2条件概率
2条件概率、概率的公理化定义、全概率公式(文科)
A B P A P B P AB P A B P A B AB P A P B P AB
概率在此公理化定义下,有如下运算性质
推广——
P A B C P A P B P C P AB P AC P BC P ABC
B 的出现与 A 和 A 均有关,所以把 B 分解为 A B + A B
去解决问题。
全概率公式
定理 设
A1 , A2 ,... An 构成一个完备事件组,且诸 P Ai 0,
n
则对任一随机事件 B ,有
P B P Ai P B Ai
i 1
(全概率公式)
条件概率
例2 袋中有16个球,颜色与材料如下表所示 木质球 红球 兰球 2 4 玻璃球 3 7
现从中任意摸取一个球,若已知摸到的是红球,那么这红球是木 质球的概率是多少?
条件概率的定义:
设A、B为同一随机试验的两个事件,且 P(A)>0,P(B)>0,则称
PB A
P AB
其中男同学GG请的第三个舞伴还不是女同学的概率。
例3 在一个化妆舞会上,有 20 个男同学,10 个女同学,试问:
解:“请的第三个舞伴还不是女同学”相当于“第一、第二、 第三次请的都是男同学”。
设 Ai 表示“第i 次请的是男同学”。 则所求事件的概率是:
凡事不过三
P A1 A2 A3 P A1 P A2 A1 P A3 A1 A2 19 18 17 0.265 29 28 27
n
(贝叶斯公式)
§1.4 条 件 概 率(一,二)
注意P(AB)与P(A | B)的区别! 与 的区别! 注意 的区别
请看下面的例子
乙两厂共同生产1000个零件,其中 个零件, 例2 甲、乙两厂共同生产 个零件 其中300 件是乙厂生产的. 而在这300个零件中,有189个 个零件中, 件是乙厂生产的 而在这 个零件中 个 是标准件,现从这1000个零件中任取一个,问这 个零件中任取一个, 是标准件,现从这 个零件中任取一个 个零件是乙厂生产的标准件的概率是多少? 个零件是乙厂生产的标准件的概率是多少? 乙厂生产} 设B={乙厂生产 乙厂生产 A={标准件 标准件} 标准件 所求为P(AB). 所求为
1 1 6 P( AB) = P(B|A) = = 3 3 6 P( A)
又如, 件产品中有 件正品, 件次品 件产品中有7件正品 件次品, 又如,10件产品中有 件正品,3件次品, 7件正品中有 件一等品,4件二等品 现从这 件正品中有3件一等品 件二等品. 件正品中有 件一等品, 件二等品 10件中任取一件,记 件中任取一件, 件中任取一件 B={取到一等品 , 取到正品 取到一等品}, 取到正品} 取到一等品 A={取到正品 P(B )=3/10, ,
P( AB) P(B | A) = P( A)
为在事件A发生的条件下 事件 的条件概率. 为在事件 发生的条件下,事件 的条件概率 发生的条件下 事件B的条件概率
3. 条件概率的性质 自行验证 条件概率的性质(自行验证 自行验证) 是一事件, 设A是一事件,且P(A)>0,则 是一事件 则 1. 对任一事件 ,0≤P(B|A)≤1; 对任一事件A, 2. P ( | A) =1 ; 3.设B1,…,Bn互不相容,则 设 互不相容, P[(B1+…+Bn )| A] = P(B1|A)+ …+P(Bn|A) 而且, 而且,前面对概率所证明的一些重要性质 都适用于条件概率. 都适用于条件概率 请自行写出. 请自行写出
【高中数学】条件概率(2) 课件 高二下学期数学人教A版(2019)选择性必修第三册
解法二:在缩小的样本空间A上求P(B|A). 已知第1次抽到代数题, 这时还
余下4道试题, 其中代数题和几何题各2道.
2 1
因此,事件A发生的条件下,事件B发生的概率为 (|) = =
3
又P(A)=
5
, 利用乘法公式可得
3 1 3
P(AB)=P(A)P(B|A)= = .
5 2 10
4
2
P(B|A)容易求,
3
7 2 7
(2) P ( AB ) P ( A) P ( B | A) . 或P( AB) n( AB) 7 6 7 .
10 3 15
n() 10 9 15
7
.
∴两次都摸到白球的概率为
15
练习 有一批种子的发芽率为0.9,发芽后的幼苗成活率为0.8,在这批种
根据题意得P B|A = 0.8, P A = 0.9,
则P AB = P B|A ⋅ P A = 0.8 × 0.9 = 0.72,故选A
练习 有5瓶除颜色外完全相同的墨水,其中红色墨水1瓶,蓝色、黑色墨
水各2瓶,某同学从中随机任取2瓶,若取得的2瓶中有1瓶是蓝色墨水,
求另1瓶是红色墨水或黑色墨水的概率.
则P(B|A)=P(B)或P(A|B)=P(A).
此时:P(AB) = P(A)P(B)
作用:用于计算P(AB)
()
样本点个数公式
() =
()
=()(|)
定义公式
例题 在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,
抽出的题不再放回. 求:第1次抽到代数题且第2次抽到几何题的概率;
子中,随机抽取一粒,则这粒种子能成长为幼苗(发芽,且幼苗成活)的
条件概率、二项分布及正态分布(讲解部分)
考法二 正态分布问题的解题方法
例2 (2018河北石家庄新华模拟,19)“过大年,吃水饺”是我国不少地方 过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某 种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 x(同一组中 的数据用该组区间的中点值作代表);
∴E(X)=4×1 =2.
2
方法总结 1.对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知 (1)P(X≥μ)=P(X≤μ)=0.5; (2)对任意的a有P(X<μ-a)=P(X>μ+a); (3)P(X<x0)=1-P(X≥x0); (4)P(a<X<b)=P(X<b)-P(X≤a). 2.服从N(μ,σ2)的随机变量X在某个区间内取值的概率的求法: (1)利用P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值直接求; (2)充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质 求解.
(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),
利用该正态分布,求Z落在(14.55,38.45)内的概率; ②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数 学期望. 附:计算得所抽查的这100包速冻水饺的质量指标值的标准差为σ= 142.75 ≈11.95; 若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4. 解题导引
数学:2.2.1《条件概率》教案(新人教B版选修2-3)
2.2.1条件概率教学目标:知识与技能:通过对具体情景的分析,了解条件概率的定义。
过程与方法:掌握一些简单的条件概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:条件概率定义的理解教学难点:概率计算公式的应用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。
教学过程:一、复习引入:探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用 B 表示事件“最后一名同学抽到中奖奖券”, 则 B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1 ()3 P B=.思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为12,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) .思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因此(|)P B A =12=()()n AB n A .其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,()()(),()()()n AB n A P AB P A n n ==ΩΩ其中 n (Ω)表示Ω中包含的基本事件个数.所以,(|)P B A =()()()()()()()()n A B n A B P A B n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) .条件概率1.定义设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.(|)P B A 定义为()(|)()P AB P B A P A =.由这个定义可知,对任意两个事件A 、B ,若()0P B >,则有()(|)()P AB P B A P A =⋅. 并称上式微概率的乘法公式.2.P (·|B )的性质:(1)非负性:对任意的A ∈f. 0(|)1P B A ≤≤;(2)规范性:P (Ω|B )=1;(3)可列可加性:如果是两个互斥事件,则(|)(|)(|)P B C A P B A P C A =+ .更一般地,对任意的一列两两部相容的事件i A (I=1,2…),有P ⎥⎦⎤⎢⎣⎡∞= 1|i i B A =)|(1B A P i i ∑∞=.例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=35A =20.根据分步乘法计数原理,n (A )=1134A A ⨯=12 .于是 ()123()()205n A P A n ===Ω.(2)因为 n (AB)=23A =6 ,所以()63()()2010n AB P AB n ===Ω.(3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概3()110(|)3()25P AB P B A P A ===. 解法2 因为 n (AB )=6 , n (A )=12 ,所以()61(|)()122P AB P B A P A ===.例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A = 表示不超过2次就按对密码.(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得1121911()()()101095P A P A P A A ⨯=+=+=⨯.(2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯.课堂练习.1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P (A ),P (B ),P (AB ),P (A ︱B )。
Bayes定理知识讲解
Ⅲ
1
20岁
概率 前概率 条件概率 联合概率 后概率
Ⅱ1是杂合子(Aa) 1/2
1-0.64=0.36 0.5×0.36=0.18
0.18/(0.18+0.5)=0.26
Ⅱ1是纯合子(aa) 1/2 1
0.5×1 = 0.5
