专题平面几何的四个重要定理
平面几何四大神奇定理

【分析】
【评注】对称变换
12. G是△ABC的重心,以AG为弦作圆切BG于G,延长CG交圆于D。求证:AG2=GC·GD。
【分析】
【评注】平移变换
13. C是直径AB=2的⊙O上一点,P在△ABC内,若PA+PB+PC的最小值是 ,求此时△ABC的面积S。
【分析】
【评注】旋转变换
【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB 于D。
求证: 。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→ (梅氏定理)
DGF截△ACM→ (梅氏定理)
∴ = = =1
【评注】梅氏定理
3.D、E、F分别在△ABC的BC、CA、AB边上,
费马点:已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。(O为费马点)
【分析】将C C',O O',P P',连结OO'、PP'。则△B OO'、△B PP'都是正三角形。
∴OO'=OB,PP'=PB。显然△BO'C'≌△BOC,△BP'C'≌△BPC。
,AD、BE、CF交成△LMN。
求S△LMN。
【分析】
【评注】梅氏定理
4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。
【分析】
【评注】塞瓦定理
5. 已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。
数学奥赛平面几何

《竞赛数学解题研究》之平面几何专题一、平面几何中的一些重要定理:1、梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
2、塞瓦定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则AF 、BE 、CD 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
3、托勒密定理:四边形ABCD 内接于圆的充要条件是CD BC CD AB BD AC ⋅+⋅=⋅4、西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。
5、斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅2226、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆7、共边定理:设ABC ∆和C B A '''∆中有一个边相等,则CA B A ACAB S S C B A ABC ''⋅''⋅='''∆∆举例说明:1、设M 、N 分别是正六边形ABCDEF 的对角线AC 、CE 上的点,且AM:AC=CN:CE=k,如果BMN 三点共线,试求k 。
(IMO23,1982)2、在四边形ABCD 中,ABD ∆、BCD ∆、ABC ∆的面积之比为3:4:1,点M 、N 分别 是AC 、CD 上的点,且AM:AC=CN:CD, 并且BMN 三点共线,求证:M 、N 分别是AC 、 CD 的中点。
个人精心整理!高中数学联赛竞赛平面几何四大定理-及考纲

个人精心整理!高中数学联赛竞赛平面几何四大定理-及考纲多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。
二元一次不等式表示的区域。
三角形的面积公式。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它抽屉原理。
容斥原理。
极端原理。
集1.梅涅劳斯定理出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时,(AD/DB)*(BE/EC )*(CF/FA)=1逆定理证明:证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC ,CE/EA=DC/AG三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/D C)×(DC/AG)=1证明二过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1证明四过三顶点作直线DEF的垂线,AA‘,BB',CC'有AD:DB=AA’:BB' 另外两个类似,三式相乘得1得证。
如百科名片中图。
※推论在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
平面几何四大定理

梅涅劳斯定理简介梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一:过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二:过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。
利用这个逆定理,可以判断三点共线。
证明三:过ABC三点向三边引垂线AA'BB'CC',所以AD:DB=AA':BB',BE:EC=BB':CC',CF:FA=CC':AA'所以(AF/FB)×(BD/DC)×(CE/EA)=1证明四:连接BF。
(AD:DB)〃(BE:EC)〃(CF:FA) =(S△ADF:S△BDF)〃(S △BEF:S△CEF)〃(S△BCF:S△BAF) =(S△ADF:S△BDF)〃(S △BDF:S△CDF)〃(S△CDF:S△ADF) =1此外,用定比分点定义该定理可使其容易理解和记忆:在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
四个重要定理(梅涅劳斯_塞瓦_托勒密_西姆松)

B平面几何中的四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是1=⋅⋅RBARQA CQ PC BP 。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1、设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF 2ED AE =。
【分析】CEF 截△ABD→1FABFCB DC ED AE =⋅⋅(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2、过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
求证:1FACFEA BE =+。
【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM→1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1【评注】梅氏定理3、D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △【分析】【评注】梅氏定理4、以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5、已知△ABC 中,∠B=2∠C 。
高中平面几何常用定理总结

