0 1 0年 9 月
山 西 建 筑
SHANXI ARCHITECrURE
Vd .36 NO.27 Sep. 2010
文 章 编 号 :1009—6825(2010)27—0168—02
矿 粉 与粉 煤 灰 双 掺 技 术在 混 凝 土 中 的应 用
坍落度损失 ,减 少混 凝土的早期开裂现象 ,提高混凝土的耐久性 。 工作性能较好 ,但对 早期 强度有 负 面影 响,单独 掺入 矿粉对 早期
1 现状分 析
强度 的影响 较小 ,但工作 性能不好 。双掺后 可产生 复合效应 ,起
近年来 ,我公司所有 在建或 已交工工 程的混凝土配合 比设计 到优势互补 的作用 。
关键词 :混凝土 ,矿粉 ,粉煤灰 ,耐久性
中图分类号 :TU528
文献标识码 :A
在保证混凝 土质量和耐久性 的前提下 ,降低混 凝土成本 一直 的超细粉末材料 ,矿粉 的质量 稳定 ,因为从炼铁 高 国在 最近 几年 才逐 步重视 矿粉作 为 由于对所制成生铁 的成分有严格 的要 求 ,进 而对炼铁过 程 中的所
挖 。机械方 面 ,由 于我 公 司现有混 凝土罐 泵车磨 损较严 重 ,在施 量低 ,可降低混凝 土水胶 比,掺入矿 粉和粉煤灰 ,可 以增加混凝土

超细矿粉对混凝土各性能的影响

超细矿粉对混凝土各性能的影响

超细矿粉对混凝土各性能的影响1、超细矿粉和粉煤灰复合掺用时对混凝土的强度及工作性的影响。

单掺矿粉一般掺量为30%,如果是大体积混凝土可以控制到50%。

但由于单掺矿粉混凝土粘性变大,不利于施工,因此,一般混凝土搅拌站是将矿粉和粉煤灰双掺使用,粉煤灰的掺量为2 0%左右,矿粉的掺量为20%~30%。

通过双掺可以改善混凝土的许多性能,比如说工作性,因为矿粉的粘性好,可以减少由于单掺粉煤灰而引起的混凝土坍落度损失以及泌水和离析等问题,还可以通过矿粉后期强度的增大来补充由于单掺粉煤灰而引起的混凝土28d强度的降低,起到强度互补的作用。

超细矿粉在混凝土中与粉煤灰共同使用时表现出了十分明显的叠加效应,这方面可以大大减少混凝土中CH晶体的生成数量,另一方面又影响了CH晶体的形貌,对混凝土的结构和性能的发展具有重要影响。

随着龄期的延长,浆体结构日趋均匀和密实,这是浆体高强化的重要原因。

因此,在混凝土中,复合掺入超细矿粉可以极大地改善混凝土的界面粘结强度,更进一步地改善混凝土的性能。

2、超细矿粉对混凝土抗渗性能的影响。

矿粉对混凝土抗渗性的改进主要决定于矿粉的两个效应:(1)水化反应。

加入矿粉可以改善骨料与水泥石过渡区的微观结构,由于在过渡区中Ca(OH)2的定向排列,使得混凝土强度低,而且过渡过区的水灰比较大,缺陷多,开孔的气泡也多,因此抗渗性下降。

当加入矿粉后,矿粉中的活性成份与Ca (OH)2反应生成C—S—H凝胶,使界面的Ca(OH)2晶粒变小,孔隙率也得以明显的下降,微结构更为密实,从而使混凝土的抗渗性提高。

(2)微集料效应。

混凝土是由连续的颗粒堆积而成的,砂子填充石子之间的空隙,水泥填充石子之间的空隙,矿粉再填充水泥之间的空隙,这样就使混凝土孔隙率得到下降,同时也防止了离析、泌水的产生,使混凝土的抗渗性能大幅度地提高。

3、矿粉对混凝土中水泥水化热的影响。

水化热是由水泥水化产生的。

由于混凝土不易散热,导致了混凝土内外温差较大,使混凝土内外产生非线性的温度梯度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)混凝土拌和料和易性得到改善掺加适量的粉煤灰可以改善混凝土拌和料的流动性、粘聚性和保水性,使混凝土拌和料易于泵送、浇筑成型,并可减少坍落度的经时损失。

(2)混凝土的温升降低掺加粉煤灰后可减少水泥用量,且粉煤灰水化放热量很少,从而减少了水化放热量,因此施工时混凝土的温升降低,可明显减少温度裂缝,这对大体积混凝土工程特别有利。

(3)混凝土的耐久性提高由于二次水化作用,混凝土的密实度提高,界面结构得到改善,同时由于二次反应使得易受腐蚀的氢氧化钙数量降低,因此掺加粉煤灰后可提高混凝土的抗渗性和抗硫酸盐腐蚀性和抗镁盐腐蚀性等.同时由于粉煤灰比表面积巨大,吸附能力强,因而粉煤灰颗粒可以吸咐水泥中的碱,并与碱发生反应而消耗其数量。

