中考专题复习------分式的化简 求值

合集下载

分式化简求值(50题2022-2023学年八年级数学上册重要考点精讲精练(人教版)(原卷版)

分式化简求值(50题2022-2023学年八年级数学上册重要考点精讲精练(人教版)(原卷版)

【专题】分式化简求值(50题)一、解答题1.先化简,再求值:(1−1a 1)÷aa 2−1,其中a =−12.2.先化简,再求值:a a−2+(a a−2−4aa 2−2),其中a =3.3.先化简,再求值:a a 2−1÷(1+1a−1),其中a=π0.4.先化简,再求值:(1−1a−2)÷a−3a 2−4,其中a =−3.5.先化简,再求值:a−1a 22a 1÷a−1a 1−1a−1,其中6.÷(3a 1−a +1),其中a =8.7.先化简,再求值:(2x +2)÷(x +1+),其中x =−2.8.先化简,再求值:)÷a 2−b 2a 2−ab ,其中a =﹣2,b =3.9.先化简,再求值:(1−2x−1)⋅x2−xx2−6x9,其中x=2.10.先化简再求值:−1x)÷1x1,再在−1,0,1,2中选择一个合适的数代入求值.11.先化简,再求值:(xx−1−1),其中x=-212.2xx2x2−1,其中x=3.13.先化简,再代入求值:x2x−2·(4x+x−4),其中x2−2x−2=014.先化简,再求值:(1+1x−2)÷x−1x2−2x+4,其中x=6.15.÷a2−aba−2a b,其中a=2,b=﹣1.16.先化简,再求值:(xx1+1x−1)÷1x2−1,其中x是6的平方根.17.先化简,再求值:+1)÷−2x ,其中x =4.18.先化简,再求值:(1x 1−11−x )÷1x 2−1,其中x =12.19.先化简,再求值:÷(x +2﹣5x−2 ),其中x = −12 .20.先化简,再求值:(2m 2−4m 2−1)其中m =(12)−1+(3.14−π)0.21.先化简 1a 1÷a a 22a 1 ,然后在0,1,-1中挑选一个合适的数代入求值. 22.÷(1+2x−1) ,再任选一个你喜欢的数作为x 的值代入求值.23.先化简(1−1a )÷a 2−1a 22a 1,再从−1,0,1,2中选择一个合适的数作为a 的值代入求值.24.先化简,再求值:b 2a 2−ab ÷(a 2−b 2a 2−2ab b 2+a b−a ),其中a =(2022−π)0,b =13.25.先化简分式(1−1x−2)÷2≤x≤4中选一个合适的整数代入求值.26.先化简(1−1x−1)÷0,-2,-1,1中选择一个合适的数代入并求值.27.先化简(1−3a 2)2,2,-1,1中选取一个恰当的数作为a 的值代入求值.28.÷(1−3x 1),其中x 与2,3构成等腰三角形.29.先化简,再求值: a a 1 ÷(a ﹣1﹣ 2a−1a 1 ),并从﹣1,0,1,2四个数中,选一个合适的数代入求值 30.先化简,再求值: −a−1a 2−4a 4)÷a−4a ,其中a 满足 a 2−4a +1=0 . 31.先化简,再求值:(1−2x−1)÷,其中x 从0,1,2,3四个数中适当选取.32.先化简,再求值: (1−4a 2)÷,其中a = 2−1+(π−2022)0 . 33.先化简,再求值 : (1−1a 1)÷aa 2−1 并在1,-1,2,0这四个数中取一个合适的数作为a 的值代入求值.34.先化简,再求值: mm 2−9÷[(m +3)0+3m−3] ,其中 m =−2 . 35.已知分式A =1−m m 2−1÷(1+1m−1).先化简A ,再从−1、0、1、2中选一个合适的数作为m 的值代入A 中,求A 的值.36.先化简:÷ ,再从 −2 ,0,1,2中选取一个合适的 x 的值代入求值. 37.先化简:x−3x 2−1⋅−(1x−1+1),其中0≤x ≤3,且x 为整数,请选择一个你喜欢的数x 代入求值.38.先化简,再求值:(aa2+9−4aa2−4)÷a−3a−2,其中a是已知两边分别为2和3的三角形的第三边长,且a是整数.39.先化简,再求值:+1−aa2−4a4)÷a−4a,并从0<a<4中选取合适的整数代入求值.40.先化简,再求值:b2a2−ab ÷(a2−b2a2−2ab b2+ab−a),其中a=−2,b=13.41.先化简,再求值:(1+1x2)÷ x2−9x−3,其中x=﹣2.42.先化简x2−2xx2−4÷(x−2−2x−4x2),然后从-2,2,5中选取一个的合适的数作为x的值代入求值.43.先化简,再求值:(2a−4aa−2)÷a−4a2−4a4,其中a与2,3构成△ABC的三边长,且a为整数.44.有一道题:“先化简,再求值:(x−2x 2+4xx 2−4)÷1x 2−4,其中x= -6.”小张做题时把x= -6错抄成x=6,但是他的计算结果却是正确的.请你阐明原因.45.先化简,再求值:÷−2x x 为不等式组2(2x +3)−x <12,x ≥−2的整数解,挑一个合适的x 代入求值.46.先化简: (a 2−1a 2−2a 1−a−1)÷,然后在 a ≤2 的非负整数集中选取一个合适的数作为a 的值代入求值. 47.先化简,再求值: ÷(x +1−3x−1) ,其中实不等x 式 2x <3(x +1) 的非正整数解. 48.先化简分式:(1﹣ xx−1 )÷ ,然后在﹣2,﹣1,0,1,2中选一个你认为合适的x 的值,代入求值.49.先化简,再求值: (x x 2x −1)÷x 2−1x 22x 1 ,其中x 的值从不等式组 −x ≤12x−1<4 的整数解中选取.50.有这样一道题:先化简再求值,÷x−1x2x−x+1,其中x=2021.”小华同学把条件“x=2021”错抄成“x=2012”,但他的计算结果也是正确的,请通过计算说明这是怎么回事.。