0.5/(0.18+0.5)=0.74
由此得知为杂合子的概率为0.26(而不是按遗传规律推算的0.5了) 其降低的意义在于,45岁了尚未发病,故此是杂合子的概率降低了。
•
根据遗传规律,Ⅲ1是杂合
•
子的概率是1/2×0.26=0.13
•
Ⅲ1是纯合子(aa)的概率是
•
1-0.13=0.87。Ⅲ1是杂合子在
•
20为20岁以前发病者占
8%,1-0.08=0.92),是纯合子(aa)未病概率是1。
• 概率
前概率 条件概率 联合概率 后概率
3/4,假如该夫妇生了两个正常孩子,出现这种情况的 概率为3/4×3/4 = 9/16。这就是条件概率
• 3、联合概率:
• 将某一情况的前概率和条件概率相乘,乘积为 联合概率,即某一前提和在此前提下出现的结 果,这两者同时出现的概率。
• 4、后概率:
• 是某一假设下的联合概率除以所有假设条件下 的联合概率的和,也就是联合概率的相对概率, 这一概率即是考虑了实际情况的条件概率后计 算出的最终概率。
23 4
根据系谱得知:
Ⅰ2肯定是携带者。 6 Ⅱ5可能是携带者。
Ⅱ5的基因型不能肯定。 Ⅲ1的基因型更不能肯定
5
Ⅱ
Ⅰ
1
2
12
? 345
Ⅲ ?1 2
3
4
高中数学 第二章 概率 2.3.1 条件概率学案 苏教版选修2-3-苏教版高二选修2-3数学学案
2.3.1 条件概率学习目标 1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.知识点一条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.梳理(1)条件概率的概念一般地,对于两个事件A和B,在已知________发生的条件下________发生的概率,称为事件B发生的条件下事件A的条件概率,记为________.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=________.②利用条件概率,有P(AB)=________________.知识点二条件概率的性质1.任何事件的条件概率都在______之间,即________________________________________________________________________.2.如果B 和C 是两个互斥的事件,则P (B ∪C |A )=____________________.类型一 求条件概率 命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;(2)求这个代表恰好是团员代表的概率;(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.反思与感悟 用定义法求条件概率P (B |A )的步骤(1)分析题意,弄清概率模型.(2)计算P (A ),P (AB ).(3)代入公式求P (B |A )=P (AB )P (A ). 跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________. 命题角度2 缩小基本事件范围求条件概率引申探究1.在本例条件下,求乙抽到偶数的概率.2.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).例2 集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.反思与感悟 将原来的基本事件全体Ω缩小为已知的条件事件A ,原来的事件B 缩小为AB .而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P (B |A )=n (AB )n (A ),这里n (A )和n (AB )的计数是基于缩小的基本事件范围的.跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.类型二条件概率的综合应用例3 把外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的球是红球,则称试验成功,求试验成功的概率.反思与感悟当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P(B∪C|A)=P(B|A)+P(C|A)便可求得较复杂事件的概率.跟踪训练3 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是多少?1.已知P (AB )=310,P (A )=35,则P (B |A )=________. 2.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到的一个甲厂的合格灯泡的概率是________.3.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取两次,每次取1件,已知第二次取得一等品,则第一次取得的是二等品的概率为________.4.假定生男、生女是等可能的,一个家庭中有两个小孩,已知有一个是女孩,则另一个小孩是男孩的概率是________.5.抛掷红、蓝两颗骰子,记事件A 为“蓝色骰子的点数为4或6”,事件B 为“两颗骰子的点数之和大于8”,求:(1)事件A 发生的条件下事件B 发生的概率;(2)事件B 发生的条件下事件A 发生的概率.1.P(A|B)表示事件A在“事件B已发生”这个附加条件下的概率,与没有这个附加条件的概率是不同的.也就是说,条件概率是在原随机试验的条件上再加上一定的条件,求另一事件在此“新条件”下发生的概率.2.若事件A,C互斥,则P[A∪C|B]=P(A|B)+P(C|B).答案精析问题导学知识点一思考1 P (A )=93100,P (B )=90100, P (AB )=85100. 思考2 事件A |B 发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P (A |B )=8590. 思考3 P (A |B )=P (AB )P (B ). 梳理 (1)事件B 事件A P (A |B ) (2)①P (AB )P (B ) ②P (A |B )P (B ) 知识点二1.0和1 0≤P (B |A )≤12.P (B |A )+P (C |A )题型探究例1 解 设A ={在班内任选1名学生,该学生属于第一小组},B ={在班内任选1名学生,该学生是团员}.(1)P (A )=1040=14. (2)P (B )=1540=38. (3)P (AB )=440=110. (4)方法一 P (A |B )=P (AB )P (B )=11038=415. 方法二 P (A |B )=n (AB )n (B )=415.跟踪训练1 解析 P (A )=C 23+C 22C 25=25, P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=11025=14. 例2 解 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P =915=35. 引申探究1.解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35. 2.解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.所以P (B |A )=212=16. 跟踪训练2 解 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .根据分步计数原理得n (A )=A 14A 15=20,n (AB )=A 24=12. 所以P (B |A )=n (AB )n (A )=1220=35. 例3 解 设A ={从第一个盒子中取得标有字母A 的球},B ={从第一个盒子中取得标有字母B 的球},R ={第二次取出的球是红球},W ={第二次取出的球是白球},则容易求得P (A )=710,P (B )=310, P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15.事件“试验成功”表示为AR ∪BR ,又事件AR 与事件BR 互斥,故由概率的加法公式,得 P (AR ∪BR )=P (AR )+P (BR )=P (R |A )P (A )+P (R |B )P (B )=12×710+45×310=0.59. 跟踪训练3 解 记事件A =“最后从2号箱中取出的球是红球”, 事件B =“从1号箱中取出的球是红球”,则P (B )=42+4=23,P (B )=1-P (B )=13, P (A |B )=3+18+1=49,P (A |B )=38+1=13, 从而P (A )=P (AB )+P (A B )=P (A |B )P (B )+P (A |B )P (B )=49×23+13×13=1127. 当堂训练1.122.0.6653.254.235.解 抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A 的基本事件数为6×2=12,所以P (A )=1236=13. 由于3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8, 所以事件B 的基本事件数为4+3+2+1=10,所以P (B )=1036=518. 事件AB 的基本事件数为6,故P (AB )=636=16. 由条件概率公式,得(1)P (B |A )=P (AB )P (A )=1613=12. (2)P (A |B )=P (AB )P (B )=16518=35.。
2-2 有关条件概率的三定理
P ( Bi A ) =
, i = 1, 2,L , n
∑ P( A B j )P(B j ) j =1
+ P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) 2 3 1 3 2 1 3 2 2 2 = × × + × × + × × = , 5 4 3 5 4 3 5 4 3 5 依此类推 P ( A4 ) = P ( A5 ) = 2 . 故抓阄与次序无关. 故抓阄与次序无关 5
设这三家工厂的产品在 仓库中是均匀混合的 , 且
( 2) 在仓库中随机地取一只 元件 , 若已知取到的是 次品 , 为分析此次品出自何厂 , 需求出此次品由三 家工厂生产的概率分别 是多少 . 试求这些概率 .
取到的是一只次品” , 解 设 A 表示“取到的是一只次品” Bi ( i = 1,2,3)
把钥匙, 把钥匙大门钥匙, 例4 某人有 N 把钥匙,其中有 n 把钥匙大门钥匙,采用不放 回随机试开, 次试开可以打开大门的概率。 回随机试开,求不超过 N − n 次试开可以打开大门的概率。
解 表示事件“ 次才打开大门” 用 Ak 表示事件“在第 k 次才打开大门” k = 1,2,L, N − n ) ( ,
家工厂提供的” 表示“所取到的产品是由第 i 家工厂提供的”. 则
B1 , B2 , B3 是样本空间 S ) = 0.15,
P ( B2 ) = 0.80, P ( B3 ) = 0.05,
P ( A B1 ) = 0.02, P ( A B2 ) = 0.01, P ( A B3 ) = 0.03.
