无线能量传输技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小组成员:

无线能量传输技术简述

摘要:

无线能量传输技术近年来得到了极大的发展,在诸多领域得到了广泛的应用。该技术不依赖于有线的传输媒介,对于有线供电部署困难的场合具有重要的意义。本文将简要介绍了无线能量传输技术的发展、传输方式、国内外的研究现状以及传输中遇到的问题。

关键词:

无线能量传输、电磁感应、电磁共振、电磁辐射

1.引言

1.1技术背景

尼古拉•特斯拉创建了交流电系统后,又基于交流电系统提出了无线能量传输的构想,为此,他搭建了特斯拉铁塔实验平台,以研究无线远距离能量传输。后由于资金匮乏最终未能如愿,但这,足以启发人们对无线能量传输的探索。

随着科学技术的发展,基于特斯拉无线能量传输的构想,很多欧美学者展开研究工作,20世纪60年代,提出了利用微波将太阳能从卫星输送到地面的想法;70年代,利用电磁感应原理的电动牙刷研制成功;90年代,新西兰奥克兰大学成立研究中心,主要研究滑动式无线能量传输系统并获得重大进展,21世纪初,美国麻省理工学院研究人员提出了强耦合电磁共振原理,并实验成功引起世界注目;随后几年,诸多国家掀起了无线能量传输技术的研究热潮。

传统的电能传输方式存在很多不足之处,电源线、电源插头种类各异,不能

通用;插座也有形式和数量的限制;电线插头又存在老化损坏的现象,对人们的生命财产安全造成威胁,特别是在一些大功率应用的工业场合,如井下作业、石油和采炼等,接触中即使再微弱的火花都会造成难以估量的损失。而在这些场合,如果使用无线供电方式,就能消除潜在的安全隐患,因为无线能量传输技术能够在非接触的情况下将电能输送过去,这样得以保证系统安全、可靠以及灵活的运作。

1.2技术应用

无线输电技术应用领域非常广泛,概括起来有以下几个方面:

①医学:把设备放置于体外,对体内设备进行无接触能量传输和控制;

②地下作业:用于海底探测、化石能源采集等活动;

③电池充电:手机、笔记本电脑,太阳能电池板等用电设备的电池充电;

④机器驱动:对区域内用电设备直接供电,如电灯、机器人等。

1.3能量传输方式

无线能量传输主要通过三种方式:

①电磁感应式(InductivelyCoupledPowerTransfer),现已比较成熟,它是由原边线圈通电产生磁场,而副边线圈必须处于这一磁场之中才能有效传输能量,因此传输距离相对较近(数十毫米之内),属于近场无线能量传输技术,但电能传输的效率却很高,能够达到99%,工作频率较低,一般在几十KHz。电力传输过程中使用的变压器就是最直接的应用,变压器原副边线圈实际并未相接,通过互感耦合来实现能量的传递,这种技术要求发射端和接收端的位置保持固定,两侧线圈一旦出现位移情况,那么传输的稳定性以及效率都会骤然下降。

②电磁共振式(MagneticResonantWirelessPowerTransfer),基于相同频率的振

荡电路,只要振荡器设计合理,那么相隔一定距离(共振波长范围内)产生共振,能量通过电磁场为媒介相互传递,亦属于近场无线能量传输技术,传输距离相对较远(数十厘米到数十米),效率高,频率一般在MHz,因为共振波长数倍于振荡器尺寸,所以能量在传输过程中能够绕开或者穿透附近非磁性物体,不受其影响,也不具有特定的方向,并且磁场对周围人和其它生物几乎没有相互作用,安全性得以保证。

③电磁辐射式,它利用微波(MicrowavePowerTransfer)或者平行激光束(LaserPowerTransfer)实现能量的定向传输,属于远场无线能量传输技术,传输距离最远(数千米),由于空气吸收以及电能光能之间的相互转换,导致传输效率非常低,频率最高,一般在GHz,这类点对点传输要求接收装置与发射装置之间不能有障碍,而且激光和微波对生物体会造成不同程度的伤害。

2国内外研究现状

2.1国外研究现状

2006年,美国麻省理工首先提出了磁共振式无线能量传输技术,团队成员使用两个空间螺旋状线圈作为发射端和接收端,隔着障碍物将两米外的一个60W 灯泡点亮,谐振频率在9.9MHz左右。其后,美国威斯康辛大学设计了能够传输220W的无线装置,但是距离缩短至30cm,传输效率却明显提升。

日本东京大学在麻省理工研究的基础上,重点研究了不同线圈结构下传输效率、谐振特性、阻抗匹配等问题,并分析了系统传输特性随耦合系数、传输距离、工作频率、线圈内阻等参数的变化情况,研制出可以给电动汽车充电的展示装置,传输功率在100W左右,传输距离为20cm,效率达到96%。

匹兹堡大学主要研究医学领域,他们利用无线能量传输技术为可植入式设备

提供非接触充电,主要也是基于麻省理工强耦合磁共振原理,由于是应用于医学,属于小功率能量传输,因此,发射端和接收端螺旋状线圈尺寸都较小,特别是接收端只有几十毫米乃至几毫米,完全适合医学植入使用,但是传输效率很低,距离在90mm时传输效率为22.3%。

国际上还有很多知名大学或者组织机构致力于此项技术的研究,不列颠哥伦比亚大学主要研究小功率领域,他们利用电路耦合理论,经过一系列计算得出能够反应系统传输特性的表达式,包括传输功率、传输效率等,并进行了优化分析;华盛顿大学和卡内基梅隆大学利用电路耦合理论并结合实验分析验证了频率分叉现象,即在不同谐振补偿结构下,不同参数条件下,谐振频率点会出现分叉;三菱电机研究所则通过研究电磁材料,通过增大耦合系数的方式,提高能量传输功率和效率。

2.2国内研究现状

在无线能量传输技术研究的热潮中,国内已有不少组织机构投入这个领域,虽然中国在此领域起步较晚,但也获得了一定的研究成果。

2001年,西安石油学院的李宏发表了第一篇关于感应电能传输技术在矿井用感应电力机车上应用的可行性的文章。同年,重庆大学自动化学院孙跃教授开始了对无线电能传输技术及其应用的研究,并且重庆大学与国外的新西兰奥克大学展开了合作,与国内的海尔集团进行合作,进行深层次的学术交流与科技合作。2003年,重庆大学樊华、郑小林、皮喜田、彭承琳等对用于体内诊疗装置的无线能量传输方案进行了研究,这是比较早的一次对于无线能量传输技术在医疗仪器上的应用的探索。

随着技术的成熟与进步,越来越多的科研人员与科研机构以及高校开始了对

相关文档
最新文档