(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2.射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b ma -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:Cb Bc A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7.余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11.弦切角定理:弦切角等于夹弧所对的圆周角.12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.14.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE 交AB于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r r r r r r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA=1. 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB 分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC 的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC 的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q 两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N 点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.。
初中平面几何重要定理汇总

初中平面几何重要定理汇总1、勾股定理(毕达哥拉斯定理)(直角三角形的两直角边分别是a、b,斜边是c;则a*a+b*b=c*c)2、射影定理(欧几里得定理)(直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC 中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC , (3)(AC)^2;=CD·BC 。
等积式(4)ABXAC=BCXAD(可用面积来证明))3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
平面几何的几个重要定理

练习 1.如图 2,P 是正△ABC 外接圆的劣弧B»C 上
任一点(不与 B、C 重合),求证:PA=PB+PC.
练习 2.(第 21 届全苏数学竞赛) 已知正七边形 A1A2A3A4A5A6A7 , 求证: 1 1 1 .
A1 A2 A1 A3 A1 A4
平面几何的ABC的BC、CA、AB 边 上 的 点 , 则
AP、BQ、CR 三线共点的充要条件是:
平面几何──平面几何的几个重要定理
平面几何是培养严密推理能力的很好数学分支,且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、向量法等许多证法,这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题.
平面几何的知识竞赛要求:三角形的边角不等关系;面积 及等积变换;三角形的心(内心、外心、垂心、重心)及其性 质; 四个重要定理;几个重要的极值:到三角形三顶点距离之 和最小的点--费马点,到三角形三顶点距离的平方和最小的点 --重心,三角形内到三边距离之积最大的点-----重心;简单的 等周问题:
BP PC
CQ QA
AR RB
1.
A
R M
Q
B
PC
应用
西姆松
定理
西姆松定理应用
.
.
.
.
.
.
.
.
.
.
;特斯拉电池 特斯拉电池
平面几何四大定理

平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏成)△ ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充妥条件是— = loPC QA RB室瓦(Ccva)定理(塞瓦点)A ABC 的三边BC、CA、AB 上有点P、Q、R,则AP、BQ、CR共点的充妥条件是BP CQ ARPC QA RBlo托勒密(Ptolemy)定理四边彩的两对边乘积之和等于其对角线乘积的充妾条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充妄条件是该点落在三角形的外接网上。
例题:1.设AD是二ABC的边BC上的中线,直线XF交AD于F。
a. AE 2AF求'正: LC = 0ED FB【分析】CEF —— = 1 (梅氏定理)ED CB FA【评注】也叮以添加辅助线证明:过A、B、D之一作CF的平行践。
2.过^ABC的重心G的直经分别交AB、AC于E、F,交CB word于Po求证: BE CF —+ —EA FA【分析】连结异延长AG交BC于M,则M为BC的中点Oc 止BE AG DEG 裁zlABM— --------------EA GMCF AGPGF^AACM^--—FA Of 黑=1 (梅氏定理)U D罪=1 (梅氏定理)DC.BE 十CF _GM (DB + DC)_GM 2MD_[ EA+ FA AGMD 2GM MD~ 【评注】梅氏定理3.D、E、F分别在A ABC的BC、CA、AB边上,RD AF CF= 人,AD、BE、CF 交成ALMNoDC FB EA求S_LM*【分析】【评注】梅氏定理4. 以AABC各边为底边向外作相似的等膝zLBCE、ACAF.AABGo求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知ZiABC 中,ZB=2ZCo 求证:AC2=AB2+AB - BCo【分析】过A作BC的平行线交A ABC的外接圆于D,连结BPo 则CD=DA=AB, AC=BDo由,七勒密定理,AC - BP=AD - BC+CD - ABo【评注】托勒密定理6.已知正七边形A|A2A5A4A S A6A7O求证:+—!—o (第21届全苏数学竞赛)A | A 2 A j A j A]Aq【分析】【评注】托勒密定理7. AABC的BC边上的商AD的延长线交外接阅于P,作PE1AB于E,延长ED交AC延长残于F。
专题 平面几何的四个重要定理