【火线100天】(云南专版)中考数学复习集训题型专项二计算求解题

【火线100天】(云南专版)中考数学复习集训题型专项二计算求解题

计算求解题本专题是对计算求解题的巩固和深化,在云南的考题中主要包括实数的运算,分式的化简求值,解方程(组)和不等式(组),主要考查学生的计算能力,难度不大,但需要熟练掌握绝对值、特殊角的三角函数、零指数幂、负指数幂、二次根式的化简、分式的约分和通分、因式分解、整式的计算等相关知识,并密切注意运算顺序.类型1 实数的运算1.(2015·济宁)计算:π0+2-1-14-⎪⎪⎪⎪⎪⎪-13.2. (2015·兰州) 计算:2-1-3tan60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.3.(2015·昆明西山区二模)计算:(-1)2 013+(π-3.14)0-(12)-1+38.4.(2015·昆明官渡区二模)计算:(-1)2 015+38-2 0150-(-12)-2.|-2|+(π-1)0+(13)-1-2sin45°.6.(2015·金华)计算:12+2-1-4cos30°+⎪⎪⎪⎪⎪⎪-12.7.(2015·菏泽)计算:(-1)2 015+sin30°-(π-3.14)0+(12)-1.8.(2015·乐山)计算:⎪⎪⎪⎪⎪⎪-12+8-4cos45°+(-1)2 015.9.(2015·绍兴)计算:2cos45°-(π+1)0+14+(12)-1.10.(2015·怀化)计算: |2-1|+4sin30°-(12)-1-(3-π)0+9.11.(2015·扬州)计算:(14)-1+||1-3-27tan30°.类型2 分式的化简求值1.(2015·毕节)先化简,再求值:(x 2+1x 2-x -2x -1)÷x +1x-1,其中x =-3.2.(2015·珠海)先化简,再求值:(x x -1-1x +1)÷1x 2-1.其中x = 2.3.(2015·中山)先化简,再求值:x x 2-1÷(1+1x -1),其中x =2-1.4.(2015·昆明二模)先化简,再求值:(a a -b -1)÷b a 2-b 2,其中a =3+1,b =3-1.5.(2015·昆明盘龙区一模)先化简,再求值:x 2-1x 2-x ÷(2+x 2+1x),其中x =2sin45°-1.6.(2015·资阳)先化简,再求值:(1x -1-1x +1)÷x +2x 2-1,其中x 满足2x -6=0.7.(2015·漳州)先化简,再求值:m 2m -1-1-2m 1-m,再选取一个适当的m 的值代入求值.8.(2015·昆明盘龙区二模)先化简,再求值:(a 2-b 2a 2-2ab +b 2+a b -a )÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.类型3 方程(组)的解法1.(2015·广州)解方程:5x=3(x-4).2.(2015·中山)解方程:x2-3x+2=0. 3.(2015·兰州)解方程:x2-1=2(x+1).4.(2015·宁德)解方程:1-2x-3=1x-3.5.(2015·黔西南)解方程:2xx-1+11-x=3.6.(2015·重庆)解二元一次方程组:⎩⎪⎨⎪⎧x -2y =1,①x +3y =6.②7.(2015·荆州)解方程:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7.②类型4 不等式(组)的解法1.(2015·绍兴)解不等式:3x -5≤2(x +2).2.(2015·南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.3.(2015·昆明西山区二模)解不等式组:⎩⎪⎨⎪⎧x -3≤0,①x -12-2x -13>1.②4.(2015·怀化)解不等式组⎩⎪⎨⎪⎧x -2≤0,2(x -1)+(3-x )>0,并把它的解集在数轴上表示出来.5.(2015·北京)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.参考答案类型1 实数的运算1.原式=1+12-12-13=23. 2.原式=12-3×3+1+12=12-3+1+12=-1. 3.原式=-1+1-2+2=0.4.原式=-1+2-1-4=-4.5.原式=2+1+3-2×22=2+1+3-2=4. 6.原式=23+12-4×32+12=23+12-23+12=1. 7.原式=-1+12-1+2=12. 8.原式=12+22-4×22-1=12+22-22-1=-12. 9.原式=2×22-1+12+2=2-1+12+2=2+32. 10.原式=2-1+4×12-2-1+3=2-1+2-2-1+3=2+1. 11.原式=4+3-1-33×33=4+3-1-3= 3. 类型2 分式的化简求值1.原式=x 2+1x (x -1)·x x +1-2x -1·x x +1-1=x 2+1(x -1)(x +1)-2x (x -1)(x +1)- x 2-1(x -1)(x +1)=-2(x -1)(x -1)(x +1)=-2x +1. 当x =-3时,原式=-2x +1=-2-3+1=1. 2.原式=(x x -1-1x +1)÷1(x +1)(x -1)=x x -1·(x +1)(x -1)-1x +1·(x +1)(x -1) =x(x +1)-(x -1)=x 2+1.当x =2时,原式=x 2+1=2+1=3.3.原式=x (x +1)(x -1)÷x x -1=x (x +1)(x -1)·x -1x =1x +1. 当x =2-1时,原式=1x +1=12-1+1=22. 4.原式=a -(a -b )a -b ·(a +b )(a -b )b =b a -b ·(a +b )(a -b )b=a +b. 当a =3+1,b =3-1时,原式=3+1+3-1=2 3.5.原式=(x +1)(x -1)x (x -1)÷2x +x 2+1x =(x +1)(x -1)x (x -1)·x (x +1)2=1x +1. 当x =2sin45°-1=2×22-1=2-1时,原式=12-1+1=22. 6.原式=[x +1(x -1)(x +1)-x -1(x +1)(x -1)]÷x +2x 2-1=2(x -1)(x +1)÷x +2(x -1)(x +1) =2(x -1)(x +1)·(x -1)(x +1)x +2 =2x +2.∵2x -6=0, ∴x =3.当x =3时,原式=25. 7.原式=m 2m -1+1-2m m -1=m 2-2m +1m -1=(m -1)2m -1=m -1. 当m =2时,原式=2-1=1.(答案不唯一,只要m ≠1,计算正确就可以)8.原式=[(a +b )(a -b )(a -b )2-a a -b ]·a (a -b )b2 =(a +b a -b -a a -b )·a (a -b )b2 =b a -b ·a (a -b )b 2=a b . 又∵a +1+|b -3|=0,∴a =-1,b = 3.∴原式=-13=-33. 类型3 方程(组)的解法1.去括号,得5x =3x -12.移项,得12=3x -5x.合并同类项,得12=-2x.系数化为1,得x =-6.2.x 2-3x +2=0.(x -1)(x -2)=0.∴x 1=1,x 2=2.3.x 2-2x -3=0.(x +1)(x -3)=0.∴x 1=-1,x 2=3.4.去分母,得x -3-2=1.解得x =6.检验,当x =6时,x -3≠0.∴原方程的解为x =6.5.去分母,得2x -1=3(x -1).括号括、移项、合并同类项,得-x =-2.系数化为1,得x =2.检验:当x =2时,x -1≠0,∴x =2是原分式方程的解.6.②-①,得5y =5,y =1.将y =1代入①,得x -2=1,x =3.∴原方程组的解为错误!②×3,得3x +9y =21.③-①,得11y =22,y =2把y =2代入②,得x +6=7,x =1.∴方程组的解为1,2.x y =⎧⎨=⎩1.去括号,得3x -5≤2x +4.移项,得3x -2x ≤4+5.合并同类项,得x ≤9.2.去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1.合并同类项,得-x ≥1.系数化为1,得x ≤-1.这个不等式的解集在数轴上表示如图所示.解不等式①,得x ≤3.解不等式②,得x <-7.∴不等式组的解是x <-7.4.由①得x ≤2.由②得2x -2+3-x>0,2x -x>2-3,x>-1.∴不等式组的解集为-1<x ≤2.解集在数轴上表示为:5.由①得4x +4≤7x +10, -3x ≤6,x ≥-2.由②得3x -15<x -8,2x <7,x <72. ∴-2≤x <72.∴非负整数解为0,1,2,3.。

2021年中考复习数与式-第04讲 分式(教师版)A4

2021年中考复习数与式-第04讲 分式(教师版)A4

分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。

2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。

2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。

2023年中考数学一轮复习满分突破专题10 分式方程【题型方法解密】

2023年中考数学一轮复习满分突破专题10 分式方程【题型方法解密】

专题10分式方程【考查题型】【知识要点】解分式方程的一般步骤:1)去分母(方程两边同乘最简公分母,约去分母,把分式方程化成整式方程)。

2)解整式方程。

3)验根(把整式方程的解代入最简公分母,情况一:最简公分母为0,则该根不是分式方程的解,这个根叫原分式方程的增根;情况二:若最简公分母不为0,则该根是分式方程的解。

分式的化简求值:1)分式通过化简后,代入适当的值解决问题,注意代入的值要使分式的分母不为0; 2)灵活应用分式的基本性质,对分式进行通分和约分,一般要先分解因式;3)化简求值时,一要注意整体思想,二要注意解题技巧,三要注意代入的值要使分式有意义。