P (C ) = 0.005, P (C ) = 0.995, 要计算的是P( 要计算的是 (C|A)。 )。 典型的因果关系互换, 典型的因果关系互换, 利用Bayes公式计算, 公式计算, 利用 公式计算
《条件概率》课件
在机器学习中的应用
01
分类器设例如,朴素贝
叶斯分类器就是基于条件概率的分类器之一,它可以根据已知特征的概
率分布来预测未知样本的类别。
02
聚类分析
在聚类分析中,条件概率可以帮助我们确定不同数据点之间的相似性或
差异性。例如,基于密度的聚类算法可以利用条件概率密度函数来评估
数据点之间的相似性或差异性。
03
强化学习
在强化学习中,条件概率可以帮助我们确定在不同状态下采取不同行动
的概率。例如,Q-learning算法可以利用条件概率来评估在不同状态下
采取不同行动的期望回报。
04 条件概率的实例分析
抛硬币实验的条件概率分析
总结词:直观理解
详细描述:通过抛硬币实验,理解条件概率的概念。假设硬币是均匀的,那么正 面朝上的概率是0.5。在硬币已经连续出现几次正面朝上的情况下,下一次抛掷 仍然是正面朝上的概率仍然是0.5,即条件概率不变。
全概率公式与贝叶斯公式
总结词
全概率公式和贝叶斯公式是条件概率的 两个重要公式,全概率公式用于计算一 个事件的概率,而贝叶斯公式则用于更 新一个事件的概率。
VS
详细描述
全概率公式将一个事件的概率分解为若干 个互斥事件的概率之和,而贝叶斯公式则 是在已知先验概率和新信息的情况下,更 新一个事件的概率。这两个公式在统计学 、机器学习和数据分析等领域有着广泛的 应用。
B
题目2答案与解析
出现一个正面和一个反面的概率为0.75。解 析:出现一个正面和一个反面意味着出现 HH、HT、TH、TT四种情况中的三种,其
D
概率为C(2,1) / C(2,2) * C(2,1) / C(2,2) =
3/4。
2023年春《条件概率课时2》教学设计
《条件概率》教学设计课时2全概率公式一、本节内容分析本节主要在必修课程概率的基础上,通过研究简单事件求复杂事件的概率,主要内容为条件概率和概率的乘法公式.条件概率的概念在概率理论中占有十分重要的地位,教科书只是简单介绍条件概率的初等定义.为了便于学生理解,教材以简单事例为载体,逐步通过探究,引导学生体会条件概率的思想.全概率公式是概率论中一个基本而重要的公式,其基本思想是利用一组两两互斥的事件,将一个复杂事件表示为两两互斥事件的和事件,再由概率的加法公式和乘法公式求这个复杂事件的概率,它为计算某些事件的概率提供了有力的工具.在本节,教材创设不同的情境,让学生先直观认识条件概率的意义,通过列举试验的样本空间,发现条件概率的本质是在缩小的样本空间上的概率,然后从特殊到一般,抽象出条件概率的定义.同样地,通过具体实例,提炼出求复杂事件概率的基本思路,将其一般化得到全概率公式.利用全概率公式计算概率,体现了分解与综合、化难为易的转化思想.本节包含的核心知识和体现的核心素养如下:二、学情整体分析学生具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,并且对概率有了一些基础的认识,对一些简单的概率模型(古典概型、条件概率)已经有所了解.但由于年龄的原因,思维尽管活跃、敏捷,但缺乏冷静、深刻.在学习中,学生可能对条件概率的判断和计算,会有些困难,但相比较,计算上困难会更大一些.全概率公式的思想是用简单事件的运算表示复杂事件,利用概率的性质及概率公式简化概率的计算,这种思想方法具有一般性,贝叶斯公式虽然本质上是求条件概率,但隐含着深刻的数学思想,它反映了试验之后对各种“原因”发生可能性大小的新认识.学生还可能存在混淆两个事件相互独立与两个事件互斥的概念,并由此引发概率公式运用错误.学情补充:____________________________________________________________________ _________________________________________________________________________________ 三、教学活动准备【任务专题设计】 1.条件概率 2.全概率公式 【教学目标设计】1.结合古典概型,了解条件概率与概率的乘法公式,了解条件概率与独立性的关系,熟悉条件概率的性质,能计算简单随机事件的条件概率.2.结合古典概型,理解全概率公式的概念,达到数学抽象素养.会利用全概率公式计算概率. 3.了解贝叶斯公式. 【教学策略设计】由于学生自我归纳能力较差,又习惯于就题论题,因此适合提问引导启发式授课方式和归类对比的学习方法.讲解的时候,应做到适当启发、设问,引发学生对问题的思考,引导学生找到解题思路,并且点拨学生进行对比归类,提高学生对问题的分析、归纳、总结的能力.【教学方法建议】情境教学法、问题教学法,还有__________________________________________________ 【教学重点难点】重点 1.条件概率的概念及计算,概率的乘法公式及应用.2.理解全概率公式的概念,认识全概率公式是用简单事件的运算表示复杂事件,会转化和化归、化繁为简的思想.3.会用全概率公式解决一些实际问题.4.了解贝叶斯公式及其应用.难点 1.对条件概率中“条件”的正确理解,条件概率与无条件概率的比较.2.由具体实例抽象推导全概率公式的过程.3.运用全概率公式求概率.4.贝叶斯公式的理解和应用.【教学材料准备】1.常规材料:多媒体课件、________________________________________________2.其他材料:_____________________________________________________________四、教学活动设计教学导入师:在计算较复杂事件概率时,我们首先把一个复杂事件表示为一些简单事件的运算结果,然后利用概率的加法公式和乘法公式求其概率.我们还想知道,在这样的计算概率的过程中,还有什么规律和方法我们尚未发现,我们能总结出多少计算概率的好方法呢?让我们先从求一个复杂随机事件的概率开始吧!教学精讲探究1 全概率公式【情景设置】探究全概率公式从有a个红球和b个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放回.显然,第1次摸到红球的概率为aa b.那么第2次摸到红球的概率是多少?如何计算这个概率呢?【以学论教】对教学活动整个过程的学习情况进行追踪,根据学生实际学习情况和课堂效果总结出教学过程中的方法和策略的成功之处和不足之处.【先由学生独立思考,侧重直观感知概率的值,并通过师生互动进行交流】 师:因为抽签具有公平性,所以第2次摸到红球的概率也应该是aa b+.对于这个结果,学生可能会产生疑惑,因为第2次摸球的结果受第1次摸球结果的影响.【教师指出数学上有许多问题与直觉相悖,不能仅凭感觉来作判断,而要进行严格的数学证明】师:你能证明第2次摸到红球的概率是aa b+吗?你是怎样证明的? 【先由学生自主论证,交流学习结果.教师进行点评,再给出严格的证明】师:用i R 表示事件“第i 次摸到红球”,i B 表示事件“第i 次摸到蓝球”(1,2)i =.我们就可以用图形来表示事件之间的关系,如图所示,事件2R 可按第1次可能摸球的结果(红球或蓝球)表示为两个互斥事件的并,即21212R R R B R =.利用概率的加法公式和乘法公式,得()()()()()()()21212121121||P R P R R P B R P R P R R P B P R B =+=+=111a a b a aa b a b a b a b a b-⨯+⨯=++-++-+.【设活动 深探究】教师先给出具体的问题情境,在学生根据实际情况并充分讨论的基础上展示结果,教师再总结引导.【教师总结以上证明过程采用的方法,即按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和概率的乘法公式求得这个复杂事件的概率】师:以上的证明蕴含着怎样的思想?将以上的问题一般化,你能得到什么结果呢? 【要点知识】全概率公式一般地,设12,,,n A A A 是一组两两互斥的事件,12n A A A =Ω,且()0,1,2,3,,i P A i n >=,则对任意的事件B ⊆Ω,有()P B =()()1|niii P A P B A =∑.【概括理解能力】由具体实例,通过数学抽象得出一般性的数学结论,是培养学生数学抽象素养的重要途径.按照对于特殊情形的全概率公式的证明,我们能证明这个公式,虽然我们没有证明全概率公式,这并不妨碍我们用全概率公式求概率.通过这个过程,提升学生概括理解能力.师:以上这个公式称为全概率公式,它是计算概率的最基本的公式之一.如何利用全概率公式解决问题呢?请看下面的例题.【典型例题】利用全概率公式求概率例1 某学校有,A B 两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A 餐厅,那么第2天去A 餐厅的概率为0.6;如果第1天去B 餐厅,那么第2天去A 餐厅的概率为0.8.计算王同学第2天去A 餐厅用餐的概率.【教师提示学生运用全概率公式计算概率.可视学生的反应,对问题作如下分析】 师:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A 餐厅用餐”和“第1天去B 餐厅用餐”两个互斥事件的并,利用全概率公式求解.【学生完整地写出解题过程,师生进行交流.然后教师进行点评,给出规范的解题步骤】 师解:借助树状图(如图所示)第一步,用符号表示随机事件:设1A =“第1天去A 餐厅用餐”,1B =“第1天去B 餐厅用餐”,2A =“第2天去A 餐厅用餐”.第二步,划分样本空间:11A B Ω=,且1A 与1B 互斥.第三步,分别计算概率:()()()()1121210.5,|0.6,|0.8P A P B P A A P A B ====. 第四步,由全概率公式求出概率:()()()()()2121121||0.7P A P A P A A P B P A B =+=. 即王同学第2天去A 餐厅的概率为0.7. 【深度学 重推理】由具体实例,通过数学抽象得出一般性的数学结论.在学习了全概率公式的基础上,通过层层引导设问,深化对全概率公式的理解,为引出贝叶斯公式做准备. 探究2 贝叶斯公式师:下面我们一起探究这样的例题. 【典型例题】探究贝叶斯公式例2 有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.若第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率,(2)如果取到的零件是次品,计算它是第(1,2,3)i i =台车床加工的概率.【教师首先要求学生用集合语言表示例2中的事件.用简单事件的运算结果表示所要求概率的事件.接着让学生自主解决问题,同学之间可以进行讨论制订解决问题的方案】【深度学习】通过例题进一步强化应用全概率公式计算概率的方法与步骤,通过问题(2)中的条件概率的计算,为引出贝叶斯公式作准备.师分析:取到的零件来自3台车床都有可能,如果设B =“任取一个零件为次品”,i A =“零件为第i 台车床加工”(1,2,3)i =,那么可将事件B 表示为3个两两互斥的事件的并(如图),利用全概率公式可以计算出事件B 的概率.师解:第一步,用符号表示随机事件:设B =“任取一个零件为次品”,i A =“零件为第i 台车床加工”(1,2,3)i =.第二步,划分样本空间:123A A A Ω=,且123,,A A A 两两互斥.第三步,分别计算概率:()()()()12310.25,0.3,0.45,|P A P A P A P B A ====()()230.06,|0.05,|0.05P B A P B A ==.第四步,由全概率公式求出概率:()()()()()()112233()|||0.250.060.3P B P A P B A P A P B A P A P B A =++=⨯+0.050.450.050.0525⨯+⨯=.师:对于问题(2),“如果取到的零件是次品,计算它是第(1,2,3)i i =台车床加工的概率”,就是计算在B 发生的条件下,事件i A 发生的概率,即求()|i P A B .因此根据条件概率,得()()()()1111|0.250.062|()()0.05257P A B P A P B A P A B P B P B ⨯====.类似地,可得()()2323|,|77P A B P A B ==.【以学定教】贝叶斯公式为选学内容,由师生共同结合实例进行学习.通过以学定教来达到学习的目的. 师:在上面的例题解答中,概率()(),|i i P A P A B 的实际意义是什么?你能梳理出解决问题(2)过程中的关键等式吗?【由于贝叶斯公式属于选学内容,学生在理解上会存在一定的困难.