竞赛专题讲座06-平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是。
塞瓦(Ceva)定理(塞瓦点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1.设AD是△ABC的边BC上的中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A 1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
高中数学竞赛平面几何中的几个重要定理

. 证明:运用面积比可得. 根据等比定理有
, 所以.同理可得,. 三式相乘得. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还 是“等底”,这样就可以产生出“边之比”.
又因为Q/PF =PQ/F/,即Q/PF =MQ/F/.所以有
MDF/ =MQ/F/.
这说明Q/、D、F/、M四点共圆,即得MF/Q/ =Q/DM.
因为MF/Q/ =MFP,所以MFP =Q/DM.而MFP =EDM,所以EDM =Q/DM.
这说明点Q与点Q/重合,即得PM = MQ.
此定理还可用解析法来证明: 想法:设法证明直线DE和CF在x轴上的截距互为相反数. 证:以AB所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标
பைடு நூலகம்
上.则由,得,这说明A、B、C、D四点共圆.
证法2(构造转移法)
延长DA到A/,延长DB到B/,使A、B、B/、A/四点共圆.延长DC到
C/,使得B、C、C/、B/四点共圆.(如果能证明A/、B/、C/共线,则命
题获证)
那么,据圆幂定理知A、C、C/、A/四点也 Image
共圆.
因此,,.
可得 .
另一方面,,即.
3.梅涅劳斯定理及其证明
G
定理:一条直线与ABC的三边AB、BC、CA所在直线分别交于点D、 E、F,且D、E、F均不是ABC的顶点,则有
.
证明:如图,过点C作AB的平行线,交EF于点G.
平面几何中几个重要定理的证明

证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得
.
所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.
平面几何等几个重要定理

1.萊莫恩(Lemoine)線:設三角形ABC的∠A的外角平分線與BC的延長線交於P,∠B的平分線與AC交於Q,∠C的平分線和AB交於R。
求證P、Q、R三點共線。
註:直線PQR稱為三角形ABC的萊莫恩(Lemoine)線。
2.戴沙格定理:設三角形ABC和A'B'C'對應頂點的連線AA'、BB'、CC'交於一點S,這時如果對應邊BC和BC、CA和CA、AB和AB(或它們的延長線)相交,則它們的交點D、E、F在同直線上。
註:戴沙格定理是射影幾何中等一個重要定理。
3.牛頓定理:設四邊形ABCD的一組對邊AB和CD的延長線交於點E,另一組對邊AD和BC的延長線交於F,則AC中點L、BD中點M及EF中點N三點共線。
註:直線LMN稱為四方形ABCD的牛頓線。
4.斯特瓦爾特定理:設P為三角形ABC的邊BC上一點,且BP:PC=m:n,則有 nAB2 + m AC2 =(n+m)AP2 + mn BC2/(m+n)。
註:1.當m=n時,即P是BC的中點時,可得AB2 + m AC2 = 2( AP2 + BP2),此即三角形的中線定理,亦稱巴布斯定理。
2.當AP為三角形ABC中∠A的平分線時,則由角平線的性質得m/n=AB/AC。
此時BP =ac/(b+c),CP=ab/(b+c)。
所以AP2=4bcp(p-a)/(b+c)2。
這公式亦可用sinA/2,及三角形面積公式得到。
5.在三角形ABC中,設c>b,AD是∠A的平分線,E為BC上一點且BE=CD。
求證:AE2-AD2=(c-b)2。
6.設G為三角形的重心,M是平面上任意一點,求證:MA2+MB2+MC2=GA2+GB2+GC2+3MG2。
7.在三角形ABC的邊BC上任取一點D,設ADB和ADC的角平分線分別交AB、AC於E和E,求證AD、BE、CF交於一點。
8.已知AD是三角形ABC的邊BC上等高,P為AD上任意一點,直線BP、CP分別交AC、AB於E、F,求證∠FDA=∠ADE。
平面几何常用定理

11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半
28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则S一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
平面几何的几个重要的定理

