向量代数与空间解析几何ppt

合集下载

《高等数学》第七章 空间解析几何与向量代数

《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p


4(3i 5 j 8k ) 3(2i 4 j 7k )


(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,

《高等数学》课件第7章 空间解析几何与向量代数

《高等数学》课件第7章 空间解析几何与向量代数
右手定则,即以右手握住z 轴,当右手的四个手指从 x轴正向以 角度转向 y 轴正向时,大拇指的指向就是z
2 轴的正向.

yOz面

xOy面
x
Ⅶ Ⅷ
z zOx面


•O
y
Ⅵ Ⅴ
二、空间两点间的距离公式
空间两点间的距离:P1( x1, y1, z1 )、P2( x2 , y2 , z2 )
z
P2
P1
ki j,
j i k, k j i , i k j.
(a ybz azby )i (azbx axbz ) j (axby a ybx )k
设 a ax i ay j az k , b bx i by j bz k , 则 ( ax i ay j az k ) (bx i by j bz k ) i j jk ki 0
(2) 结合律 ( a ) b a ( b ) ( a b )
向量积的坐标表达式

a
axi
ay j
azk,
b bxi by j bzk
ab
(a
x
i
a
y
j
az k
)
(bxi
by
j
bzk )
i i j j k k 0,
i j k,
jk i,
第 七 章 向空 量间 代解 数析 几 何 与
目录
第一节 空间直角坐标系 第二节 向量及其线性运算 第三节 向量的坐标 第四节 向量的数量积与向量积 第五节 平面及其方程 第六节 空间直线及其方程 第七节 常见曲面的方程及图形
第一节 空间直角坐标系
一、空间直角坐标系简介
三条垂直相交且具有相同长度单位的数轴,构成一 个空间直角坐标系,交点O称为坐标原点,这三条轴分别 叫做z 轴(横轴)、y 轴(纵轴)和x轴(竖轴).

高等数学第五章向量代数与空间解析几何

高等数学第五章向量代数与空间解析几何

第五章 向量代数与空间解析几何(数学一)§5.1 向量代数一.空间直角坐标系从空间某定点O 作三条互相垂直的数轴,都以O 为原点,有相同的长度单位,分别称为x 轴,y 轴,z 轴,符合右手法则,这样就建立了空间直角坐标系,称O 为坐标原点。

1.两点间距离设点()1111,,z y x M ,()2222,,z y x M 为空间两点,则这两点间的距离可以表示为 ()()()21221221221z z y y x x M M d -+-+-==2.中点公式设()z y x M ,,为()1111,,z y x M ,()2222,,z y x M 联线的中点,则 2,2,2212121z z z y y y x x x +=+=+=二.向量的概念1.向量既有大小又有方向的量称为向量。

方向是一个几何性质,它反映在两点之间从一点A 到另一点B 的顺序关系,而两点间又有一个距离。

常用有向线段表示向量。

A 点叫起点,B 点叫终点,向量。

模为1的向量称为单位向量。

2.向量的坐标表示若将向量的始点放在坐标原点O ,记其终点M ,且点M 在给定坐标系中的坐标为()z y x ,,。

记以三个坐标轴正向为方向的单位向量依次记为k j i ,,,则向量OM 可以表示为 zk yj xi ++= 称之为向量OM 的坐标表达式,也可以表示为 ()z y x OM ,,=称zk yj xi ,,分别为向量OM 在x 轴,y 轴,z 轴上的分量。

称z y x ,,分别为向量OM 在x 轴,y 轴,z 轴上的投影。

记OM 与x 轴、y 轴、z 轴正向的夹角分别为γβα,,,则222cos zy x x ++=α222c o s zy x y ++=β 222c o s zy x z ++=γ方向余弦间满足关系1cos cos 222=++γβαcoxγβα,,描述了向量OM 的方向,常称它们为向量的方向角。

高等数学-第8章-空间解析几何与向量代数

高等数学-第8章-空间解析几何与向量代数

-。

b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。

、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。

a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。

由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。

当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。

上的射影。

投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。

向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。

向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。

推论:相等矢量在同一轴上的射影相等。

性质2:Prj(12a a +)=Prj 1a +Prj 2a 。

性质2可推广到有限个向量的情形。

性质3:Prj u λa =λPrj u a 。

向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。

向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。

向量与空间解析几何.ppt

向量与空间解析几何.ppt

存在唯一的实数 , 使b a .
证明: 充分性显然,
3
b 必要性: 设 b // a , 取 , a 当 b 与 a 同向时 取正值, 当 b 与 a 反向时 取负值, 即有 b a . b 此时 b 与 a 同向. 且 a a a b , a 再证 的唯一性: 设 b a, b a , 两式相减, 得: ( )a 0, 即 a 0, a 0, 故 0, 即 . 定理1 . 两个非零向量a与b 平行的充要条件是 : 存在不全为零的实数和 , 使得: a b 0.
B
B. 内积的运算法则
A
c a
b
C
证明 : 记 AB c , AC b , BC a , 2 | a | (b c ) (b c ) b b 2b c c c 2 2 | b | | c | 2 | b || c | cos A.
a
10
(1) a b b a . ( 2) a ( b c ) a b a c . ( 3) (a b ) (a ) b a (b ).
例2.用向量方法证明三角形余弦定理
定理3 空间三个向量a , b , c 共面的充要条件是它们
的混合积等于零.
推论 空间四点A, B, C , D 共面的充要条件是 :
[ AB, AC , AD] 0.
16
定理4. 空间三个向量 a , b , c 共面的充要条件是存在 不 全为零的实数 k1 , k2 , k3 , 使得 : k1a k2b k3c 0.