教师可以在学生先行思考的基础上,进行讲解】【概括理解能力】深入理解全概率公式的适用题型和解题步骤,结合条件概率,概括理解贝叶斯公式. 师:()i P A 是试验之前就已知的概率,它是第i 台车床加工的零件所占的比例,称为先验概率.当已知抽到的零件是次品(B 发生),()|i P A B 是这件次品来自第i 台车床加工的可能性大小,通常称为后验概率.如果对加工的次品,要求操作员承担相应的责任,那么223,,777就分别是第1,2,3台车床操作员应承担的份额.【教师引导学生梳理出解决问题(2)过程中的关键性等式】 生:()()()()||,1,2,3()()i i i i P A B P A P B A P A B i P B P B ===.①追问:仿照全概率公式的一般化,你能写出①式的一般形式吗?请你尝试做一做.【由学生先仿照全概率公式的一般化过程,尝试用符号化表示问题,然后教师指导学生根据例2,写出贝叶斯公式的一般形式】【要点知识】贝叶斯公式设12,,,n A A A 是一组两两互斥的事件,12n A A A =Ω,且()0,i P A i >=1,2,,n ,则对任意的事件,()0B P B ⊆Ω>,有()()()()()1||,1,2,,.|i i i nkkk P A P B A P A B i n P A P B A ===∑【分析计算能力】主要考查学生对全概率公式和贝叶斯公式的理解和应用,能根据题目情境正确分析应用哪个公式,注意计算准确.师:这个公式是由英国数学家贝叶斯首先发现的,称为贝叶斯公式,它用来描述两个条件概率之间的关系.贝叶斯公式在统计学中有着广泛的应用.下面请看例题.【典型例题】贝叶斯公式的应用例3 在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.(1)分别求接收的信号为0和1的概率;(2)已知接收的信号为0,求发送的信号是1的概率.【教师首先要求学生用集合语言表示例3中的事件,用简单事件的运算结果表示所要求概率的事件,并根据题意将样本空间表示成两两互斥的事件的并集.在此基础上,要求学生灵活选用条件概率、概率的乘法公式、全概率公式、贝叶斯公式来解决问题】【简单问题解决能力】通过具体实例,让学生明白贝叶斯公式的含义,并总结出用贝叶斯公式解决相关概率问题的方法,提升简单问题解决能力.师分析:设A =“发送信号为0”,B =“接收信号为0”,则A =“发送信号为1”,B =“接收信号为1”.我们可以用图形表示事件之间的关系,如图所示.问题(1)就是求()P B 和()P B .生解:设A =“发送的信号为0”,B =“接收到的信号为0”,则A =“发送的信号为1”,B =“接收到的信号为1”,由题意得()()0.5,(|)0.9,(|)0.1,(|)0.05,P A P A P B A P B A P B A =====(|)0.95P B A =.(1)()()(|)()(|)0.50.90.50.050.475P B P A P B A P A P B A =+=⨯+⨯=,()1()10.4750.525P B P B =-=-=.(2)()()(|)0.50.051(|)()()0.47519P AB P A P B A P A B P B P B ⨯====. 师:下面我们对全概率公式的应用进行一下巩固训练.【巩固练习】全概率公式的应用设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库.假设第一、二车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,则该产品合格的概率为______.【以学定教】借助具体实例,让学生经历贝叶斯公式的一般化过程,在此过程中提升学生的数学抽象核心素养,使学生认识到事物之间都存在广泛的联系.【学生积极思考,独立完成,教师巡视指导】生解:设B =“从仓库中随机提出的一台是合格品”,i A =“提出的一台是第i 车间生产的”,1,2i =.由题意()()()()121223,,|0.85,|0.8855P A P A P B A P B A ====,由全概率公式()()()()112223()||0.850.880.86855P B P A P B A P A P B A =+=⨯+⨯=.【设计意图】通过具体实例,巩固全概率公式和贝叶斯公式,加强对它们的应用. 师:这节课,我们就上到这里,我们一起归纳总结一下. 【课堂小结】全概率公式条件概率()(|)()P AB P B A P A =概率的乘法公式()()(|)P AB P A P B A =全概率公式()()()()()()1122()|||n n P B P A P B A P A P B A P A P B A =+++=()()1|niii P A P B A =∑贝叶斯公式()()()()()1||,1,2,,|i i i nkkk P A P B A P A B i n P A P B A ===∑.教学评价学完本节课,我们应该理解条件概率、全概率的概念,会求简单的条件概率、全概率问题,理解条件概率、全概率的性质,并能够利用性质解决较为综合性的实际问题.【设计意图】能够在熟悉的数学问题情境中直接应用数学知识进行列式、计算解决问题,锻练分析计算能力.通过问题组梳理全概率公式的基本思想和解题的步骤,有助于学生把握数学思想方法,提升他们的数学核心素养. 应用所学知识,完成下面各题:1.一个盒子中有6只白球、4只黑球,从中不放回地每次任取1只,连取2次,第2次取到白球的概率为( )A.25B.35C.12D.13 解析:设A =“第1次取到白球”,B =“第2次取到白球”.因为B ABAB =且AB 与AB 互斥,所以()()()()(|)()(|)P B P AB P AB P A P B A P A P B A =+=+=654631091095⨯+⨯=. 答案:B2.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有(|)0.95,(|)P A C P A C ==0.95.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即()P C =0.005,试求(|)P C A .解析:因为(|)0.95P A C =,所以(|)1(|)0.05P A C P A C =-=.因为()0.005P C =,所以()0.995P C =.所以(|)()0.950.00519(|)(|)()(|)()0.950.0050.050.995218P A C P C P C A P A C P C P A C P C ⨯===+⨯+⨯. 【简单问题解决能力】教学评价中的两个习题分别应用到全概率公式和贝叶斯公式,可以让学生对本节课的掌握情况进行及时的自我评价,通过练习提升学生的简单问题解决能力.教学反思条件概率的概念在概率理论中占有十分重要的地位,为了便于学生理解,教材以简单事例为载体,通过逐步探究,引导学生体会条件概率的思想.通过本节课的学习,我们掌握了两种解决条件概率的方法,分别是定义法和缩小样本空间的方法,能不能运用好可能是学生在学习中主要困难.全概率公式是概率论中一个基本而重要的公式,在本节课中,通过创设不同的情境,通过列举试验的样本点,从特殊到一般,提炼出求复杂事件概率的基本思路,将其一般化得到全概率公式.贝叶斯公式本质上还是条件概率,通过本节课的学习,可以增强学生思维的严谨性和思考问题的多角度性.另外,就全概率公式和贝叶斯公式的应用这一部分知识来说,题目涉及的试验过程一般较为繁琐,所以对两个公式的深刻理解,以及理清题意,灵活利用公式求解也是一个需要克服的难关.【以学论教】对教学活动整个过程的学习情况进行追踪,根据学生实际学习情况和课堂效果总结出通过引导和启发学生体会条件概率的思想、创设不同情境从特殊到一般归纳总结全概率公式,并了解贝叶斯公式的实质.由于学生对相互独立事件与互斥事件的概念易发生混淆,教师在教学过程当中应帮助学生理解.。
概率论和数理统计(第三学期)第2章条件概率与独立性
PA1PA2 A1PA3 A1A2
(1 p) p p p p 1 p p p p p 1 p p p p p
2
2
2
1 5 3 pp3
2
§2.2 全概率公式与贝叶斯公式
全概率公式
定理 设B1,B2,…,Bn 是一组两两互斥的事件,且
n
(1) Bi i 1
(3)P( A3 B) 1 P( A3 B)
1
0.2 0.2
0.93
0.5 0.6 0.3 0.9 0.2 0.2
解法二:
(3)P( A1 A2 B) P( A1 B) P( A2 B) 0.49 0.44 0.93
a a 1 b
a
a b a b 1 a b a b 1
a ab
例2 一商店出售的某型号的晶体管是甲、乙、
丙三家工厂生产的,其中乙厂产品占总数的50%, 另两家工厂的产品各占25%。已知甲、乙、丙各 厂产品合格率分别为0.9、0.8、0.7,试求随意取出 一只晶体管是合格品的概率(也就是本商店出售货 的合格率)。
pk
1 4
(
pk
pk 1 )
pn p1 ( p2 p1 ) ( p3 p2 ) ( pn pn1 )
1 1 n1
p1
4 1 1
( p2 p1 )
4
即
pn
3 5
(1)n 10
1 4n 1
贝叶斯公式
定理 设B1,B2,…,Bn是一组两两互斥的事件,且
n
(1) Bi i 1
而p1
m 1 m
pn
1 2
1
m2 m
n
当n
时,pn
1 2
例4 连续做某项试验,每次试验只有成功和失败
第二讲 条件概率
17
如何评价X射线检查 如何评价 射线检查
X 射线检查(A) 射线检查( ) 两年内患病否( 两年内患病否(B) 合计 + 未患癌( 未患癌(-) 9980 9 9989 患癌(+) 患癌(+) 20 1 21 合计 10000 10 10010
5
例2 吸烟对健康的影响 好的观察研究应控制混杂变量。 好的观察研究应控制混杂变量。 瑞典双生对的研究 一个吸烟,一个不吸烟的双生对: 一个吸烟,一个不吸烟的双生对:同卵双 生男274对,女264对;异卵双生男 生男 对 对 异卵双生男733对, 对 女653对 对 发现:吸烟与不吸烟相比, 发现:吸烟与不吸烟相比,慢性支气管炎 患病的相对危险度为1.8~2.5倍。 患病的相对危险度为 倍
3
例2 吸烟对健康的影响 • Doll & Hill (1964):前瞻性研究 ):前瞻性研究 ):
名英国医师发出了关于吸烟的问卷, 向60000名英国医师发出了关于吸烟的问卷, 名英国医师发出了关于吸烟的问卷 其中40000名应答,据此将他们分为吸烟组 名应答, 其中 名应答 和不吸烟组。 和不吸烟组。借助英国良好的死亡登记系统 追踪他们的结局. 追踪他们的结局
9980 + 1 9981 = = 0.997 10010 10010
18
如何评价X射线检查 如何评价 射线检查
两年内患 病否( 病否(B) 未患癌( 未患癌(-) 患癌(+) 患癌(+) 合计 唐氏检查法( ) 唐氏检查法(A) + 9989 0 21 0 10010 0 合计 9989 21 10010
工程数学II第二节 条件概率与伯努利概型
• 1 条件概率
• 定义1 设 A 、B是某随机试验中的两个事件, 且 P(B) 0,则称
P(A B)
P( AB) P(B)
为事件 B 已发生的条件下事件 A发生的条件概
率.
• 例1 一批零件共100个,其正品90个,次品 10个,从中连续抽取两次,每次抽取一个, 作不放回抽样,已知第一次取到正品,求第 二次取到正品的概率.
品A ”
, i
表示“A加工A1 出A来2 的A3零件是次品”,则
.
A1, A2 , A3
且P( A) 1相P(互A)独 1立 .P( A于1A是2 A3所) 求1次P(品A1)率P( A2 )P( A3)
1 0.990.980.97 5.89%
.
• 例5 设某型号高炮每次击中飞机的概率为 0.25问至少需配备多少门这种高炮,才能使同 时独立发射一次就能击中飞机的概率达到 95%以上.
、
P(BC) P(B)P(C) P(ABC) P(A)P(B)P(C)
则称 A、B 、C 相互独立.
• 例4 加工某一零件共需经过3道工序,设第一、 二、三道工序的次品率分别为1%、2%、3%, 假定各道工序互不影响,求加工出来的零件的 次品率.
• 解 令 Ai 事件且表示“第道工序出现次 (i 1, 2,3)
例2 一批零件共100个,其中有5个次品,从中 每次取出一个零件检测,检测后不再放回, 连续检测两次,求
• (1)第一次检测是正品的概率; • (2)第一次检测到正品后,第二次检测是正
品的概率;
• (3)两次检测全是正品的概率.
• 解 令 A 、B 分别表示“第一次检测是正品”和
“第二次检测是正品”的事件,则由题意可
条件概率及全概率公式
求解如下: 设B={飞机被击落} Ai={飞机被i人击中}, i=1,2,3
则 B=A1B+A2B+A3B
由全概率公式 P(B)=P(A1)P(B |A1)+ P(A2)P(B|A2)