证:在 EBC 中,作 B 的平分线BH贝U: EBCACKHBCACE HBC HCB ACEHCB 90即:BH CE作BC 上的高EP ,贝U: CK EP对于ACK 和三点D 、 E 、 F 依梅涅劳斯定理有: CD 胆 KF i DA EKFCKF__ EK CK FC — AE AC EP BP BK AC BC BE即KF _ BK FC _ BE依分比定理有: KF _ BKKC _ KE平面几何的几个重要的定理一、梅涅劳斯定理:定理1若直线I 不经过 ABC 的顶点,并且与 的延长线分别交于 P 、Q 、R ,贝VBP CQ AR 1PC QA RB证:设h A 、h B 、h C 分别是A 、B 、C 到直线I 的垂线的长度,贝y : BP CQ AR h B h e h A , 1PC QA RB h C h A h B注:此定理常运用求证三角形相似的过程中的线段成比例的条件;在AK 上, D 是AC 的中点, F 是DE 与CK 的交点,证明: BF // CE例1:若直角 ABC 中,CK 是斜边上的高, CE 是 ACK 的平分线, E 点ABC 的三边BC 、CA 、AB 或它们EBC 为等腰三角形FKB CKE BF //CEA 1 C 1 A 1 D 1B 1C 1 B 1D 1【练习1从点K 引四条直线,另两条直 AC 和 A 1 > B 1> C 1> D 1,试证: --BC线分别交这四条直线于 A 、B 、C 、DAD BD依梅涅劳斯定理可知 A 1> B 1> 6三点共线; .下载可编辑.CA 、AB 上或它们的延长线上的P 、Q 、R 三点中,位于 ABC 边上的点的个数为 0或2,这时若 聖PC 定理2:设P 、Q 、R 分别是 ABC 的三边BC 、 三点,并且CQ AR QA RB1,求证:P 、Q 、R 三点共线;证:设直线PQ 与直线AB 交于R ',于是由定理BP CQ AR ' PC QA R ' B又 BP CQ AR PC QA RB由于在同一直线上的 ABC 边上的点的个数也为 0或2,AR AR 1,贝 U : - L =R B RBP 、Q 、R '三点中,位于因此R 与R '或者同在AB 线段上,或者同在 AB 的延长线上;若R 与R '同在AB 线段上,则R 与R '必定重合,不然的话, 设AR AR ',AR AR 'BR BR '这时AB AR AB AR ',即卩BR BR ',于是可得AR AR 这与 =——T 矛盾BR BR 类似地可证得当 R 与R'同在AB 的延长线上时, 综上可得:P 、Q 、R 三点共线;注:此定理常用于证明三点共线的问题,且常需要多次使用R 与R 也重合再相乘;例2点P 位于 ABC 的外接圆上;A 1>C 1是从点P 向BC 、CA 、AB 引的垂线的垂足,证明点A 1> B 1> BA 1 BP cos PBC CA 1 CP cos PCB CB 1 CP cos PCA AB 1 AP cos PAC AC 1 AP cos PABC i 共线;证:易得:PB cos PBABC 1将上面三条式子相乘,且 PAC PBC , PAB PCB , BA 1 CB 1 AC 1—1 , CA [ AB 1 BC 1PCAPBA 180可得【练习4在一条直线上取点E 、C 、B 、F 、D ,记直线AB 和ED ,【练习2】设不等腰 ABC 的内切圆在三边 BC 、CA 、AB 上的切点分别为 D 、E 、F ,则EF 与BC , FD 与CA ,DE与AB 的交点 X 、Y 、Z 在同一条 直线上;【练习3】已知直线 AA i ,BB 1,CC i 相交于0,直线AB 和 A 1B 1的交点为 C 2,直线 BC 与B 1C 1的交点是 A 2,直 线AC 与A i C i 的交点是B 2,试证:A 2、B 2、C 2三点共线;CD 和AF ,CD 和AF ,EF 和BC 的交点依次为 L 、M 、N ,证明:L 、M 、N 共线练习1的证明证:若AD // A 1D 1,结论显然成立; 若AD 与A 1 D 1相交与点AD LD LD BDLD j A 1K A 1D 1 AK BKBQ B 1K LD 1 将上面四条式子相乘可即:也:如 BC BD A 1C 1B 1C 1L ,则把梅涅劳斯定理分 LC AK A 1C 1 AC A 1K 得.AD 得: -ACA 1 D 1B 1 D 1LC 1别用于 A 1AL 和B 1BL 可得: BCLC L B 1KB 1C 1 LC BK 1BC A 1C 1 BD A 1D 1B 1D 1 B 1C 