游离碱数量的减少可以抑制或减少碱集料反应。

通常3既的粉煤灰掺量即可避免碱集料反应。

(4)变形减小粉煤灰混凝土的徐变低于普通混凝土。

粉煤灰的减水效应使得粉煤灰混凝土的干缩及早期塑性千裂与普通混凝土基本一致或略低,但劣质粉煤灰会增加混凝土的干缩。

(5)耐磨性提高粉煤灰的强度和硬度较高,因而粉煤灰混凝土的耐磨性优于普通混凝土。

但混凝土养护不良会导致耐磨性降低。

(6)成本降低掺加粉煤灰在等强度等级的条件下,可以减少水泥用量约10%~15%,因而可降低混凝土的成本。

两者的允许掺量不同:粉煤灰在水泥中的允许掺加量为20-40%,但在混凝土中最大掺量一般不超过35%;磨细矿粉在水泥或混凝土中的掺加量则可达20-70%。

一些欧洲国家甚至允许掺到85%。

两者在混凝土中的掺加方式不同:粉煤灰一般采用“超量”取代水泥方式以保证混凝土强度达标;磨细矿粉则通常采用“等量”取代水泥方式配制混凝土,其强度仍然可以满足设计要求。

1、“单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量:
(a)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为20-30%;
(b)对于地下结构、强度要求中等的混凝土结构,掺量一般为30-50%;
(c)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%;
(d)对于有较高耐久性能要求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达 50-70%。

2、采用“双掺”粉煤灰和矿粉时,由于受粉煤灰掺量和质量波动的影响很大,只能根据上述基本原则,通过具体试验确定各组份正确的掺加量。

粉煤灰与矿粉双掺提高混凝土抗氯离子渗透性
市预拌混凝土协会中国混凝土与水泥制品网[2008-12-22] 摘要:结合工程实例,采用粉煤灰与矿粉双掺,能有效的提高混凝土抗氯离子渗透能力。

关键词:混凝土渗透性氯离子矿物掺合料
1. 引言
氯离子入侵是引起混凝土中钢筋锈蚀的重要原因,往往决定了混凝土结构的使用寿命,是耐久性的重要问题。

因此,国外很多工程采用低水胶比,粉煤灰与硅灰双掺技术来解决此类问题。

但是由于硅灰的价格昂高,而且市场小,故而本公司采用粉煤灰与矿粉双掺解决了混凝土中氯离子渗透的问题。

解决了C30P8混凝土氯离子渗透的问题。

2. 原材料
2.1.1
砂:赣江Ⅱ区中砂,细度2.7;碎石:宜兴产5-25mm连续级配碎石,压碎指标8.0%;外加剂:博特新材料生产JM-Ⅷ高效减水剂,减水率22%;水泥:万豪建材科技生产P.O42.5级;粉煤灰:华锦粉煤灰开发Ⅰ级粉煤灰;矿粉:家港恒昌新型建筑材料生产S95级。

水泥、粉煤灰、矿粉性能指标如下列表格。

表1:水泥性能指标
2.1.2混凝土配合比
从上述结果分析,D方案比较合理。

随着水胶比的降低,矿物掺合料用量增加,可明显降低混凝土的渗透能力。

其原因是:
一. 矿物掺合料效应
⑴矿物掺合料(粉煤灰与矿粉)具有形态效应、微集料效应。

正是由于矿物掺合料具有这些功能作用,改善了混凝土部结构;影响了胶凝材料水化进程,协调混凝土的强度发展,并能有效改善混凝土部界面过渡区结构与性能,因而最终提高混凝土终合性能。

⑵复合化超叠加效应
混凝土是一种多组分复合材料,各组分性能的叠加效应表现得十分明显。

矿粉、粉煤灰等多组分矿物复合在一起,可以充分发挥各自优势,其各自的形态效应、微集料效应、火山灰效应相互作用,可以进一步提高混凝土性能。

⑶密实堆积效应
如前所述,掺加不同粒径和粒度分布矿物掺合粒,可以提高浆体的密实堆积程度,使得胶凝材料水化加快,混凝土孔隙率降低,微观结构变得均匀,产生优良的力学性能和耐久性能。

⑷中心质效应
吴中伟在1958年提出水泥基复合材料的中心质假说。

把不同尺度分散相称为中心质,把连续相称为介质。

各级中心质和介质之间存在相互的效应,称为“中心质效应”混凝土骨料为大中心质,未水化的水泥颗粒和矿物掺合料为次中心质效。

混凝土掺加一定细度的矿物掺合料使水泥石的中心质增多,次中心质之间的间距进一步减少,有利的中心质效应增多,中心质网络骨架得到加强。

二.界面结构的提高
掺入的矿物掺合料的二次水化反应(火山灰反应)消耗了大量的氢氧化钙,减少了氢
氧化钙的含量,并干扰氢氧化钙的结晶,使其氢氧化钙尺寸减少,富集程度和取向程度下降;火山灰反应增加C-S-H凝胶和Aft数量,硬化后混凝土界面过滤层孔隙率降低。

其抗氯离子渗透性能大幅提高工程开始后,双方协作,现场留样,电通量为980C,抗压强度37.6Mpa,抗渗等级8级,符合设计要求。

4.结论
在一定围,高掺粉煤灰和矿粉可有效的减少混凝土氯离子的渗透。

相关文档
最新文档