+ P(A3)P(B |A3)
依题意,
P(B|A1)=0.2, P(B|A2)=0.6, P(B|A3)=1
为求P(Ai ) , 设 Hi={飞机被第i人击中}, i=1,2,3 可求得:
而且每一原因对结果的影响程度已知,
即 PB An 已知
则我们可用全概率公式计算结果发生的概率.
即求 PB
返回主目录
例1 有一批产品是由甲、乙、丙三厂同时生产的. 其中甲厂产品占50%,乙厂产品占30%,丙厂产品占 20%,甲厂产品中正品率为95%,乙厂产品正品率为 90%,丙厂产品正品率为85%,如果从这批产品中随机 抽取一件,试计算该产品是正品的概率多大?
有可能结果构成的集合就是B,
B中共有3个元素,它们的出现是等 可能的,其中只有1个在集A中,
于是P(A|B)= 1/3. 容易看到
P(A|B) 1 1 6 P( AB) 3 3 6 P(B)
又如,10件产品中有7件正品,3件次品, 7件正品中有3件一等品,4件二等品. 现从这 10件中任取一件,记
例1 掷两颗均匀骰子,已知第一颗掷出6点, 问“掷出点数之和不小于10”的概率是多 少解? : 设A={掷出点数之和不小于10}
B={第一颗掷出6点}
应用定义
解法1: P( A | B) P( AB) 3 36 1 P(B) 6 36 2
解法2: P( A | B) 3 1 62
PAnB PAn PB An
高中数学 第2章 概率 2.2 条件概率与事件的独立性 2.2.1 条件概率 2.2.2 事件的独立
2.2.1 条件概率 2.2.2 事件的独立性1.了解条件概率和两个事件相互独立的概念.2.理解条件概率公式和相互独立事件同时发生的概率公式.3.能利用概率公式解决实际问题.1.条件概率(1)定义:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“P (B |A )”来表示,读作“A 发生的条件下B 发生的概率”.类似地,事件B 发生的条件下事件A 发生的条件概率记为“P (A |B )”,读作“B 发生的条件下A 发生的概率”.(2)事件的交(或积)由事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D =A ∩B (或D =AB ).(3)条件概率计算公式 一般地,条件概率公式为P (B |A )=P (A ∩B )P (A )(P (A )>0),类似地,P (A |B )=P (A ∩B )P (B )(P (B )>0).2.相互独立事件(1)定义:一般地,事件A 是否发生对事件B 发生的概率没有影响,即P (B |A )=P (B ),则称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.若n 个事件A 1,A 2,…,A n ,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称这n 个事件相互独立.(2)相互独立事件的性质一般地,若事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)相互独立事件同时发生的概率①两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A ∩B )=P (A )×P (B ).②如果事件A 1,A 2,…,A n 相互独立,则这n 个事件都发生的概率,等于每个事件发生的概率的积,即P (A 1∩A 2∩…∩A n )=P (A 1)×P (A 2)×…×P (A n )并且上式中任意多个事件A i 换成其对立事件后,等式仍成立.1.判断(对的打“√”,错的打“×”) (1)若事件A 、B 互斥,则P (B |A )=1.( ) (2)必然事件与任何一个事件相互独立.( )(3)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案:(1)× (2)√ (3)√2.已知P (AB )=310,P (A )=35,则P (B |A )为( )A.950 B.12 C.910D.14答案:B3.甲、乙两人各射击一次,他们各自击中目标的概率都是0.6,则他们都击中目标的概率是( )A .0.6B .0.36C .0.16D .0.84答案:B4.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.答案:0.95求条件概率[学生用书P26]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【解】 设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)从5道题中不放回地依次抽取2道题的事件数为A 25=20. 根据分步乘法计数原理,事件A 的总数为A 13×A 14=12. 故P (A )=1220=35.(2)因为事件A ∩B 的总数为A 23=6. 所以P (A ∩B )=620=310.(3)法一:由(1)、(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率为P (B |A )=P (A ∩B )P (A )=31035=12.法二:因为事件A ∩B 的总数为6,事件A 发生的总数为12,所以P (B |A )=612=12.利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.设10件产品中有4件不合格,从中任意取出2件,那么在所取得的产品中发现有一件不合格品,求另一件也是不合格品的概率.解:设事件A 为“在所取得的产品中发现有一件不合格品”,事件B 为“另一件产品也是不合格品”,则P (A )=C 14C 16C 210=4×6×210×9=815,P (A ∩B )=C 24C 210=215.因此P (B |A )=P (A ∩B )P (A )=14.相互独立事件的判断判断下列各对事件是不是相互相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.【解】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, 所以P (A )=36=12,P (B )=26=13,P (AB )=16,所以P (A ∩B )=P (A )·P (B ), 所以事件A 与B 相互独立.判断两事件的独立性的方法(1)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响. (3)当P (A )>0时,可用P (B |A )=P (B )判断.一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.解:(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件, 由等可能性知概率各为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)}, A ∩B ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (A ∩B )=12.由此可知P (A ∩B )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},由等可能性知这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件, A ∩B 中含有3个基本事件.于是P (A )=68=34,P (B )=48=12,P (A ∩B )=38,显然有P (A ∩B )=38=P (A )P (B )成立.从而事件A 与B 是相互独立的.求相互独立事件的概率甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率; (2)2个人都译不出密码的概率; (3)至多1个人译出密码的概率;【解】 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A 与B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2个人都译出密码”的概率为:P (AB )=P (A )·P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A -B -)=P (A -)·P (B -)=[1-P (A )]×[1-P (B )]=(1-13)×(1-14)=12.(3)“至多1个人译出密码”的对立事件为“2个人都译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.在本例条件下,求:(1)恰有1个人译出密码的概率; (2)至少1个人译出密码的概率.解:(1)“恰有1个人译出密码”可以分为两类,即甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A B -∪A -B )=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =13×(1-14)+(1-13)×14=512. (2)“至少1个人译出密码”的对立事件为“2个人都未译出密码”,所以至少1个人译出密码的概率为:1-P (A -B -)=1-P (A -)P (B -)=1-23×34=12.与相互独立事件有关的概率问题求解策略一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么:A ,B 互斥 A ,B 相互独立P (A +B ) P (A )+P (B )1-P (A -)P (B -)P (AB ) 0P (A )P (B ) P (A -B -)1-[P (A )+P (B )]P (A -)P (B -)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.解:记“甲、乙、丙三人100米跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3),(1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110. (2)三人都不合格的概率:P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=35×14×23=110. (3)恰有两人合格的概率:P 2=P (AB C -)+P (A B -C )+P (A -BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.综合第一问、第二问、第三问可知P 1最大. 所以出现恰有1人合格的概率最大.相互独立事件的综合应用在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众要彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率. (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列.【解】 (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.因为事件A 与B 相互独立,所以观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B -)=P (A )·P (B -)=P (A )·[1-P (B )]=23×25=415.(或P (A B -)=C 12·C 34C 23·C 35=415). (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=C 24C 35=35,因为X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=P (A -B -C -)=13×25×25=475,P (X =1)=P (A B - C -)+P (A -B C -)+P (A -B -C )=23×25×25+13×35×25+13×25×35=2075, P (X =2)=P (A B C -)+P (A -BC )+P (A B -C )=23×35×25+13×35×35+23×25×35=3375, P (X =3)=P (ABC )=23×35×35=1875,所以X 的分布列为X 0 1 2 3 P475207533751875概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A -)=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.