分式方程解决实际问题的步骤:1)根据题意找等量关系2)设未知数3)列出方程4)解方程,并验根(对解分式方程尤为重要)5) 写答案考查题型一 解分式方程题型1.(2022·辽宁营口·中考真题)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =-题型1-1.(2022·海南·中考真题)分式方程2101x -=-的解是( )A .1x =B .2x =-C .3x =D .3x =-题型1-2.(2022·山东济南·中考真题)代数式32x +与代数式21x -的值相等,则x =______. 题型1-3.(2022·四川内江·中考真题)对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x的值为 _____.题型1-4.(2022·湖南永州·中考真题)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______.题型1-5.(2022·湖南常德·中考真题)方程()21522x x x x +=-的解为________.题型1-6.(2022·浙江台州·中考真题)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____. 先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-题型1-7.(2022·四川泸州·中考真题)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.题型1-8.(2022·浙江宁波·中考真题)定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________. 题型1-9.(2022·青海西宁·中考真题)解方程:22430x x x x-=+-.题型1-10.(2022·广西梧州·中考真题)解方程:24133x x -=--题型1-11.(2022·青海·中考真题)解分式方程:241244x x x x -=--+.易错点总结:考查题型二 根据分式方程解的情况求值 题型2.(2022·四川德阳·中考真题)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2题型2-1.(2022·内蒙古通辽·中考真题)若关于x 的分式方程:121222k x x--=--的解为正数,则k 的取值范围为( ) A .2k < B .2k <且0k ≠ C .1k >-D .1k >-且0k ≠题型2-2.(2022·黑龙江·中考真题)已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠题型2-3.(2022·重庆·中考真题)关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20题型2-4.(2022·重庆·中考真题)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y ay y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26 B .-24 C .-15 D .-13题型2-5.(2022·湖北黄石·中考真题)已知关于x 的方程111(1)x ax x x x ++=++的解为负数,则a 的取值范围是__________. 易错点总结:考查题型三 分式方程无解的情况题型3.(2022·四川遂宁·中考真题)若关于x 的方程221mx x =+无解,则m 的值为( )A .0B .4或6C .6D .0或4题型3-1.(2021·内蒙古呼伦贝尔·中考真题)若关于x 的分式方程2233x a x x++=--无解,则a 的值为( ) A .3B .0C .1-D .0或3题型3-2.(2021·四川宜宾·中考真题)若关于x 的分式方程322x mx x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2题型3-3.(2021·西藏·中考真题)若关于x 的分式方程21x x -﹣1=1m x -无解,则m =___. 易错点总结:考查题型四 列分式方程题型4.(2022·辽宁阜新·中考真题)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( ) A .3030201.2x x -= B .3030 1.220x x -=- C .3030201.2x x-= D .30301.220x x-=- 题型4-1.(2022·山东淄博·中考真题)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( ) A .2000020000(115%)10x x ⨯-=-B .2000020000(115%)10x x ⨯-=- C .2000020000(115%)10x x ⨯-=+D .2000020000(115%)10x x⨯-=+ 题型4-2.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km ,根据题意,所列方程正确的是( ) A .60x ﹣601.5x =3060 B .601.5x ﹣60x =3060 C .60x ﹣601.5x=30 D .601.5x ﹣60x=30题型4-3.(2022·贵州黔西·中考真题)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x亩,则可以得到的方程为()A.363024x x=⨯-B.363024x x=⨯+C.363024x x=⨯-D.363024x x=⨯+题型4-4.(2022·山东潍坊·中考真题)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x万吨,下列算法正确的是()A.4271100%14.0%4271x-⨯=-B.4271100%14.0%4271x-⨯=-C.4271100%14.0%xx-⨯=-D.4271100%14.0%xx-⨯=-题型4-5.(2022·湖北恩施·中考真题)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/h,则符合题意的方程是()A.144963030v v=+-B.1449630v v=-C.144963030v v=-+D.1449630v v=+题型4-6.(2022·广西·中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.1.482.413xx-=-B.1.482.413xx+=+C.1.4282.4213xx-=-D.1.4282.4213xx+=+题型4-7.(2022·湖北荆州·中考真题)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min...到达基地,求甲、乙的速度.设甲的速度为3x km/h ....,则依题意可列方程为( ) A .6110334x x+= B .6102034x x+= C .6101343x x -= D .6102034x x-= 题型4-8.(2022·四川广元·中考真题)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N 95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N 95口罩花费9600元.已知一次性医用外科口罩的单价比N 95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是( ) A .960010x -=1600xB .960010x +=1600xC .9600x =160010x - D .9600x =1600x+10 题型4-9.(2022·山东临沂·中考真题)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( ) A .0.9850.75x ⨯= B .0.9850.755x ⨯=+ C .0.7550.98x ⨯=D .0.7550.985x⨯=- 题型4-10(2022·浙江丽水·中考真题)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量题型4-11(2022·湖北襄阳·中考真题)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x =⨯+- B .900900213x x ⨯=+- C .900900213x x =⨯-+ D .900900213x x ⨯=-+ 题型4-12.(2022·山东青岛·中考真题)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________. 易错点总结:考查题型五分式方程的实际应用题型5.(2022·重庆·中考真题)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.题型5-1.(2022·西藏·中考真题)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本和钢笔作为纪念品.已知每本笔记本比每支钢笔多2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?题型5-2.(2022·宁夏·中考真题)某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?题型5-3.(2022·山东东营·中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?题型5-4.(2022·贵州安顺·中考真题)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?题型5-5.(2022·贵州铜仁·中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?题型5-6.(2022·湖南益阳·中考真题)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小题型5-7.(2022·吉林长春·中考真题)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?题型5-8.(2022·山东聊城·中考真题)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?题型5-9.(2022·重庆·中考真题)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.题型5-10.(2022·山西·中考真题)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.题型5-11.(2022·四川自贡·中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.考查题型一 解分式方程题型1.(2022·辽宁营口·中考真题)分式方程322x x =-的解是( ) A .2x = B .6x =- C .6x = D .2x =-题型1-1.(2022·海南·中考真题)分式方程2101x -=-的解是( ) A .1x = B .2x =- C .3x = D .3x =-题型1-2.(2022·山东济南·中考真题)代数式32x +与代数式21x -的值相等,则x =______. 【答案】7题型1-3.(2022·四川内江·中考真题)对于非零实数a,b,规定a⊕b=11a b-,若(2x﹣1)⊕2=1,则x的值为_____.题型1-4.(2022·湖南永州·中考真题)解分式方程211x x-=+去分母时,方程两边同乘的最简公分母是______.题型1-5.(2022·湖南常德·中考真题)方程()22x x x x +=-的解为________. 【答案】4x =【提示】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解故答案为:4x =【名师点拨】本题考查了解分式方程,解分式方程一定要注意检验.题型1-6.(2022·浙江台州·中考真题)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____. 先化简,再求值:314x x -+-,其中x =解:原式3(4)(4)4x x x x -=⋅-+--34x x =-+-1=-去分母得:3-x +2(x -4)=0,去括号得:3-x +2x -8=0,解得:x =5,经检验,x =5是方程的解,故答案为:5.【名师点拨】本题考查了解分式方程,一定要注意解分式方程必须检验.题型1-7.(2022·四川泸州·中考真题)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.题型1-8.(2022·浙江宁波·中考真题)定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-##0.5-题型1-9.(2022·青海西宁·中考真题)解方程:22430x x x x -=+-. 【答案】7x =【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【名师点拨】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根. 题型1-10.(2022·广西梧州·中考真题)解方程:24133x x -=-- 【答案】5x =【提示】先方程两边同时乘以(3)x -,化成整式方程求解,然后再检验分母是否为0即可.【详解】解:方程两边同时乘以(3)x -得到:324x -+=,解出:5x =,当5x =时分式方程的分母不为0,∴分式方程的解为:5x =.【名师点拨】本题考查了分式方程的解法,属于基础题,计算过程中细心即可.题型1-11.(2022·青海·中考真题)解分式方程:241244x x x x -=--+.考查题型二 根据分式方程解的情况求值题型2.(2022·四川德阳·中考真题)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2 【答案】D【提示】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x -1,得2x +a =x -1.解得:x =-a -1且x 为正数.所以-a -1>0,解得a <-1,且a ≠-2.(因为当a =-2时,方程无意义).故答案为:D【名师点拨】本题难度中等,易错点:容易漏掉了a ≠-2这个信息.题型2-1.(2022·内蒙古通辽·中考真题)若关于x 的分式方程:121222k x x--=--的解为正数,则k 的取值范围为( )A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠题型2-2.(2022·黑龙江·中考真题)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( )A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠关于题型2-3.(2022·重庆·中考真题)关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20题型2-4.(2022·重庆·中考真题)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26B .-24C .-15D .-13【答案】D 【提示】根据不等式组的解集,确定a >-11,根据分式方程的负整数解,确定a <1,根据分式方程的增根,确定a ≠-2,计算即可.题型2-5.(2022·湖北黄石·中考真题)已知关于x 的方程1(1)x x x x +=++的解为负数,则a 的取值范围是__________.关于考查题型三 分式方程无解的情况题型3.(2022·四川遂宁·中考真题)若关于x的方程221mx x=+无解,则m的值为()A.0B.4或6C.6D.0或4原方程无解,题型3-1.(2021·内蒙古呼伦贝尔·中考真题)若关于x的分式方程2233x ax x++=--无解,则a的值为()A.3B.0C.1-D.0或3故选:C .【名师点拨】本题考查了分式方程无解,解题关键是明确分式方程无解的条件,解方程,再根据分母为0列方程.题型3-2.(2021·四川宜宾·中考真题)若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2题型3-3.(2021·西藏·中考真题)若关于x 的分式方程21x x -﹣1=1m x -无解,则m =___.考查题型四列分式方程题型4.(2022·辽宁阜新·中考真题)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x万人,根据题意,所列方程正确的是()A.3030201.2x x-=B.30301.220x x-=-C.3030201.2x x-=D.30301.220x x-=-【详解】解:实际每天接种人数是原计划的又结果提前题型4-1.(2022·山东淄博·中考真题)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是()A.2000020000(115%)10x x⨯-=-B.2000020000(115%)10x x⨯-=-C.2000020000(115%)10x x⨯-=+D.2000020000(115%)10x x⨯-=+的关键.题型4-2.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是()A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=30题型4-3.(2022·贵州黔西·中考真题)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x亩,则可以得到的方程为()A.363024x x=⨯-B.363024x x=⨯+C.363024x x=⨯-D.363024x x=⨯+题型4-4.(2022·山东潍坊·中考真题)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x万吨,下列算法正确的是()A.4271100%14.0%4271x-⨯=-B.4271100%14.0%4271x-⨯=-C.4271100%14.0%xx-⨯=-D.4271100%14.0%xx-⨯=-题型4-5.(2022·湖北恩施·中考真题)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/h,则符合题意的方程是()A.144963030v v=+-B.1449630v v=-C.144963030v v=-+D.1449630v v=+题型4-6.(2022·广西·中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.1.482.413xx-=-B.1.482.413xx+=+C.1.4282.4213xx-=-D.1.4282.4213xx+=+题型4-7.(2022·湖北荆州·中考真题)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min...到达基地,求甲、乙的速度.设甲的速度为3x km/h....,则依题意可列方程为()A.6110334x x+=B.6102034x x+=C.6101343x x-=D.6102034x x-=题型4-8.(2022·四川广元·中考真题)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是()A .960010x -=1600x B .960010x +=1600x C .9600x =160010x - D .9600x =1600x+10题型4-9.(2022·山东临沂·中考真题)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( )A .0.9850.75x ⨯=B .0.9850.755x ⨯=+C .0.7550.98x ⨯=D .0.7550.985x⨯=-题型4-10(2022·浙江丽水·中考真题)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量题型4-11(2022·湖北襄阳·中考真题)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+题型4-12.(2022·山东青岛·中考真题)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.【名师点拨】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.考查题型五分式方程的实际应用题型5.(2022·重庆·中考真题)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.题型5-1.(2022·西藏·中考真题)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本和钢笔作为纪念品.已知每本笔记本比每支钢笔多2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?【答案】(1)笔记本每本12元,钢笔每支10元题型5-2.(2022·宁夏·中考真题)某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?【答案】(1)篮球的单价为110元,排球的单价为80元(2)最多购买6个篮球【提示】(1)设排球的单价为x元,则篮球的单价为(x+30)元,由题意:330元购进的篮球数量和240元购进的排球数量相等.列出分式方程,解方程即可;(2)设购买排球y个,则购买篮球(20-y)个,由题意:购买篮球和排球的总费用不超过1800元,列出一元一次不等式,解不等式即可.。

分式化简求值复习ppt课件

分式化简求值复习ppt课件

x 1
xx 1
x
1x 1 x 12
xx 1
x 1
当x=2013时,原式=2013
x
直击中考
11.(2013本溪市)先化简,在求值:
(
m
m2 1 2 2m
1
m
m 2
m
)
(1
2 m
),其中m=-3
解:( m
m2 1 2 2m
1
m m2
m
)
(1
2 m
)
m 1m 1 m 12
m
mm 1
m m
2
4 2
] a
4
3
2
当a
3 2时,原式
1 32-2
1 3
3 3
6.(2013铁岭市)先化简,在求值:(1
7.(2013鞍山市)先化简,在求值:
a
1
) 1
a
2
4a a2 1
4
其中a=-2
(x 3 7 ) 4 x x3 x3
,其中 x
2 4
8.(2013抚顺市)先化简,在求值:(a 1
用符号语言表达: a c ac b d bd
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
a 用符号语言表达: c a d ad b d b c bc
分式的加减
同分母相加
B C BC AA A
异分母相加
B C BD CA BD AC
A D AD AD
AD
通分
在分式有关的运算中,一般总是先把分子、 分母分解因式;
足__x___3__
x3
1.分式的基本性质:
分式的分子与分母同乘以(或除以) 一个不为0的整式 分式的值 不变