1证:ABC 被直线 XFE 所截,由定理 1可得:BXCE XCEA 又 AE AF 代人上式可得: BX FB XC CECY DC AZ EA同理可得: -YA AF ZBBD将上面三条式子相乘可得:BX 得: CY AZ d1XC YA ZB又 X 、 Y 、 Z 都不在 ABC 的边上 .,由定理 2可得 练习2的证明 X 、YAF FBZ 三点共线练习3的证明证:设A 2、B 2、C 2分别是直线 BC 和B 1C 1,对所得的三角形和在它 C 1 ,A 2 ),OAC 和(A 1, AA 1 OB 1 BC 2 1 AC? AC 和 A 1C 1, 们边上的点:OAB 和(A" C 1,B 2)应用梅涅劳斯定理有: OC 1 BB 1 CA 2 . OA CC 1 OB 1 BA 2 可得:B C 2 A B 2AC 2 CB 2 由梅涅劳斯定理可知 A 2 , B 2 ,C 2共线 AB 和A 1B 1的交点, B 1 ,C 2 ),OBC 和(B“ i OA 1 BB 1 BB 1 CA 2 将上面的二条式子相乘 1 AA 1 CA 2BA 2 1练习4的证明 CC 1 AB 2 i OC 1 CB 2 证:记直线 EF 和CD ,EF 和AB ,AB 和CD 的交点分别为 U 、V 、W ,对 UVW ,应用梅 涅劳斯定理于五组三元 点(L,D,E ),( A,M ,F ),(B,C,N ),( A,C,E ),( B,D,F ),则有UE VL WD VE WL UD WA UC VE VA WC UE,VA UF WM 1WA VF YM ,WB UD VF 1VB WD UF,UN WC VB1VN UC WB将上面五条式子相乘可得益晋赭1, 点L,M ,N 共线平面几何的几个重要定理塞瓦定理:设P 、Q 、R 分别是 ABC 的 BC 的充要条件是:聖3塑1PC QA RB------ 塞瓦定理CA 、AB 边上的点,则AP 、BQ 、CR 三线共点BMPACP SCMPSBCMSABMSACMSBCM以上三式相乘,得:C2竺=iPC QA RB证:先证必要性:设AP、BQ、CR相交于点M,贝BP S ABP S BMP S ABM PC S ACP S CMP S ACM同理:BQAARRBBP CQ AR再证充分性:若 ------------ 1,设AP与BQ相交于M,且直线CM交AB于R,PC QA RB由塞瓦定理有:圧竺翌1,PC QA R B于是:竺=纯R B RB因为R和R都在线段AB上,所以R必与R重合,故AP、BQ、CR相交于一点点M; 例1:证明:三角形的中线交于一点;证明:记ABC的中线AA,, BB,, CC,,我们只须证明型-BA1 1C, B A,C B, A而显然有:AC, C, B, BA, A1C,CB1B, AAC, BA, CB,即 1 1 1 1成立,ABC父于一点;C, B A,C B, A【练习1】证明:三角形的角平分线交于一点;【练习2】证明:锐角三角形的高交于一点;例2:在锐角ABC中,角C的平分线交于AB于L,从L作边AC和BC的垂线,垂足分别是M和N,设AN和BM的交点是P,证明:CP AB又 MC 即要证AMLAKCAM AL A K ACBNLBKCBK BC NB BL即要证AC 匹1BL 证:作CK AB下证CK 、BM 、AN 三线共点,且为P 点, 要证CK 、BM 、AN 三线共点,依塞瓦定理AM CN BK ,即要证:-1MC NB AK CN AM BK A K NBBBC BL FDA ,AD BC 故MN //BC ,可得 AME AM CDAD 、 CDE , Af ,于是AMBDFANF AE CD “ ,AN CECF 共点于P ,根据塞瓦定理可得:-BDDCAE AN CE ,BDBE、 AF BD BF CE AF , 1EA FBAE CD CE AM AN EDAAF BD BF FDA【练习创已知 CAN BCMABC 外有三点M 、N 、R ,且BAR ,CBM ABR , ACN ,证明:AM 、BN 、CR 三线共点;依三角形的角平分线定 理可知:昱ACCK 、BM 、AN 三线共点,且为P 点 CP AB例3.设AD 是 ABC 的高,且D 在BC 边上,若P 是AD 上任一点,BP 、CP 分别与AC 、 AB 交于 E 和 F ,贝U EDA = FDA证:过A 作AD 的垂线,与DE 、DF 的延长线分别 交于M 、N 。
四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)