解:记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3, 则P (A 1)=12,P (A 2)=34,P (A 3)=34,不发生故障的事件为(A 2∪A 3)A 1,P =P [(A 2∪A 3)A 1]=P (A 2∪A 3)·P (A 1) =[1-P (A 2)·P (A 3)]·P (A 1) =(1-14×14)×12=1532.————————————————————————————————————————————————1.求条件概率的方法(1)利用定义,分别求P (A )和P (A ∩B ),得P (B |A )=P (A ∩B )P (A ).(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (A ∩B )n (A ).2.判定两个事件相互独立的方法(1)定义法:如果A 、B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A 、B 为相互独立事件.(2)由事件本身的性质直接判定两个事件发生是否相互影响.3.事件A 、B 相互独立,则P (AB )=P (A )P (B ).注意与事件互斥区别.1.求复杂事件的概率时,先判断事件间的关系,是互斥还是独立,特别对“至多”“至少”等问题,可分成互斥事件求概率,也可用对立事件求概率.2.在解题过程中,要明确事件中的“至少有一个发生”、“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义,已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),那么:A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A -B -;A 、B 恰有一个发生的事件为A B -∪A -B ;A 、B 中至多有一个发生的事件为A B -∪A -B ∪A -B -.1.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C.由P (AB )=P (A )P (B |A )可得P (A )=34.2.甲、乙、丙3人投篮,投进的概率分别是13,25,12,现3人各投篮1次,则3人都没有投进的概率为( )A.115 B.215C.15D.110解析:选C.甲、乙、丙3人投篮相互独立,都不进的概率为⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-25⎝ ⎛⎭⎪⎫1-12=15.3.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16.答案:16[A 基础达标]1.设A 与B 是相互独立事件,则下列事件中不相互独立的是( ) A .A 与B -B.A -与B C.A -与B -D .A 与A -解析:选D.A 、B 、C 选项的两事件相互独立,而A 与A -是对立事件,不是相互独立事件. 2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( )A .0.2B .0.33C .0.5D .0.6解析:选A.A =“数学不及格”,B =“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=0.2,所以数学不及格时,该生语文也不及格的概率为0.2.3.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14 B.15 C.16D.17解析:选C.记“甲站在中间”为事件A ,“乙站在末尾”为事件B ,则n (A )=A 66,n (AB )=A 55,P (B |A )=A 55A 66=16.4.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A -)P (B -)=1-23×12=23.根据互斥事件可知C 正确.5.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y (若指针停在边界上则重新转),x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.116B.18C.316D.14解析:选C.满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1.所以所求事件的概率P =P (x =1,y =4)+P (x =2,y =2)+ P (x =4,y =1)=14×14+14×14+14×14=316. 6.已知有两台独立在两地工作的雷达,它们发现飞行目标的概率分别为0.9和0.85,则两台雷达都未发现飞行目标的概率为________.解析:所求概率为(1-0.9)×(1-0.85)=0.015. 答案:0.0157.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 解析:设此队员每次罚球的命中率为p , 则1-p 2=1625,所以p =35.答案:358.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.解析:设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 14C 25=45,P (AB )=C 12C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P (AB )P (A )+P (AC )P (A )=34.答案:349.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 45×56×(1-23)=29, 只有农产品加工和水果种植两个项目成功的概率为 45×(1-56)×23=445, 只有绿色蔬菜种植和水果种植两个项目成功的概率为 (1-45)×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为 (1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990.10.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品. (1)从甲箱中任取2个产品,求这2个产品都是次品的概率.(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解:(1)从甲箱中任取2个产品的事件数为C 28=28,这2个产品都是次品的事件数为C 23=3.所以这2个产品都是次品的概率为328.(2)设事件A 为“从乙箱中取一个正品”,事件B 1为“从甲箱中取出2个产品都是正品”,事件B 2为“从甲箱中取出1个正品1个次品”,事件B 3为“从甲箱中取出2个产品都是次品”,则事件B 1、事件B 2、事件B 3彼此互斥.P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,所以P (A )=P (B 1)P (A |B 1)+P (B 2)·P (A |B 2)+P (B 3)P (A |B 3) =514×69+1528×59+328×49=712. [B 能力提升]11.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于( )A.25B.12C.35D.45解析:选A.因为A ∩B ={2,5},所以n (AB )=2. 又因为n (B )=5,故P (A |B )=n (AB )n (B )=25.12.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )=________.解析:由题意,P (A -)·P (B -)=19,P (A -)·P (B )=P (A )·P (B -).设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧(1-x )(1-y )=19,(1-x )y =x (1-y ). 即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y , 所以x 2-2x +1=19,所以x -1=-13,或x -1=13(舍去),所以x =23.答案:2313.一只口袋内装有2个白球和2个黑球.求:(1)在先摸出1个白球不放回的条件下,再摸出1个白球的概率是多少? (2)在先摸出1个白球后放回的条件下,再摸出1个白球的概率是多少? 解:(1)记A =“先摸出一个白球不放回”,B =“再摸出一个球为白球”, 则AB =“先后两次摸到白球”. 因为P (A )=24=12,P (A ∩B )=A 22A 24=16,所以P (B |A )=P (A ∩B )P (A )=13.(2)记A 1=“先摸出一个白球放回”,B 1=“再摸出一个球为白球”, 则AB 1=“先后两次摸到白球”. 因为P (A 1)=24=12,P (A 1∩B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1∩B 1)P (A 1)=12.14.(选做题)某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.求:(1)恰有一名同学当选的概率; (2)至多有两人当选的概率.解:设甲,乙,丙当选分别为事件A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立, 所以恰有一名同学当选的概率为P (A ∩B -∩C -)+P (A -∩B ∩C -)+P (A -∩B -∩C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C ) =45×25×310+15×35×310+15×25×710 =47250. (2)至多有两人当选的概率为 1-P (A ∩B ∩C )=1-P (A )P (B )P (C )4 5×35×710=83125.=1-。
条件概率有关条件概率的三个重要计算公式
第二周条件概率和独立性2.2条件概率有关条件概率的三个重要计算公式上一讲中我们引入了条件概率,有了这一概念,我们对事件的表达就有了更丰富的工具。
下面我们就希望能够有效地计算条件概率,得到我们想要的概率结果。
对于条件概率而言呢,主要有三个计算公式,分别是乘法公式、全概率公式和贝叶斯公式。
这三个计算公式的应用贯穿概率论的始终,是非常基本和重要的计算工具。
下面我们看第一个乘法公式。
*********************************************************乘法公式(1)设B A ,是两个事件,()0>B P ,则()()()B A P B P AB P |=证明:()()()()()()||P AB P A B P AB P B P A B P B =⇒=(2)设n A A A ,,,21 为n 个事件,且()0121>-n A A A P ,则()()()()()12121312121|||-⋅⋅=n n n A A A A P A A A P A A P A P A A A P 。
证明:数学归纳法,设()()()()111211||-⋅⋅=k k k A A A P A A P A P A A P ,()()()1112112|k k k kP A A P A A A P A A A A ++=⋅ ()()()121112||.k k P A P A A P A A A A +=⋅⋅ 直接验证:()()()()121312121|||n n P A P A A P A A A P A A A A -⋅⋅ ()()()()()()()12312121112121n n P A A A P A A A P A A P A P A P A A P A A A -= ()12.n P A A A =*********************************************************例2.2.1设箱子内有a 个白球,b 个黑球,在其中不放回地连取3次,问前2次取到白球而第3次取到黑球的概率。
人教版高中数学第二章2.2-2.2.1条件概率
类型 3 条件概率的性质及其应用
[典例 3] 在一个袋子中装有 10 个球,设有 1 个红球, 2 个黄球,3 个黑球,4 个白球,从中依次摸 2 个球,求 在第一个球是红球的条件下,第二个球是黄球或黑球的 概率.