山东十七地市中考汇编--(一) 有关分式的化简题

山东十七地市中考汇编--(一) 有关分式的化简题

山东十七地市中考汇编--(一)有关分式的化简题1.(2021年滨州)计算:(﹣)÷.2.(2017年滨州)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.3.(2018年滨州)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.4.(2019年滨州)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.5.(2020年滨州)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.6.(2022年滨州)先化简,再求值:(a+1﹣)÷,其中a=tan45°+()﹣1﹣π0.7.(2017年德州))先化简,再求值:÷﹣3,其中a=.8 。

(2018年德州)先化简,再求值÷﹣(+1),其中x是不等式组的整数解.9.(2019年德州)先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n﹣3)2=0.10.先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.11.化简求值:(﹣)÷,当a=﹣1时,请你选择一个适当的数作为b的值,代入求值.12.先化简,再求值:(x﹣)÷,其中x=+1,y=.13.化简求值:,其中=.14.先化简,再求值:(﹣)÷,其中x=3,y=2.15.(2021•菏泽)先化简,再求值:1+÷,其中m,n满足=﹣.16.(2020•菏泽)先化简,再求值:,其中a满足a2+2a﹣3=0.17.(2019•菏泽)先化简,再求值:(﹣1)÷,其中x=y+2019.18.(2018•菏泽)先化简,再求值:(﹣y)÷﹣(x﹣2y)(x+y),其中x=﹣1,y=2.19.(2017•菏泽)先化简,再求值:(1+)÷,其中x是不等式组的整数解.20(2017济南)先化简,再求值:,其中21.已知2a=2b=22a b ab+的值.22.(2017年莱芜)先化简,再求值:699()()33a aa aa a++÷+--,其中a3.2(3)(2)(3)a a a+-++3a=23、(2018年莱芜)先化简,再求值:(+)÷,其中a =+1.24.(2019年莱芜)先化简,再求值:(a ﹣1)÷(a +﹣2),其中a =﹣1.25.(2017年聊城)先化简,再求值:2﹣÷,其中x =3,y =﹣4.26.(2018年聊城)先化简,再求值:﹣÷(﹣),其中a =﹣.27. (2021年聊城)先化简,再求值:22212211111a a a a a a a a +--⎛⎫+÷-- ⎪+--⎝⎭,其中a =﹣32. 28. (2022年聊城)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭29.(2018•临沂)计算:(﹣).30.(1)(2019年青岛市)化简:÷(﹣2n );31计算:÷(1+); 32.计算:(+)÷(﹣);33.化简:(﹣2)•.34.化简:; 35.先化简再求值:(m +2﹣)×,其中m =4.36.(2021•日照)(1)若单项式x m ﹣n y 14与单项式﹣x 3y 3m ﹣8n 是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:(+)÷,其中x =﹣1.37.先化简,再求值:1﹣÷,其中a =2;38.化简:(﹣)÷,并从0≤x ≤4中选取合适的整数代入求值.39.先化简,再求值:﹣÷,其中a=.40.(2022•泰安)(1)化简:(a ﹣2﹣)÷;41.(2020•泰安)(1)化简:(a ﹣1+)÷;42.(2019•泰安).先化简,再求值:(a ﹣9+)÷(a ﹣1﹣),其中a =. 43.(2018年 泰安)先化简,再求值÷(﹣m ﹣1),其中m=﹣2.44.(2021•泰安)(1)先化简,再求值:,其中a =+3;45.(2017威海)先化简)111(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的范围内选取一个合适的整数作为x 的值代入求值.46.(2021•威海)先化简,然后从﹣1,0,1,3中选一个合适的数作为a 的值代入求值.47.(2021烟台)先化简,再求值:,从﹣2<x≤2中选出合适的x的整数值代入求值.48. (2020烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.49.(2019烟台)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.50.(2018烟台)先化简,再求值:(1+)÷,其中x满足x2﹣2x ﹣5=0.51.(2017烟台)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.52.(2019枣庄)先化简,再求值:÷(+1),其中x为整数且满足不等式组53.(2021枣庄)先化简,再求值:÷(1+),其中x=﹣1.54.(2022枣庄)先化简,再求值:(﹣1)÷,其中x=﹣4.。

分式的化简求值经典练习题(带答案)

分式的化简求值经典练习题(带答案)

精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。

2023年中考数学---分式的运算与化简求值知识回顾与专项练习题(含答案解析)

2023年中考数学---分式的运算与化简求值知识回顾与专项练习题(含答案解析)

2023年中考数学---分式的运算与化简求值知识回顾与专项练习题(含答案解析)知识回顾1. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22;完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。

2. 分式的性质:分式的分子与分母同时乘上或除以同一个不为0的数或式子,分式的值不变。

()0≠÷÷==C CB C A BC AC B A 3. 约分与通分:①约分:将分式中能进行分解因式的分子分母分解因式,约掉公因式。

公因式等于系数的最大公约数乘上相同字母或式子的最低次幂。

②通分:将几个异分母的分式化成同分母的分式的过程。

公分母等于系数的最小公倍数乘上所有式子的最高次幂。

4. 分式的乘除运算:①乘法运算步骤:I :对分子分母因式分解;II :约掉公因式;III :分子乘以分子得到积的分子,分母乘以分母得到积的分母。

②除法运算法则:除以一个分式等于乘上这个分式的倒数式。

5. 分式的加减运算:具体步骤:I :对能分解的分母进行因式分解,并求出公分母;II :将分式通分成同分母;III :分母不变,分子相加减。

6. 分式的化简求值:将分式按照加减乘除的运算法则化简至最简分式,然后带入已知数据求值即可。

专项练习题(含答案解析)1、(2022•西藏)计算:224222−−−⋅+a a a a a a . 【分析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.【解答】解:原式=•﹣ =﹣ =1.2、(2022•兰州)计算:()x x x +÷⎪⎭⎫ ⎝⎛+211. 【分析】根据分式的加减运算以及乘除运算法则即可求出答案.【解答】解:原式===. 3、(2022•大连)计算:xx x x x x x 1422444222−−+÷+−−. 【分析】先算除法,后算减法,即可解答.【解答】解:÷﹣=•﹣=﹣=.4、(2022•十堰)计算:⎪⎪⎭⎫ ⎝⎛−+÷−a ab b a a b a 2222. 【分析】根据分式的运算法则计算即可.【解答】解:÷(a +)=÷(+)=÷=•=.5、(2022•常德)化简:212312+−÷⎪⎭⎫ ⎝⎛+++−a a a a a . 【分析】根据分式混合运算的法则计算即可.【解答】解:(a ﹣1+)÷ =[+]•=•=. 6、(2022•内蒙古)先化简,再求值:1441132−+−÷⎪⎭⎫ ⎝⎛−−−x x x x x ,其中x =3.【分析】先通分算括号内的,把除化为乘,化简后将x =3代入计算即可.【解答】解:原式=•=﹣•=﹣,当x =3时,原式=﹣=﹣5. 7、(2022•阜新)先化简,再求值:⎪⎭⎫ ⎝⎛−−÷−+−21129622a a a a a ,其中a =4. 【分析】根据分式的混合运算法则把原式化简,把a 的值代入计算即可.【解答】解:原式=÷(﹣)=÷=•=, 当a =4时,原式==.8、(2022•资阳)先化简,再求值.111122−÷⎪⎭⎫ ⎝⎛+−a a a ,其中a =﹣3. 【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【解答】解:原式==当a =﹣3时,原式=.9、(2022•黄石)先化简,再求值:1961212+++÷⎪⎭⎫ ⎝⎛++a a a a ,从﹣3,﹣1,2中选择合适的a 的值代入求值.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【解答】解:原式=÷=•=,由分式有意义的条件可知:a 不能取﹣1,﹣3,故a =2,原式==. 10、(2022•朝阳)先化简,再求值:323444222++−+÷+−−x x x x x x x x ,其中x =(21)﹣2. 【分析】把除化为乘,再算同分母的分式相加,化简后求出x 的值,代入即可.【解答】解:原式=•+=+==x , ∵x =()﹣2=4,∴原式=4.11、(2022•锦州)先化简,再求值:212112−−÷⎪⎭⎫ ⎝⎛−++x x x x ,其中13−=x . 【分析】先对分式进行化简,然后再代入求解即可.【解答】解:原式====, 当时, 原式=. 12、(2022•盘锦)先化简,再求值:⎪⎭⎫ ⎝⎛+−−++−÷−−1111231322x x x x x x ,其中12+−=x . 【分析】根据分式的运算法则“除以一个数等于乘以它的倒数”把除法改写成乘法;利用平方差公式和完全平方公式将分式的分子分母分别因式分解;约分化简后,求x 的值;去掉绝对值符号时注意正负,正数的绝对值是它本身,负数的绝对值是它的相反数,最后将x 的值代入原式.【解答】解:原式====,∵=, ∴原式===13、(2022•郴州)先化简,再求值:⎪⎭⎫ ⎝⎛−++÷−2221b a b b a b a ab ,其中a =5+1,b =5﹣1. 【分析】先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答.【解答】解:÷(+)=÷ =•=ab ,当a =+1,b =﹣1时,原式=(+1)(﹣1)=5﹣1=4. 14、(2022•营口)先化简,再求值:14412512+++÷⎪⎭⎫ ⎝⎛++−+a a a a a a ,其中a =9+|﹣2|﹣(21)﹣1. 【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解,则约分得到原式=,然后根据算术平方根的定义、绝对值和负整数指数幂的意义计算出a 的值,最后把a 的值代入计算即可.【解答】解:原式=•=•=•=•=, ∵a =+|﹣2|﹣()﹣1=3+2﹣2=3,∴原式==. 14、(2022•绵阳)(1)计算:2tan60°+|3﹣2|+(20221)﹣1﹣212; (2)先化简,再求值:y x y x y x y x xy x −+÷⎪⎪⎭⎫ ⎝⎛−−−−3,其中x =1,y =100. 【分析】(1)先算负整数指数幂、化简二次根式,再化简绝对值代入特殊角的函数值,最后算加减.(2)按分式的运算法则先化简分式,再代入求值.【解答】解:(1)原式=2×+2﹣+2022﹣=2+2﹣+2022﹣ =2024;(2)原式=[﹣]÷=× =× =× =. 当x =1,y =100时.原式=100。