P 、Q R ,则P 、Q R 共线的充要条件是聖CQ ARj 。
PC QA RBBP CQ AR PC QA RB _ °平面几何中的四个重要定理梅涅劳斯(Menelaus )定理(梅氏线)△ABC 的三边BC CA AB 或其延长线上有点塞瓦(Ceva )定理(塞瓦点)△ABC 的三边 BC CA AB 上有点 P 、Q R ,贝U AP 、BQ CR 共点的充要条件是 托勒密(Ptolemy )定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson )定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 圆上。
例题:PA 1设AD是MBC的边BC上的中线,直线CF交AD于F。
求证:AE 2AFED。
AE DC RF【分析】CEF截△ARCH — .— .— =1 (梅氏定理)ED CR FA【评注】也可以添加辅助线证明:过A、R、D之一作CF的平行线。
2、过△ARC的重心G的直线分别交AB AC于E、F,交CR于D。
RE CF=1。
求证:EA FADEG截A ARM H REEAAGGMMDDR(梅氏定理)DGF截△ACM H =1 (梅氏定理)FA GM DCRE CF=GM (DR DC)=GM2MDEA FA AG MD 2GM MD【评注】梅氏定理3、D E、F分别在A ARC的RC CA AR边上,RD AFDC FRCEEAAD RE、CF交成△ LMN 求S A LM N O【分析】【评注】梅氏定理4、以A ARC各边为底边向外作相似的等腰A RCE A CAF A ARG 求证:AE、RF、CG相交【分析】连结并延长AG交RC于M,则M为RC的中点。
FLEM N【评注】塞瓦定理5、已知△ABC 中,/ B=2/ G 求证:AC^AB+ABBCo【分析】过A 作BC 的平行线交△ABC 的外接圆于D,连结BD 贝 U CD=DA=AB AC=BD由托勒密定理,AC BD=ADBC+CDAB【评注】托勒密定理求证:1 1 1A !A 2=A !A 3 A !A 4。
平面几何中的几个重要定理