解:法一 设“摸出第一个球为红球”为事件 A,“摸 出第二个球为黄球”为事件 B,“摸出第三个球为黑球” 为事件 C,则 P(A)=110,P(AB)=110××29=415,P(AC)= 110××39=310.
答案:甲抽到的数大于 4 的情形有(5,1),(5,2), (5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),共 12 个,其中甲、乙抽到的两 数之和等于 7 的情形有(5,2),(6,1),共 2 个.所以 P(B|A) =122=16.
第二章 随机变量及其分布
2.2 二项分布及其应用 2.2.1 条件概率
[学习目标] 1.通过对具体情景的分析,了解条件概 率的定义(重点). 2.掌握求条件概率的两种方法(难 点). 3.利用条件概率公式解决一些简单的问题(重点、 难点).
[知识提炼·梳理]
1.条件概率
条件 设 A,B 为两个事件,且 P(A)>0
解析:由题意可知,n(B)=C1322=12,n(AB)=A33=6.
所以 P(A|B)=nn((ABB))=162=12.
答案:12
5.在 5 道题中有 3 道数学题和 2 道物理题.如果不 放回地依次抽取 2 道题,则在第 1 次抽到数学题的条件下, 第 2 次抽到数学题的概率是________.
生的条件下,事件 B 不会发生.
(2)对,因为事件 A 等于事件 B,所以事件 A 发生, 事件 B 必然发生.
高中数学 第2章 概率 2.3.1 条件概率讲义 苏教版选修2-3-苏教版高二选修2-3数学教案
2.3.1 条件概率学 习 目 标核 心 素 养1.了解条件概率的概念,掌握条件概率的计算公式.(重点)2.利用条件概率计算公式解决一些简单的实际问题.(难点)通过条件概率的学习,提升数学抽象素养.1.条件概率一般地,对于两个事件A 和B ,在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为P (A |B ).若A ,B 互斥,则P (A |B )=P (B |A )=0.2.条件概率公式(1)一般地,若P (B )>0,则事件B 发生的条件下A 发生的条件概率是P (A |B )=P (AB )P (B ). (2)乘法公式:P (AB )=P (A |B )P (B ). 思考1:P (A |B )=P (B |A )成立吗?[提示] 不一定成立.一般情况下P (A |B )≠P (B |A ),只有P (A )=P (B )时才有P (A |B )=P (B |A ).思考2:若P (A )≠0,则P (A ∩B )=P (B |A )·P (A ),这种说法正确吗? [提示] 正确.由P (B |A )=P (A ∩B )P (A )得P (A ∩B )=P (B |A )·P (A ).1.把一枚骰子连续抛掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A.1B.12C.13D.14B [设事件A :第一次抛出的是偶数点;事件B :第二次抛出的是偶数点,则P (B |A )=P (A ∩B )P (A )=12×1212=12.]2.设A ,B 为两个事件,且P (A )>0,若P (AB )=13,P (A )=23,则P (B |A )=________.12 [由P (B |A )=P (AB )P (A )=1323=12.] 3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.415[记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“第二次才取到黄球”为事件C ,所以P (C )=P (AB )=P (A )P (B |A )=410×69=415.]利用P (B |A )=P (AB )P (A )求条件概率 只20岁的这种动物,问它能活到25岁的概率是________.(2)抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.①求P (A ),P (B ),P (AB );②当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率. [思路探究] (1)直接应用公式P (B |A )=P (AB )P (A )求解. (2)①利用古典概型求P (A ),P (B )及P (AB ). ②借助公式P (B |A )=P (AB )P (A )求概率. (1)0.5 [设事件A 为“能活到20岁”,事件B 为“能活到25岁”,则P (A )=0.8,P (B )=0.4,而所求概率为P (B |A ),由于B ⊆A ,故AB =B ,于是P (B |A )=P (AB )P (A )=P (B )P (A )==0.5,所以一只20岁的这种动物能活到25岁的概率是0.5.] (2)[解] ①设x 为掷红骰子得到的点数,y 为掷蓝骰子得到的点数,则所有可能的事件与(x ,y )建立对应如图.显然:P (A )=1236=13,P (B )=1036=518,P (AB )=536.②P (B |A )=P (AB )P (A )=53613=512.1.用定义法求条件概率P (B |A )的步骤 (1)分析题意,弄清概率模型; (2)计算P (A ),P (AB ); (3)代入公式求P (B |A )=P (AB )P (A ). 2.在(2)题中,首先结合古典概型分别求出了事件A ,B 的概率,从而求出P (B |A ),揭示出P (A ),P (B )和P (B |A )三者之间的关系.1.(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________.(2)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.(1)2335 (2)0.72 [(1)由公式P (A |B )=P (AB )P (B )=23,P (B |A )=P (AB )P (A )=35. (2)设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为P (B |A )=0.8,又P (A )=0.9,P (B |A )=P (AB )P (A ),得P (AB )=P (B |A )·P (A )=0.8×0.9=0.72.]利用基本事件个数求条件概率【例2】 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.[思路探究] 第(1)、(2)问属古典概型问题,可直接代入公式;第(3)问为条件概率,可以借用前两问的结论,也可以直接利用基本事件个数求解.[解] 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .(1)从6个节目中不放回地依次抽取2个的事件数为n (Ω)=A 26=30, 根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n (A )n (Ω)=2030=23. (2)因为n (AB )=A 24=12,于是P (AB )=n (AB )n (Ω)=1230=25. (3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P (AB )P (A )=2523=35.法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=n (AB )n (A )=1220=35.1.本题第(3)问给出了两种求条件概率的方法,法一为定义法,法二利用基本事件个数直接作商,是一种重要的求条件概率的方法.2.计算条件概率的方法(1)在缩小后的样本空间ΩA 中计算事件B 发生的概率,即P (B |A ). (2)在原样本空间Ω中,先计算P (AB ),P (A ),再利用公式P (B |A )=P (AB )P (A )计算求得P (B |A ). (3)条件概率的算法:已知事件A 发生,在此条件下事件B 发生,即事件AB 发生,要求P (B |A ),相当于把A 看作新的基本事件空间计算事件AB 发生的概率,即P (B |A )=n (AB )n (A )=n (AB )n (Ω)n (A )n (Ω)=P (AB )P (A ).2.盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?[解] 由题意得球的分布如下:玻璃 木质 合计 红 2 3 5 蓝 4 7 11 合计61016设A ={取得蓝球},B ={取得玻璃球}, 则P (A )=1116,P (AB )=416=14.∴P (B |A )=P (AB )P (A )=141116=411.条件概率的综合应用[探究问题1.掷一枚质地均匀的骰子,有多少个基本事件?它们之间有什么关系?随机事件出现“大于4的点”包含哪些基本事件?[提示] 掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥.“大于4的点”包含“5点”“6点”两个基本事件.2.“先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?[提示] “第一枚4点,第二枚5点”“第一枚4点,第二枚6点”.3.