5.中考数学专题“化简求值型”相关的探索性问题母题题源系列(解析版)

5.中考数学专题“化简求值型”相关的探索性问题母题题源系列(解析版)

【母题来源一】【2019•长春】先化简,再求值:(2a +1)2-4a (a -1),其中a 18=. 【解析】 原式=4a 2+4a +1-4a 2+4a =8a +1, 当a 18=时,原式=8a +1=2. 【名师点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键. 【母题来源二】【2019•吉林】先化简,再求值:(a -1)2+a (a +2),其中a =【解析】 原式=a 2-2a +1+a 2+2a =2a 2+1,当a ==5.【名师点睛】此题考查了整式的混合运算–化简求值,熟练掌握运算法则是解本题的关键. 【母题来源三】【2019•宁波】先化简,再求值:(x -2)(x +2)-x (x -1),其中x =3. 【解析】(x -2)(x +2)-x (x -1) =x 2-4-x 2+x =x -4,当x =3时,原式=x -4=-1.【名师点睛】本题考查的是整式的化简求值,掌握整式的混合运算法则是解题的关键.【母题来源四】【2019•凉山州】先化简,再求值:(a +3)2-(a +1)(a -1)-2(2a +4),其中a 12=-. 【解析】原式=a 2+6a +9-(a 2-1)-4a -8 =2a +2,专题01 中考中与“化简求值型”相关的探索性问题将a 12=-代入,原式=2×(12-)+2=1. 【名师点睛】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.【母题来源五】【2019•河南】先化简,再求值:(12x x +--1)22244x xx x -÷-+,其中x = 【解析】 原式=(1222x x x x +----)()22(2)x x x -÷- 32x =-·2x x - 3x=,当x ===. 【名师点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 【母题来源六】【2019•黄冈】先化简,再求值.(2222538a b b a b b a ++--)221a b ab÷+,其中a =b =1. 【解析】原式()225381a b b a b ab a b +-=÷-+()()()5a b a b a b -=+-·ab (a +b )=5ab ,当a =b =1时,原式【名师点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.【母题来源七】【2019•福建】先化简,再求值:(x -1)÷(x 21x x--),其中x =1. 【解析】原式=(x -1)221x x x-+÷=(x -1)·2(1)xx -1x x =-,当x =1,原式=【名师点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.【母题来源八】【2019•广东】先化简,再求值:(122x x x ---)224x xx -÷-,其中x = 【解析】原式()()()22121x x x x x x +--=⋅--2x x+=,当x =原式1==. 【名师点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.【母题来源九】【2019•成都】先化简,再求值:(143x -+)22126x x x -+÷+,其中x =1.【解析】原式()22334()33(1)x x x x x ++=-⨯++- ()22313(1)x x x x +-=⨯+- 21x =-.将x =1代入,原式==【名师点睛】此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.【母题来源十】【2019•辽阳】先化简,再求值:(222211x x x x x-+-+-)221x x -÷-,其中x =3tan30°-(13)-1.【解析】(222211x x x x x-+-+-)221x x -÷- =[()212(1)1x x x x ----]()()112x x x +-⋅-=(211x x x ---)()()112x x x +-⋅- ()()11212x x x x x +--=⋅-- =x +1,当x =3tan30°-(13)-1=3-==3时,原式3+1=2. 【名师点睛】本题考查分式的化简求值、特殊角的三角函数值、负整数指数幂,解答本题的关键是明确分式化简求值的方法.【母题来源十一】【2019•湘潭】阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下: 立方和公式:x 3+y 3=(x +y )(x 2-xy +y 2) 立方差公式:x 3-y 3=(x -y )(x 2+xy +y 2)根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中x =3. 【解析】22332428x x x x x x ++--- ()()()223242224x x x x x x x x ++=---++ 3122x x =--- 22x =-, 当x =3时,原式232==-2. 【名师点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.【命题意图】这类试题主要考查整式、分式、二次根式的化简求值,经常与特殊角的三角函数值、实数的运算、一元一次不等式组、一元二次方程等结合考查.【方法总结】化简求值是指我们不直接把字母的值代人代数式中计算,而是先化简(即去括号,合并同类项),然后再代人求值.1.整式的化简求值(1)一般情况下,字母取值不同,代数式的值也不同;(2)当字母的取值是分数或负数时,代入时要注意将分数或负数添上括号;(3)把数值代入时,原代数式中的系数、指数及运算符号都不改变.2.分式的化简求值分式化简求值是代数式化简求值的常见题型之一、也是中考中的固定题型,其基本步骤是先化简,再把字母的值或条件中所含关系代人计算分式求值中所含知识覆盖面广,解法灵活,可根据所给条件和求值式的特征进行适当的变形、转化.3.二次根式的化简求值解二次根式的化简求值问题的一般方法是直接代人法变形代人法技巧性较强,也常采用整体代入的方法.1.【2019年河南省开封市中考数学二模试卷】先化简,再求值:(x+y)2+(x-y)(x+y)-2x(x-y),其中x,y1.【解析】原式=x2+2xy+y2+x2-y2-2x2+2xy=4xy,当x,y1时,原式=4×)×1)=16.【名师点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.2.【山东省菏泽市郓城县2019届中考数学模拟试卷(6月份)】已知x2+x-5=0,求代数式(x-1)2-x(x-3)+(x+2)(x-2)的值.【解析】(x -1)2-x (x -3)+(x +2)(x -2) =x 2-2x +1-x 2+3x +x 2-4 =x 2+x -3, ∵x 2+x -5=0, ∴x 2+x =5, ∴原式=5-3=2.【名师点睛】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.3.【2019年江苏省盐城市建湖县中考数学二模试卷】先化简,再求值:(x -3)2+2(x -2)(x +7)-(x +2)(x -2),其中x 2+2x -3=0.【解析】原式=x 2-6x +9+2x 2+10x -28-x 2+4=4x -15, 由x 2+2x -3=0,即(x -1)(x +3)=0,得到x =1或x =-3, 当x =1时,原式=4-15=-11; 当x =-3时,原式=-12-15=-27.【名师点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 4.【2019年河南省南阳市宛城区中考数学一模试卷】先化简,再求值:23()111x x xx x x -÷-+-,其中x 的值从不等式组111223x x ⎧-≥⎪⎨⎪-<⎩ 的整数解中选取.【解析】23()111x x x x x x -÷-+- =3(1)(1)(1)(1)(1)(1)x x x x x x x x x+--+-⋅+-=3(x +1)-(x -1) =3x +3-x +1 =2x +4,由不等式组111223x x ⎧-≥⎪⎨⎪-<⎩得,-3<x ≤1,当x =-2时,原式=2×(-2)+4=0.【名师点睛】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.5.【广东省肇庆市怀集县2019届九年级中考一模数学试题】先化简,后求值:22211(1)(1)x x x--÷-,其中,x 从0、-1、-2三个数值中适当选取.【解析】原式=2222211x x x x x-+-÷ =222(1)(1)(1)x x x x x -⋅+- =11x x -+, 因为x 取数值0、-1时,代入原式无意义, 所以:取x =-2,得:原式=3.【名师点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.6.【湖南省株洲市石峰区2019届九年级中考数学模拟试题(二)】先化简,再求值:(x -1+221x x -+)÷21x xx -+,其中x 的值从不等式-1≤x <2.5的整数解中选取. 【解析】原式=221(1)1(1)x x x x x x -+-+⋅+- =12(1)1(1)(1)1(1)x x x x x x x x x +--+-⋅⋅⋅-+-=12x x x+-+=1x x-, -1≤x <2.5的整数解为-1,0,1,2, ∵分母x ≠0,x +1≠0,x -1≠0, ∴x ≠0且x ≠1,且x ≠-1, ∴x =2, 当x =2时,原式=21122-=. 【名师点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 7.【山东省德州市齐河县2019年中考数学二模试卷】先化简,再求值:235(2)22m m m m m -÷+---,其中m 是方程x 2+3x +1=0的根.【解析】原式=222234539()22222m m m m m m m m m m m ----÷-=÷-----, =()()()23212333m m m m m m m m--⨯=-+-+.∵m 是方程x 2+3x +1=0的根, ∴m 2+3m +1=0, ∴m 2+3m =-1, 当m 2+3m =-1时,原式=111=--. 【名师点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.8.【黑龙江省哈尔滨市2019中考模拟测试三数学试题】先化简,再求代数式22693111x x x x x x x -+-+÷--+的值,其中2sin30tan60x ︒=-︒.【解析】原式2(3)13·1(1)(1)31x x x x x x x x-+=+=-+---.∵2sin 30tan 601x ︒︒=-==【名师点睛】本题考查了分式的化简求值,其中正确的化简是解答本题的关键.9.【福建省厦门市集美区2019年初中毕业班总复习练习(二模)数学试题】化简求值:22121124a a a a a +++-÷+-,其中31a.【解析】原式=1-12a a ++ ·2(2)(2)(1)a a a +-+ =1-12a a ++=31a +,当a 1时,原式【名师点睛】本题主要考查了分式的化简求值,此类题,一般要先进行因式分解,再应用分式的基本性质进行约分和通分.熟练掌握因式分解、分式的约分和通分是解题的关键.10.【湖北省谷城县2018–2019学年九年级中考适应性考试数学试题】先化简,再求值:22()a b b a ba b a b a b---÷+-+,其中a =b =【解析】(2a b a b -+–ba b -)÷2a b a b-+ =()()()()()22a b a b b a b a ba b a b a b ---++⋅+--=2222312a ab b ab b a b a b-+--⋅-- =()2212a a b a b a b-⋅-- =2a a b-,当a b 时,原式33.【名师点睛】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的计算方法.11.【2019年江苏省苏州市高新区中考数学模拟试卷(4月份)】先化简,再求值:2169(1)224a a a a -+-÷--,其中3a =.【解析】原式=232(2)2(3)a a a a --⋅--=23a -,当a 时,原式【名师点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.。