高等数学第一节、向量及其线性运算

高等数学第一节、向量及其线性运算

o
a
A
记作(a, b) 或 (b, a),即(a, b) .
如果向量 a 与 b 中有一个是零向量 ,规定它们的
夹角可以在 0 与 π 之间任意取值 .
8、向量平行
如果(a, b) 0或,就称向量a 与b 平行,记作a// b .
a
c
b
零向量与任何向量都平行.
9、向量垂直
如果
( a,
b)
,就称向量a
因为向量 a 与 a 平行,所以常用向量与数的乘
积来说明两个向量的平 行关系.
定理 1 设向量 a 0,那么向量b 平行于 a 的充分
必要条件是: 存在唯一的实数,使得 b a .
6、数轴与向量
数轴可由一个点、一个方向及单位长度确定,故
给定一个点及一个单位向量即可确定一条数轴.
6、零向量: 模等于零的向量叫做零 向量,记作 0 或 0 .
零向量的起点与终点重合,它的方向可以看做是任意的.
7、向量的夹角 设有两个非零向量 a, b, 任取空间一点 O,
作 OA a, OB b,
规定不超过 π 的 AOB
B
b
(设 AOB, 0 π)
称为向量a 与 b的夹角,
A
D
二、向量的线性运算
1. 向量的加法
三角形法则
ab
C
A
a
b
B
或平行四边形法则
b
A
D
ab
a
B
C
b (ab)c
a (b c)
c bc
运算规律 :
ab b
交换律 结合律
a b b a (a b) c
a
(b
c)

最新文档-1空间解析几何15814-PPT精品文档

最新文档-1空间解析几何15814-PPT精品文档

a
b
2
数量积的坐标表达式
a aa
a b a x b x a y b y a z b z
两向量夹角余弦的坐标表示式
co s
axbxaybyazb z
ax2ay2az2 bx2by2b z2
ห้องสมุดไป่ตู้
ab
ab 0
a x b x a yb y a zb z 0
求|ab|.
4
解: ab 2(a b )(a b )
a a2abbb
a2 2 abco b s2
(2 )2223co 3 s3 2
4 17
ab 17
例4. 已知三点 A ( 1 , 2 , 3 ) ,B ( 3 , 4 , 5 ) C ( 2 ,, 4 , 7 ) ,求三
向量 c 模 : c a b sin
称 c为向a与 量 b的 向量积 , 记作 cab (叉积)
b a
几何意义:右图三角形面积
cab
S=
1 2
ab
a b
性质
(1) aa0 (2) a, b为非零向量, 则 ab0 a∥ b
ax ay az bx by bz
运算律
直的单位向量.


c

ab

i ax
j ay
ki az 3
j 2
k

4 1j0 5k,
bx by bz 1 1 2
|c |120 5255
c0

|
c c |

2
j
5
15k.
例3. 已知向量 a , b 的夹角 3 ,且 |a| 2,|b|3,

高等数学 第七章 向量代数与空间解析几何

高等数学 第七章 向量代数与空间解析几何

第四节 空间直线及其方程
一、空间直线的一般方程 二、空间直线的对称式方程与参数方程
三、两直线的夹角 四、直线与平面的夹角
一、空间直线的一般方程
空间直线可以看作是两个平面的交线.
设直线L是平面1和2的交线, 平面的方程分别为
A1xB1yC1zD10和A2xB2yC2zD20, 那么直线L可以用方程组
设α=x1i+y1j+z1k=(x1 , y1 ,z1), 则有:β=x2i+y2j+z2k= (x2,y2,z2).
α+β =(x1+x2 )i +(y1+y2)j +(z1+z2) k
=(x1+x2 , y1+y2 , z1+z2 ). α-β=(x1-x2) i+ (y1-y2 ) j+ (z1-z2)k
一方向向量s(m, n, p)为已知时, 直线L 的位置就完全确定了.
❖直线的对称式方程
求通过点M0(x0, y0, x0), 方向向量为s(m, n, p)的直线的方 程.
设M(x, y, z)为直线上的任一点,
则从M0到M的向量平行于方向向量:
从而有
(xx0, yy0, zz0)//s ,
>>>注
λ >0
由性质1, Prj(λα)=|λα|cos(φ1)
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时