平面几何中的几个重要定理自欧几里得的《几何原本》问世以来,初等几何以其新奇、美妙、丰富、完美的内容和形式引发了历代数学家们浓厚的兴趣.许多杰出的人物为了探索几何学中的奥秘而奉献了毕生的精力,他们发现了一个又一个新的定理,推动了几何学的迅速发展.为了纪念他们,人们以他们的名字来命名他们所获得的重要成果.这些优秀成果如同璀璨的明珠照亮了几何学的历程.这里我们介绍几何学中的几个重要定理以及它们在数学竞赛解题中的应用。
一、塞瓦定理塞瓦(G .Ceva 1647—1743),意大利著名数学家.塞瓦定理 设为三边所在直线外一点,连接分别和的边或三边的S ABC ∆CS BS AS ,,ABC ∆延长线交于(如图1),则.R Q P ,,1=⋅⋅RBARQA CQ PC BP 证明 (面积法)考虑到△ABS 与△ACS 有公共底边AS ,因此它们面积之比等于分别从顶点B 、C 向底边AS所引垂线长的比,而这个比又等于BP 与PC 之比,所以有P174同理可得三式相乘,即得··=··=1ABCSPQRBACSPQR1图与塞瓦定理同样重要的还有下面的定理.塞瓦定理逆定理 设为的边或三边的延长线上的三点(都在三边R Q P ,,ABC ∆R Q P ,,上或只有其中之一在边上),如果有,则三直线交于一点或互相平行. 1=⋅⋅RBARQA CQ PC BP CR BQ AP ,, 证明 因三点P 、Q 、R 中必有一点在三角形的边上,不妨假定P 点在BC 边上。
若BQ 与CR 相交,设交点为S ,又设AS 和BC 的交点为P’,由塞瓦定理,应有··=1与已知条件中的式子比较,得=但由于点P 和P’同在BC 边上,所以P 和P ’重合,即三直线AP 、BQ 、CQ 交于一点。
P175若BQ 与CR 平行,则=.把它代入已知条件的式子中,**=1,RB AB QC AC PC BP QA CQ QCAC∴;BQ//PA 。
平面几何四大定理