中考数学专题特训第五讲:分式(含详细参考答案)

中考数学专题特训第五讲:分式(含详细参考答案)

2013年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【赵老师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【赵老师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【赵老师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。

2、分式求值:①先化简,再求值。

②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【赵老师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先此类题目解决过程中要注意整体代入】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a+有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠-1 D.a≠0思路分析:根据分母不等于0列式即可得解.解:∵分式有意义,∴a+1≠0,∴a≠-1.故选C.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 1.B考点二:分式的基本性质运用例2 (2012•杭州)化简216312mm--得;当m=-1时,原式的值为.思路分析:先把分式的分子和分母分解因式得出(4)(4)3(4)m mm+--,约分后得出43m+,把m=-1代入上式即可求出答案.解:216 312 mm--=(4)(4)3(4)m m m +-- =43m +。

2021年中考数学试题汇编-化简求值2

2021年中考数学试题汇编-化简求值2

2021年中考数学试题汇编---化简求值及答案1.〔2021•遂宁〕先化简,再求值:〔+〕÷,其中x=﹣1.2.〔2021•达州〕化简求值:,a取﹣1、0、1、2中的一个数.3.〔2021•黔东南州〕先化简,再求值:÷﹣,其中x=﹣4.4.〔2021•抚顺〕先化简,再求值:〔1﹣〕÷,其中x=〔+1〕0+〔〕﹣1•tan60°.5.〔2021•苏州〕先化简,再求值:,其中.6.〔2021•莱芜〕先化简,再求值:,其中a=﹣1.7.〔2021•泰州〕先化简,再求值:〔1﹣〕÷﹣,其中x满足x2﹣x﹣1=0.8.〔2021•凉山州〕先化简,再求值:÷〔a+2﹣〕,其中a2+3a﹣1=0.9.〔2021•烟台〕先化简,再求值:÷〔x﹣〕,其中x为数据0,﹣1,﹣3,1,2的极差.10.〔2021•鄂州〕先化简,再求值:〔+〕÷,其中a=2﹣.11.〔2021•宁夏〕化简求值:〔﹣〕÷,其中a=1﹣,b=1+.12.〔2021•牡丹江〕先化简,再求值:〔x﹣〕÷,其中x=cos60°.13.〔2021•齐齐哈尔〕先化简,再求值:〔﹣〕÷,其中x=﹣1.14.〔2021•安顺〕先化简,再求值:〔x+1﹣〕÷,其中x=2.15.〔2021•毕节地区〕先化简,再求值:〔﹣〕÷,其中a2+a﹣2=0.16.〔2021•娄底〕先化简÷〔1﹣〕,再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.17.〔2021•重庆〕先化简,再求值:÷〔﹣〕+,其中x的值为方程2x=5x﹣1的解.18.〔2021•抚州〕先化简:〔x﹣〕÷,再任选一个你喜欢的数x代入求值.19.〔2021•河南〕先化简,再求值:÷〔2+〕,其中x=﹣1.20.〔2021•郴州〕先化简,再求值:〔﹣〕,其中x=2.21.〔2021•张家界〕先化简,再求值:〔1﹣〕÷,其中a=.22.〔2021•成都〕先化简,再求值:〔﹣1〕÷,其中a=+1,b=﹣1.23.〔2021•六盘水〕先化简代数式〔﹣〕÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.24.〔2021•重庆〕先化简,再求值:〔x﹣1﹣〕÷,其中x是方程﹣=0的解.25.〔2021•随州〕先简化,再求值:〔﹣〕+,其中a=+1.26.〔2021•黄石〕先化简,后计算:〔1﹣〕÷〔x﹣〕,其中x=+3.27.〔2021•永州〕先化简,再求值:〔1﹣〕÷,其中x=3.28.〔2021•本溪〕先化简,再求值:〔﹣〕÷,其中x=〔〕﹣1﹣〔π﹣1〕0+.29.〔2021•荆州〕先化简,再求值:〔〕÷,其中a,b满足+|b﹣|=0.30.〔2021•深圳〕先化简,再求值:〔﹣〕÷,在﹣2,0,1,2四个数中选一个适宜的代入求值.参考答案与试题解析1.〔2021•遂宁〕先化简,再求值:〔+〕÷,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=﹣1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.2.〔2021•达州〕化简求值:,a取﹣1、0、1、2中的一个数.考点:分式的化简求值.分析:先根据分式混合运算的法那么把原式进行化简,再选取适宜的a的值代入进行计算即可.解答:解:原式=•﹣=﹣=﹣,当a=2时,原式=﹣=﹣1.点评:此题考查的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键.3.〔2021•黔东南州〕先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法那么变形,约分后利用同分母分式的减法法那么计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.4.〔2021•抚顺〕先化简,再求值:〔1﹣〕÷,其中x=〔+1〕0+〔〕﹣1•tan60°.考点:分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,利用零指数幂、负指数幂法那么以及特殊角的三角函数值求出x的值,代入计算即可求出值.解答:解:原式=•=•=x+1,当x=1+2时,原式=2+2.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.5.〔2021•苏州〕先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷〔+〕=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.6.〔2021•莱芜〕先化简,再求值:,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=÷=•=a〔a﹣2〕,当a=﹣1时,原式=﹣1×〔﹣3〕=3.7.〔2021•泰州〕先化简,再求值:〔1﹣〕÷﹣,其中x满足x2﹣x﹣1=0.考点:分式的化简求值.分析:原式第一项括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分后,两项通分并利用同分母分式的减法法那么计算得到最简结果,方程变形后代入计算即可求出值.解答:解:原式=•﹣=•﹣=x﹣=,∵x2﹣x﹣1=0,∴x2=x+1,那么原式=1.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.8.〔2021•凉山州〕先化简,再求值:÷〔a+2﹣〕,其中a2+3a﹣1=0.考点:分式的化简求值.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,方程变形后代入计算即可求出值.解答:解:原式=÷=•=,当a2+3a﹣1=0,即a2+3a=1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.9.〔2021•烟台〕先化简,再求值:÷〔x﹣〕,其中x为数据0,﹣1,﹣3,1,2的极差.考点:分式的化简求值;极差.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,求出数据的极差确定出x,代入计算即可求出值.解答:解:原式=÷=•=,当x=2﹣〔﹣3〕=5时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.10.〔2021•鄂州〕先化简,再求值:〔+〕÷,其中a=2﹣.考点:分式的化简求值.分析:将括号内的局部通分,相加后再将除法转化为乘法,然后约分.解答:解:原式=〔+〕•=•=•=,当a=2﹣时,原式==﹣.点评:此题考查了分式的化简求值,熟悉约分、通分、因式分解是解题关键.11.〔2021•宁夏〕化简求值:〔﹣〕÷,其中a=1﹣,b=1+.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式=•=•=,当a=1﹣,b=1+时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.12.〔2021•牡丹江〕先化简,再求值:〔x﹣〕÷,其中x=cos60°.考点:分式的化简求值;特殊角的三角函数值.分析:先根据分式混合运算的法那么把原式进行化简,再求出x的值代入进行计算即可.解答:解:原式=÷=•=,点评:此题考查的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键.13.〔2021•齐齐哈尔〕先化简,再求值:〔﹣〕÷,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,再利用除法法那么计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=﹣1时,原式=1.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法那么是解此题的关键.14.〔2021•安顺〕先化简,再求值:〔x+1﹣〕÷,其中x=2.考点:分式的化简求值.分析:将括号内的局部通分,再将除法转化为乘法,因式分解后约分即可化简.解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.点评:此题考查了分式的化简求值,熟悉因式分解和分式除法法那么是解题的关键.15.〔2021•毕节地区〕先化简,再求值:〔﹣〕÷,其中a2+a﹣2=0.考点:分式的化简求值;解一元二次方程-因式分解法.分析:先把原分式进行化简,再求a2+a﹣2=0的解,代入求值即可.解答:解:解a2+a﹣2=0得a1=1,a2=﹣2,∵a﹣1≠0,∴a≠1,∴a=﹣2,∴原式=÷=•=,∴原式===﹣.点评:此题考查了分式的化简求值以及因式分解法求一元二次方程的解,是重点内容要熟练掌握.16.〔2021•娄底〕先化简÷〔1﹣〕,再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.考点:分式的化简求值;一元一次不等式的整数解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,求出不等式的解集,找出解集中的正整数解得到x的值,代入计算即可求出值.解答:解:原式=÷=•=,不等式2x﹣3<7,解得:x<5,其正整数解为1,2,3,4,当x=1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.17.〔2021•重庆〕先化简,再求值:÷〔﹣〕+,其中x的值为方程2x=5x﹣1的解.考点:分式的化简求值;解一元一次方程.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分后两项通分并利用同分母分式的加法法那么计算得到最简结果,求出方程的解得到x的值,代入计算即可求出值.解答:解:原式=÷+=•+=+=,当x=时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.18.〔2021•抚州〕先化简:〔x﹣〕÷,再任选一个你喜欢的数x代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两边通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将x=0代入计算即可求出值.解答:解:原式=•=•=x﹣2,当x=0时,原式=0﹣2=﹣2.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.19.〔2021•河南〕先化简,再求值:÷〔2+〕,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x 的值代入计算.解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:此题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.20.〔2021•郴州〕先化简,再求值:〔﹣〕,其中x=2.考点:分式的化简求值.解答:解:原式=[﹣]•=〔+〕•=•=.当x=2时,原式==1.点评:此题考查了分式的化简求值,熟悉约分、通分因式分解是解题的关键.21.〔2021•张家界〕先化简,再求值:〔1﹣〕÷,其中a=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么变形,同时利用除法法那么变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=÷=•=,当a=时,原式==1+.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.22.〔2021•成都〕先化简,再求值:〔﹣1〕÷,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式=•=•=a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.23.〔2021•六盘水〕先化简代数式〔﹣〕÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将a=1代入计算即可求出值.解答:解:原式=•=•=2a+8,当a=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.24.〔2021•重庆〕先化简,再求值:〔x﹣1﹣〕÷,其中x是方程﹣=0的解.考点:分式的化简求值;解一元一次方程.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,求出方程的解得到x的值,代入计算即可求出值.解答:解:原式=÷=•=,方程去分母得:5x﹣5﹣2x+4=0,解得:x=,当x=时,原式==﹣.点评:此题考查了分式的化简求值,以及解一元一次方程,熟练掌握运算法那么是解此题的关键.25.〔2021•随州〕先简化,再求值:〔﹣〕+,其中a=+1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=•〔a+1〕〔a﹣1〕=a2﹣3a,当a=+1时,原式=3+2﹣3﹣3=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.26.〔2021•黄石〕先化简,后计算:〔1﹣〕÷〔x﹣〕,其中x=+3.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=+3时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.27.〔2021•永州〕先化简,再求值:〔1﹣〕÷,其中x=3.考点:分式的化简求值.分析:先计算括号内的分式减法,然后把除法转化为乘法进行化简,最后代入求值.解答:解:原式=〔﹣〕×=×=.把x=3代入,得==,即原式=.故答案为:.点评:此题考查了分式的化简求值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.28.〔2021•本溪〕先化简,再求值:〔﹣〕÷,其中x=〔〕﹣1﹣〔π﹣1〕0+.考点:分式的化简求值;零指数幂;负整数指数幂.分析:先计算括号内的分式的减法,把分式除法转化为乘法运算进行化简.最后代入求值.解答:解:原式=[﹣]÷,=×,=.﹣10=1+那么原式==+1.点评:此题考查了分式的化简求值,零指数幂和负整数指数幂.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.29.〔2021•荆州〕先化简,再求值:〔〕÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,那么原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法那么是解此题的关键.30.〔2021•深圳〕先化简,再求值:〔﹣〕÷,在﹣2,0,1,2四个数中选一个适宜的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.。