先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?[提示] 设第一枚出现4点为事件A ,第二枚出现5点为事件B ,第二枚出现6点为事件C .则所求事件为(B +C )|A .∴P ((B +C )|A )=P (B |A )+P (C |A )=16+16=13.【例3】 一批同型号产品由甲、乙两厂生产,产品结构如下表:等级数量厂别甲厂乙厂合计合格品 475 644 1 119 次品 25 56 81 合计5007001 200(1)从这批产品中随意地取一件,则这件产品恰好是次品的概率是________; (2)已知取出的产品是甲厂生产的,则这件产品恰好是次品的概率是________. [思路探究] 先求的基本函数的概率,再依据条件概率的计算公式计算. (1)27400 (2)120[(1)从这批产品中随意地取一件,则这件产品恰好是次品的概率是811 200=27400. (2)法一:已知取出的产品是甲厂生产的,则这件产品恰好是次品的概率是25500=120.法二:设A =“取出的产品是甲厂生产的”,B =“取出的产品为甲厂的次品”,则P (A )=5001 200,P (A ∩B )=251 200,所以这件产品恰好是甲厂生产的次品的概率是P (B |A )=P (A ∩B )P (A )=120.]条件概率的解题策略分解计算,代入求值,为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.3.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.[解] 设“任选一人是男人”为事件A ,“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)此人患色盲的概率P (C )=P (AC )+P (BC ) =P (A )P (C |A )+P (B )P (C |B ) =5100×100200+×100200=21800. (2)P (A |C )=P (AC )P (C )=520021800=2021.1.本节课的重点是条件概率的定义及条件概率的求法,难点是对条件概率定义的理解. 2.计算条件概率需要注意的问题: (1)公式P (B |A )=P (A ∩B )P (A )仅限于P (A )>0的情况.当P (A =0)时,我们不定义条件概率. (2)计算条件概率P (B |A )时,不能随便用事件B 的概率P (B )代替P (A ∩B ). (3)条件概率是指在一定条件下发生的概率,是概率的一种,具有概率的一般性质. (4)P (B |A )与P (A |B )不一定相等.(5)利用公式P (B ∪C |A )=P (B |A )+P (C |A )求解有些条件概率问题较为简捷,但应注意这个性质是在“B 与C 互斥”这一前提下才具备的,因此不要忽视这一条件而乱用这个公式.1.判断(正确的打“√”,错误的打“×”) (1)若事件A ,B 互斥,则P (B |A )=1.( )(2)事件A 发生的条件下,事件B 发生,相当于A ,B 同时发生.( ) (3)P (B |A )≠P (A ∩B ).( )[答案] (1)× (2)× (3)√2.已知P (B |A )=13,P (A )=25,则P (A ∩B )等于( )A.56B.910C.215D.115 C [由P (B |A )=P (A ∩B )P (A ), 得P (A ∩B )=P (B |A )·P (A )=13×25=215]3.抛掷骰子2次,每次结果用(x 1,x 2)表示,其中x 1,x 2分别表示第一次、第二次骰子的点数.若设A ={(x 1,x 2)|x 1+x 2=10},B ={(x 1,x 2)|x 1>x 2}.则P (B |A )=________.13 [∵P (A )=336=112,P (AB )=136, ∴P (B |A )=P (AB )P (A )=136112=13.]4.一个口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?[解] (1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果,所以P (A )=12,P (AB )=2×14×3=16,所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(AB) = p(A)p(B/A) =p(B)p(A/B)
定义2(公理化定义) 设A、B是两个事件, 且 P(B) > 0,则称
P(A|B)
P( AB) P(B)
是概率
为在事件 B 发生的条件下, 事件 A 的条件概率.
用古典概型的思想去理解:
在事件 B已发生的条件下, 为使 A 也发生, 试验 结果必须是既在 B 中又在A 中的样本点 , 即此点必
方法 1)
P(A1)=
—13
20
,
方法 2)
的
点数
20
P(A1A2)=
—CC—122230
39 95
,
P( A2 |
A1)
P( A1A2) P( A1)
12 19
.
19
A1 发生后的缩减样本空间
所含样本点总数
在缩减样本空间
中A2 所含样本点个数
12
P(
A2
|
A1)
12 19
.
例1 一盒子装有4 只产品, 其中有3 只一等品、1只 二等品. 从中取产品两次, 每次任取一只, 作不放回抽 样. 设事件A为“第一次取到的是一等品” 、事件B 为“第二次取到的是一等品”.试求条件概率 P(解B|A)将. 产品编号, 1, 2, 3 为一等品 ; 4 号为二等品 .
例2一盒子装有4 只产品, 其中有3 只一等品、1只二等品. 从中取产品两
次, 每次任取一只, 作不放回抽样. 设事件A为“第一次取到的是一等品” 、 事件B 为“第二次取到的是一等品”.试求条件概率 P(B|A).
将产品编号, 1, 2, 3 为一等品 ; 4 号为二等品 .以 (i, j) 表示第一次、第二次分别取到第 i 号、第 j 号产品, 则试验的样本空间为
以 (i, j) 表示第一次、第二次分别取到第 i 号、第 j 号产品, 则试验的样本空间为
S {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4) ,, (4,1), (4,2), (4,3)},
例1 一盒子装有4 只产品, 其中有3 只一等品、1只 二等品. 从中取产品两次, 每次任取一只, 作不放回抽 样. 设事件A为“第一次取到的是一等品” 、事件B 为“第二次取到的是一等品”.试求条件概率 P(解B|A将).产品编号, 1, 2, 3 为一等品 ; 4 号为二等品 .
以 (i, j) 表示第一次、第二次分别取到第 i 号、第 j 号产品, 则试验的样本空间为
S {(1, 2), (1,3), (1, 4), (2,1), (2,3), (2, 4) , , (4,1), (4, 2), (4,3)},
A {(1, 2), (1,3), (1, 4), (2,1), (2,3), (2, 4), (3,1), (3, 2), (3, 4)},
概率的性质都适用于条件概率
写出
条件概率 P(A|B)与 P(A)的区别 ?
每一个随机试验都是在一定条件下进行的,P(A) 是在该试验条件下事件A发生的可能性大小.
条件概率P(A|B)是在原条件下又添加“B发生” 这个条件时A发生的可能性大小.
P(A)与P(A|B)的区别在于两者发生的条件不同, 它们是两个不同的概念, 在数值上一般也不同.
AB {(1, 2), (1,3), (2,1), (2,3), (3,1), (3, 2)},
由条件概率的公式得
P(B
A)
P( AB) P( A)
6 9
12 12
2. 3
B AB A
属于AB. 故 B变成新的样本空间B)≤1; 2. P (S|B) = 1 ;
自行 验证
3.设 A1 ,…,An , …互不相容,则
P[( A1+…+An 条件概率的性质
+
…)| B] = P(A1|B)+ … +P(An|B自) +行…
《概率论与数理统计》 第二课:条件概率
小结 我们研究概率的计算问题
直接计算
古几典何概概型型
等可能性
推
条件概率 ——事件 B 发生的条件下事件A的条件概率
一般地不等于A 的无条件概率.
算
什么条件下才会出现 P(A)=P(A|B)的情形呢?
乘法公式
——给出了计算两个或多个事件同时发生的概率
它在计算概率时经常使用,需要牢固掌握.
条件概率 P(A|B)与 P(A)数值关系 ?
P(A|B) ≤ P(A) 或 P(A|B) ≥ P(A) ?
P(A|B) 与 P(AB)数值关系 ?
1)条在件原概样率本的空计间算中直接用定义计算:
P(A | B)
P( AB) P(B)
,
P(B)>0;
2) 在减缩的样本空间中 (加入条件后改变了的情况)直接计算.
在解决许多概率问题时,往往需要在有某些附加 信息(条件)下求事件的概率.
比如在事件 B 发生的条件下求事件 A 发生的概率, 这种概率问题就是
§1.5 条件概率
一、条件概率
定义1(通俗) 事件A发生下事件 B发生的概率,称为 事件 A发生下事件B发生的条件概率。
记为p(B/A).
例1: 我班有学生n人,男生(用事件 A表示)m 人。来自 曲靖(用事件B 表示)的有k 人,其中男生 j 人。 分别计算以下概率: p(A) ; p(B); p(A/B) ; p(B/A) ; p(AB)。