平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC得三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线得充要条件就是.塞瓦(Ceva)定理(塞瓦点)△ABC得三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点得充要条件就是。
托勒密(Ptolemy)定理四边形得两对边乘积之与等于其对角线乘积得充要条件就是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形得三边所引垂线得垂足共线得充要条件就是该点落在三角形得外接圆上。
例题:1.设AD就是△ABC得边BC上得中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作C F得平行线。
2.过△ABC得重心G得直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC得中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3.D、E、F分别在△ABC得BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似得等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC得平行线交△ABC得外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7.求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC得BC边上得高AD得延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F.求证:BC·EF=BF·CE+BE·CF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题平面几何的四个重
要定理
SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
竞赛专题讲座06
-平面几何四个重要定理
四个重要定理:
梅涅劳斯(Menelaus)定理(梅氏线)
△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、
Q、R共线的充要条件是。
塞瓦(Ceva)定理(塞瓦点)
△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点
的充要条件是。
托勒密(Ptolemy)定理
四边形的两对边乘积之和等于其对角线乘积的充要条件是该
四边形内接于一圆。
西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是
该点落在三角形的外接圆上。
例题:
1.设AD是△ABC的边BC上的中线,直线CF交AD于F。
求
证:。
【分析】CEF截△ABD→(梅氏定理)
【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2.过△ABC的重心G的直线分别交AB、AC于E、F,
交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的
中点。
DEG截△ABM→(梅氏定理)
DGF截△ACM→(梅氏定理)
∴===1
【评注】梅氏定理
3. D、E、F分别在△ABC的BC、CA、AB边上,
,AD、BE、CF交成△LMN。
求S△LMN。
【分析】
【评注】梅氏定理
4.以△ABC各边为底边向外作相似的
等腰△BCE、△CAF、△ABG。
求证:AE、
BF、CG相交于一点。
【分析】
【评注】塞瓦定理
5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则
CD=DA=AB,AC=BD。
由托勒密定理,
AC·BD=AD·BC+CD·AB。
【评注】托勒密定理
6.已知正七边形A 1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)
【分析】
【评注】托勒密定理
7.△ABC的BC边上的高AD的延长线交
外接圆于P,作PE⊥AB于E,延长ED交
AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
【分析】
【评注】西姆松定理(西姆松线)
8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的
比为AM:AC=CN:CE=k,且B、M、N共
线。
求k。
(23-IMO-5)
【分析】
【评注】面积法
9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、
R b、R c表示O到A、B、C的距离。
求证:(1)a·R a≥b·d b+c·d c;
(2) a·R a≥c·d b+b·d c;
(3) R a+R b+R c≥2(d a+d b+d c)。
【分析】
【评注】面积法
10.△ABC中,H、G、O分别为垂
心、重心、外心。
求证:H、G、O三点共线,且
HG=2GO。
(欧拉线)
【分析】
【评注】同一法
11.△ABC中,AB=AC,AD⊥BC
于D,BM、BN三等分∠ABC,与
AD相交于M、N,延长CM交AB
于E。
求证:MB//NE。
【分析】
【评注】对称变换
12.G是△ABC的重心,以AG
为弦作圆切BG于G,延长CG
交圆于D。
求证:AG2=GC·GD。
【分析】
【评注】平移变换
13.C是直径AB=2的⊙O上一点,P在△ABC内,若
PA+PB+PC的最小值是,求此时△ABC的面积S。
【分析】
【评注】旋转变换
费马点:
已知O是△ABC内一点,
∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求
证:PA+PB+PC≥OA+OB+OC。
(O为费马点)
【分析】将C C‘,O O’, P P‘,连结OO’、PP‘。
则△B OO’、△B PP‘都是正三角形。
∴OO’=OB,PP‘=PB。
显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。
由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。
∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。
14.(95全国竞赛) 菱形ABCD的内切圆O与各边
分别交于E、F、G、H,在弧EF和弧GH上分别作
⊙O的切线交AB、BC、CD、DA分别于M、N、P、
Q。
求证:MQ//NP。
【分析】由AB∥CD知:要证MQ∥NP,只需证
∠AMQ=∠CPN,
结合∠A=∠C知,只需证
△AMQ∽△CPN
←,AM·CN=AQ·CP。
连结AC、BD,其交点为内切圆心O。
设MN
与⊙O切于K,连结OE、OM、OK、ON、OF。
记∠ABO=φ,∠MOK=α,∠KON=β,则
∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。
∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α
∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM
又∠OCN=∠MAO,∴△OCN∽△MAO,于是,
∴AM·CN=AO·CO
同理,AQ·CP=AO·CO。
【评注】
15.(96全国竞赛)⊙O1和⊙O2与ΔABC的三边所在直线
都相切,E、F、G、H为切点,EG、FH的延长线交于
P。
求证:PA⊥BC。
【分析】
【评注】
16.(99全国竞赛)如图,在四边形ABCD中,对角
线AC平分∠B AD。
在CD上取一点E,BE与AC相
交于F,延长DF交BC于G。
求证:
∠GAC=∠EAC。
证明:连结BD交AC于H。
对△BCD
用塞瓦定理,可得
因为AH是∠BAD的角平分线,由角
平分线定理,
可得,故。
过C作AB的平行线交AG的延长线于I,过C作AD的平行线交AE的延长线于J。
则,
所以,从而CI=CJ。
又因为CI//AB,CJ//AD,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ。
因此,△ACI≌△ACJ,从而∠IAC=∠JAC,即∠GAC=∠EAC。
已知AB=AD,BC=DC,AC与BD交于O,过O的任
意两条直线EF和GH与四边形ABCD的四边交于
E、F、G、H。
连结GF、EH,分别交BD于M、N。
求证:OM=ON。
(5届CMO)
证明:作△EOH△E’OH‘,则只需证
E’、M、H‘共线,即E’H‘、BO、GF三线共
点。
记∠BOG=α,∠GOE’=β。
连结E‘F交BO于K。
只需证=1(Ceva 逆定理)。
===1
注:筝形:一条对角线垂直平分另一条对角线的四边形。
对应于99联赛2:∠E’OB=∠FOB,且E‘H’、GF、BO三线共
点。
求证:∠GOB=∠H‘OB。
事实上,上述条件是充要条件,且M在OB延长线上时结论仍然
成立。
证明方法为:同一法。
蝴蝶定理:P是⊙O
的弦AB的中点,过P
点引⊙O的两弦CD、
EF,连结DE交AB于
M,连结CF交AB于N。
求证:MP=NP。
【分析】设GH为过P的直径,F F’F,显然‘∈⊙O。
又P∈GH,
∴PF’=PF。
∵PF PF‘,PA PB,∴∠FPN=∠F’PM,PF=PF‘。
又FF’⊥GH,AN⊥GH,∴FF‘∥AB。
∴∠F’PM+∠MDF‘=∠FPN+∠EDF’
=∠EFF‘+∠EDF’=180°,∴P、M、D、F‘四点共圆。
∴∠PF’M=∠PDE=∠PFN。
∴△PFN≌△PF‘M,PN=PM。
【评注】一般结论为:已知半径为R的⊙O内一弦AB上的一点P,过P作两条相交弦CD、EF,连CF、ED交AB于M、N,已知OP=r,P到AB中点的距离为a,则。
(解析法证明:利用二次曲线系知识)。