初中数学(初二)考点:分式的化简求值

初中数学(初二)考点:分式的化简求值

1、考点名称:分式的化简求值5年考试次数:327考点内容:(1) 先把分式化简后,再把分式中未知数对应的值代入求出分式的值.(2) 在化简的过程中要注意运算顺序和分式的化简.(3) 化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.规律方法:分式化简求值时需注意的问题:1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.2、考点名称:解分式方程5年考试次数:247考点内容:(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解. 所以解分式方程时,一定要检验.3、考点名称:分式方程的应用5年考试次数:151考点内容:1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力. 4、考点名称:待定系数法求一次函数解析式5年考试次数:76考点内容:待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.5、考点名称:三角形内角和定理5年考试次数:106考点内容:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角6、考点名称:全等三角形的判定5年考试次数:136考点内容:(1)判定定理1:SSS--三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS--两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA--两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL--斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7、考点名称:等腰三角形的判定5年考试次数:44考点内容:判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.简称:等边对等角说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.8、考点名称:勾股定理5年考试次数:760考点内容:(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:、及(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.9、考点名称:三角形中位线定理5年考试次数:229考点内容:(1)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言: 如图,∵点D、E分别是AB、AC的中点∴DE∥BC,DE=BC.10、考点名称:平行四边形的判定5年考试次数:102考点内容:(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.。

初中数学专题1:数与式分式化简求值

初中数学专题1:数与式分式化简求值

数学中考专题一:分式化简求值一、考纲要求(分值范围17-20分)(一)、有理数部分1.了解部分:|a|的含义。

2.理解部分:有理数的概念、相反数、绝对值、乘方的意义、有理数的混合运算、有理数的运算律。

3.掌握部分:用数轴上的点表示有理数、比较有理数的大小、相反数、绝对值、有理数的加减乘除乘方运算、有理数的混合运算、有理数的运算律。

4.运用部分:相反数、绝对值、理数的混合运算、有理数的运算律。

(二)、实数部分1.了解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根、无理数和实数的概念及其与数轴上的点的对应关系、近似数的概念、二次根式及最简二次根式的概念、二次根式(根号下仅限于数)加减乘除及四则运算法则。

2.理解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根。

3.掌握部分:求实数的相反数与绝对值、用有理数估计一个无理数的大致范围、用计算机进行近似计算。

4.运用部分:二次根式(根号下仅限于数)加减乘除及四则运算法则(三)、代数式1.了解部分:无。

2.理解部分:用字母表示数的意义、求代数式的值。

3.掌握部分:简单数量关系的分析与表示、求代数式的值。

4.运用部分:求代数式的值。

(四)、整式与分式1.了解部分:整数指数幂的意义和基本性质、分式和最简分式的概念。

2.理解部分:科学记数法、整式的概念、乘法公式(平方差和完全平方公式)3.掌握部分:整式的加减乘法(多项式限一次与二次式)运算、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质、约分和通分、分式的加减乘除运算。

4.运用部分:科学记数法、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质。

5.经历部分:乘法公式(平方差和完全平方公式)。

6.探索部分:乘法公式(平方差和完全平方公式)。

黑龙江省牡丹江市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

黑龙江省牡丹江市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

黑龙江省牡丹江市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.分式的化简求值(共2小题)1.(2023•牡丹江)先化简,再求值:(1﹣)÷,其中x=sin30°.2.(2021•牡丹江)先化简,再求值:(﹣1)÷,其中x=sin30°.二.一元一次不等式的应用(共1小题)3.(2022•牡丹江)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B 种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,请解答下列问题:(1)求A,B两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)三.一次函数的应用(共1小题)4.(2021•牡丹江)在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C 地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A地路程s(米)之间的函数图象.(1)a= ,乐乐去A地的速度为 ;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.四.二次函数图象与系数的关系(共1小题)5.(2021•牡丹江)抛物线y=﹣x2+bx+c经过点A(﹣3,0)和点C(0,3).(1)求此抛物线所对应的函数解析式,并直接写出顶点D的坐标;(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,则点Q 的坐标为 .注:抛物线y=ax2+bx+c(a≠0)的顶点坐标(﹣)五.待定系数法求二次函数解析式(共1小题)6.(2022•牡丹江)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接BC,CD,BD,P为BD的中点,连接CP,则线段CP的长是 .注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).六.全等三角形的判定与性质(共1小题)7.(2022•牡丹江)如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE=BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;= .七.相似三角形的判定与性质(共1小题)8.(2021•牡丹江)Rt△ABC中,∠C=90°,AB=17,BC=8,矩形CDEF的另三个顶点D,E,F均在Rt△ABC的边上,且邻边之比为1:2,画出符合题意的图形,并直接写出矩形周长的值.八.特殊角的三角函数值(共1小题)9.(2022•牡丹江)先化简,再求值.(x﹣)÷,其中x=cos30°.九.条形统计图(共2小题)10.(2023•牡丹江)第二十二届中国绿色食品博览会上,我省采用多种形式,全方位展示“寒地黑土”“绿色有机”金字招牌,大力推介以下绿色优质农产品:A.“龙江奶”;B.“龙江肉”;C.“龙江米”;D.“龙江杂粮”;E.“龙江菜”;F.“龙江山珍”等,为了更好地了解某社区对以上六类绿色优质农产品的关注程度,某校学生对社区居民进行了抽样调查(每位居民只选最关注的一项),根据调查统计结果,绘制了如图所示的不完整统计图.请根据两幅统计图中的信息,解答下列问题:(1)本次参与调查的居民有多少人?(2)补全条形统计图,在扇形统计图中C类的百分比是 ;(3)如果该社区有4000人,估计关注“龙江杂粮”的居民有多少人?11.(2021•牡丹江)为了解某校八年级学生在语文学习中对小说、诗歌、散文、戏剧四类文学体裁的喜爱情况,随机抽查了部分学生(每人只选一类),然后根据调查数据,绘制了不完整的条形统计图和扇形统计图,结合统计图,解答下列问题.(1)本次抽样调查的样本容量为 ;(2)补全条形统计图;(3)喜爱戏剧的学生对应扇形的圆心角为 ;(4)已知该校八年级共有学生800人,请你估计课外活动小组诗歌社团拟招社员200人能否实现,请说明理由.黑龙江省牡丹江市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.分式的化简求值(共2小题)1.(2023•牡丹江)先化简,再求值:(1﹣)÷,其中x=sin30°.【答案】x+1,原式=.【解答】解:(1﹣)÷=•=•=x+1,当x=sin30°=时,原式=+1=.2.(2021•牡丹江)先化简,再求值:(﹣1)÷,其中x=sin30°.【答案】见试题解答内容【解答】解:原式=[﹣1]•=(﹣)•=•=﹣,当x=sin30°=时,原式=﹣=﹣4.二.一元一次不等式的应用(共1小题)3.(2022•牡丹江)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B 种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,请解答下列问题:(1)求A,B两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)【答案】(1)A种防疫用品的成本为2000元/箱,B种防疫用品的成本为1500元/箱;(2)该工厂共有6种生产方案;(3)共有4种购买方案,最多可购买甲,乙两种设备共33台.【解答】解:(1)设B种防疫用品的成本为x元/箱,则A种防疫用品的成本为(x+500)元/箱,依题意得:=,解得:x=1500,经检验,x=1500是原方程的解,且符合题意,∴x+500=1500+500=2000.答:A种防疫用品的成本为2000元/箱,B种防疫用品的成本为1500元/箱.(2)设生产m箱B种防疫用品,则生产(50﹣m)箱A种防疫用品,依题意得:,解得:20≤m≤25.又∵m为整数,∴m可以为20,21,22,23,24,25,∴该工厂共有6种生产方案.(3)设(2)中的生产成本为w元,则w=2000(50﹣m)+1500m=﹣500m+100000,∵﹣500<0,∴w随m的增大而减小,∴当m=25时,w取得最小值,最小值=﹣500×25+100000=87500.设购买a台甲种设备,b台乙种设备,依题意得:2500a+3500b=87500,∴a=35﹣b.又∵a,b均为正整数,∴或或或,∴a+b=33或31或29或27.∵33>31>29>27,∴共有4种购买方案,最多可购买甲,乙两种设备共33台.三.一次函数的应用(共1小题)4.(2021•牡丹江)在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C 地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A地路程s(米)之间的函数图象.(1)a= 2 ,乐乐去A地的速度为 200米/分钟 ;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.【答案】见试题解答内容【解答】解:(1)由函数图象得B地跑步到A地的路程是400米,∵乐乐从B地跑步到A地,休息1分钟后接到通知,∴a=3﹣1=2,∴乐乐去A地的速度为:400÷2=200(米/分钟),故答案为:2,200米/分钟;(2)设FG的解析式为:s=kt+b(k≠0),∵s=kt+b(k≠0)的图象过点F(3,0)、G(7,1200),∴,解得:,∴FG的解析式为:s=300t﹣900(3<t≤7),即乐乐从A地到C地的函数解析式:s=300t﹣900(3<t≤7);(3)设OH的解析式为:s=kt(k≠0),∵s=kt(k≠0)的图象过点H(8,1200),∴1200=8k,解得:k=150,∴OH的解析式为:s=150t(0≤t≤8),即男男从A地到C地的函数解析式:s=150t,①0≤t≤2时,200t=400﹣150t,解得:t=;②2<t≤3时,400=150t﹣400,解得:t=>3,舍去;③3<t≤7时,400﹣(300t﹣900)=150t﹣400或(300t﹣900)﹣400=150t﹣400,解得:t=或t=6,④t=8时,两人距B地的距离相等.综上,两人距B地的距离相等的时间为分钟或分钟或6分钟或8分钟.四.二次函数图象与系数的关系(共1小题)5.(2021•牡丹江)抛物线y=﹣x2+bx+c经过点A(﹣3,0)和点C(0,3).(1)求此抛物线所对应的函数解析式,并直接写出顶点D的坐标;(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,则点Q 的坐标为 Q1(﹣,0),Q2(﹣1,0) .注:抛物线y=ax2+bx+c(a≠0)的顶点坐标(﹣)【答案】Q1(﹣,0),Q2(﹣1,0).【解答】解:(1)把点A(﹣3,0)和点C(0,3)代入y=﹣x2+bx+c得:,解得:,∴y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).(2)取线段AC的三等分点E、F,连接DE、DF交x轴于点Q1、Q2,则:S△DAE:S△DEC=1:2,S△DAF:S△DFC=2:1,∵点A(﹣3,0),点C(0,3),∴E(﹣2,1),F(﹣1,2),∴DF⊥x轴于点Q2,∴Q2(﹣1,0),设直线DE的解析式为:y=kx+b(k≠0),把点D(﹣1,4),E(﹣2,1)代入,得:,解得:,∴直线DE的表达式为:y=3x+7,当y=0时,x=﹣,∴Q1(﹣,0).故答案为:Q1(﹣,0),Q2(﹣1,0).五.待定系数法求二次函数解析式(共1小题)6.(2022•牡丹江)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接BC,CD,BD,P为BD的中点,连接CP,则线段CP的长是 .注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).【答案】(1)y=﹣x2+2x+3;(2).【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),把x=0代入y=﹣x2+2x+3,得y=3,∴C(0,3),∵P为BD的中点,∴P(2,2),∴CP==.故答案为:.六.全等三角形的判定与性质(共1小题)7.(2022•牡丹江)如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE=BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=12,则BC= 8 ,BF= 14或18 .【答案】(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)见解析;(3)8,14或18.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.七.相似三角形的判定与性质(共1小题)8.(2021•牡丹江)Rt△ABC中,∠C=90°,AB=17,BC=8,矩形CDEF的另三个顶点D,E,F均在Rt△ABC的边上,且邻边之比为1:2,画出符合题意的图形,并直接写出矩形周长的值.【答案】见试题解答内容【解答】解:如图1,当CF=2EF时,∵∠C=90°,AB=17,BC=8,∴AC===15,∵四边形CDEF是矩形,∴EF∥BC,EF=CD,CF=DE,∴△AEF∽△ACB,∴,∴,∴EF=,∴CF=,∴矩形CDEF的周长=2(CF+EF)=;如图2,当EF=2CF时,∵∠C=90°,AB=17,BC=8,∴AC===15,∵四边形CDEF是矩形,∴EF∥BC,EF=CD,CF=DE,∴△AEF∽△ABC,∴,∴=,∴EF=,∴CF=∴矩形CDEF的周长=2(CF+EF)=;综上所述:矩形CDEF的周长的值为或.八.特殊角的三角函数值(共1小题)9.(2022•牡丹江)先化简,再求值.(x﹣)÷,其中x=cos30°.【答案】x﹣1,﹣1.【解答】解:原式=•=•=x﹣1,∵x=cos30°=,∴原式=﹣1.九.条形统计图(共2小题)10.(2023•牡丹江)第二十二届中国绿色食品博览会上,我省采用多种形式,全方位展示“寒地黑土”“绿色有机”金字招牌,大力推介以下绿色优质农产品:A.“龙江奶”;B.“龙江肉”;C.“龙江米”;D.“龙江杂粮”;E.“龙江菜”;F.“龙江山珍”等,为了更好地了解某社区对以上六类绿色优质农产品的关注程度,某校学生对社区居民进行了抽样调查(每位居民只选最关注的一项),根据调查统计结果,绘制了如图所示的不完整统计图.请根据两幅统计图中的信息,解答下列问题:(1)本次参与调查的居民有多少人?(2)补全条形统计图,在扇形统计图中C类的百分比是 30% ;(3)如果该社区有4000人,估计关注“龙江杂粮”的居民有多少人?【答案】(1)200;(2)30%;(3)920.【解答】解:(1)34÷17%=200(人),答:本次参与调查的居民有200人;(2)选择B.“龙江肉”的学生人数为:200×15%=30(人);选择C.“龙江米”的学生人数为:200﹣18﹣46﹣34﹣12﹣30=60(人),补全条形统计图如图所示:扇形统计图中C类的百分比是60÷200×100%=30%,故答案为:30%;(3)4000×=920(人),答:该社区有4000人,估计关注“龙江杂粮”的居民约为920人.11.(2021•牡丹江)为了解某校八年级学生在语文学习中对小说、诗歌、散文、戏剧四类文学体裁的喜爱情况,随机抽查了部分学生(每人只选一类),然后根据调查数据,绘制了不完整的条形统计图和扇形统计图,结合统计图,解答下列问题.(1)本次抽样调查的样本容量为 50 ;(2)补全条形统计图;(3)喜爱戏剧的学生对应扇形的圆心角为 36° ;(4)已知该校八年级共有学生800人,请你估计课外活动小组诗歌社团拟招社员200人能否实现,请说明理由.【答案】见试题解答内容【解答】解:(1)本次抽样调查的样本容量为:15÷30%=50,故答案为:50;(2)喜爱诗歌的学生人数:50﹣15﹣18﹣5=12(人),补全条形统计图如下:(3)喜爱戏剧的学生对应扇形的圆心角为:360°×=36°,故答案为:36°;(4)估计课外活动小组诗歌社团拟招社员200人不能实现,理由:800人中喜爱诗歌的学生人数:800×=192(人).192<200,∴估计课外活动小组诗歌社团拟招社员200人不能实现.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题复习分式的化简求值与分式方程
分式化简技巧
1. 在分式的运算中,有整式时,可以把整式看做分母为1的式子,然后
再计算。

2. 要注意运算顺序,先乘方、同级运算从左到右依次进行。

3. 如果分式的分子分母是多项式,可先分解因式,再运算。

4. 注意分式化简题不能去分母.
类型一、分式化简
1、计算:
2、化简:
3、化简,:

类型二、化简求值
4、先化简,再求值:,其中。

2、
5、先化简,再求值:,其中x=.
6、先化简,在求代数式的值.,其中
7、已知.将他们组合成(A-B)÷C或A-B÷C的形式,请你从中任选一种进行计算.先化简,再求值,其中.
类型二、化简求值与不等式组
,其中x是不等式组
的整数解.
9、化简代数式,并判断当x满足不等式组
时该代数式的符号.
类型三、化简,选取合适的数求值
10、先化简:,再用一个你最喜欢的数代替计算结果
11、先化简,然后从的范围内选取一个合适的整数作为x的值代入求值。

12、先化简:,再选取一个合适的值代13、先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值。

14、先化简:().再从1,2,3中选一个你认为合适的数作为a的值代入求值.
类型四、化简求值,整体代入
16、先化简,再求值:(-)÷,其中x满足x2-x-1=0.
17、 先化简,再求值:,其中满足.
18、已知:,求的值.
19、先化简,再求值:,其中a满足:
分式方程技巧:
解分式方程的步骤:
1、去分母---------化分式方程为整式方程两边同乘以最简公分母
2、解整式方程-------去括号、移项、合并同类项、系数化为1
3、检验-------带入最简公分母,若为零,则为増根,应舍去。

1、解方程: 2.
3、
. 4.。

相关文档
最新文档