空间解析几何与向量代数 ppt课件

空间解析几何与向量代数 ppt课件

z O M O N M O O A O BC C
O A xi,O B yj,O C zk
r x i y j z k (x,y,z)
k o i
j rMB y
A
此式称为向量 r 的坐标分解式 ,
x
N
xi ,y j,zk 称为 r 沿三向 个坐标量 轴方向的分向量.
ppt课件
14
机动 目录 上页 下页 返回 结束
x0
坐标面 : xoy面 z0
z轴
x0 y0
yoz面 x0
zox面y0
ppt课件
13
Hale Waihona Puke 机动 目录 上页 下页 返回 结束
2. 向量的坐标表示
在空间直角坐标系下, 任意向量 r 可用向径 OM 表示.
以 i , j,k 分别 x ,y ,z轴 表上 示,的 设点 M 单
的坐标为 M(x,y,z),则
四、利用坐标作向量的线性运算 设 a (a x ,a y,a z)b , (b x,b y,b z), 为实数,则
a b ( a x b x ,a y b y ,a z b z)
a(ax,ay,az)
平行向量对应坐标成比例:
当 a 0 时 ,
ba
ba
bx by b z ax ay a z
组成一个空间直角坐标系.
• 坐标原点

zz 轴(竖轴)

• 坐标轴

• 坐标面
• 卦限(八个) Ⅶ x
x轴(横轴)
Ⅷ ppt课件
yoz面 oxoy面


y
y轴(纵轴)

11
机动 目录 上页 下页 返回 结束

第7章 空间解析几何与向量代数

第7章 空间解析几何与向量代数

在空间引入一直角坐标系,为一个向量,为了讨论方便, a
OM OA AP PM OA OB OC
称向量OA, OB, OC为OM 在x轴、y轴、z轴上的分向量。 (又称基本单位向量)
记i, j , k分别为与x轴、y轴、z轴正向相同的单位向量。
设 Pr jx OM X , Pr j y OM Y , Pr jz OM Z 那么 OA X i , OB Y j , OC Z k 于是OM X i Y j Z k
cos X | OM | X X Y Z
2 2 2

而 Y Pr j y a | OM | cos , cos Y X 2 Y 2 Z2
同理 cos
Z X 2 Y 2 Z2
由于0 , , cos , cos , cos 唯一, 故称 cos , cos , cos为向量a 的方向余弦. 显然a
设向量 a, b 称 a b cos(a, b) 为向量 a, b 的数量积, 记作 a b 即a b a b cos(a, b)
由于 Pr ja b b cos(a, b) 所以 a b a Pr ja b b Pr jb a
点积的运算性质
(1) a a a
2
(2) cos(a, b)
a b ab
(3) a b a b 0
点积满足
交换律 a b b a
分配律 (a b) c a c b c ; ( a) b (a b)
5)向量与向量的向量积(又称为叉积)
设两个向量 a, b 称向量 a b sin(a, b) 为向量 a与b 的向量积, 记作 a b , 即 a b a b sin(a, b) 其中 是单位向量, 的方 向为按右手法则四指从a 的正向以不超过的角转动到b 的 正向时大拇指所指的方 . 向

向量代数与空间解析几何课件

向量代数与空间解析几何课件

空间曲线
空间中的曲线可以由三个 参数方程表示,例如球面 和抛物面。
曲面
曲面可以由两个或三个参 数方程表示,例如球面和 圆柱面。
空间解析几何中的常见问题与解决方法
求解点到直线的距离
使用点到直线距离公式,将点坐标和直线方程代入公式计 算。
求解两直线交点
将两直线的方程联立求解,得到交点的坐标。
判断两线是否平行或垂直
向量的数量积
01
向量数量积的定义
两个向量的数量积定义为它们的模长和夹角的余弦值的乘积,记作a·b

02
向量数量积的性质
数量积满足交换律、结合律、数乘律和分配律。
03
向量数量积的应用
在物理学中,向量数量积常用于描述力的做功、动量等物理量;在解析
几何中,向量数量积可用于计算向量的长度和向量的投影等。
向量的向量积
02
空间几何基础
空间直角坐标系
空间直角坐标系的定义
坐标轴上的单位向量
空间直角坐标系是三维空间中的一个 固定坐标系,由三个互相垂直的坐标 轴组成,分别为x轴、y轴和z轴。
与x轴、y轴和z轴正方向同向的单位向 量分别记为i、j、k,它们的模都为1, 且满足i×j=k,j×k=i,k×i=j。
空间点的坐标表示
在空间直角坐标系中,任意一点P的 位置可以用三个实数x、y、z来表示, 这三个实数称为点P的坐标。
向量的线性组合
向量线性组合的定义
如果向量a和b满足a=λb(λ为实数),则称向量a是向量b的线性 组合。
向量线性组合的性质
线性组合满足交换律、结合律和数乘律。
向量线性组合的应用
在物理学、工程学等领域中,向量线性组合常用于描述力的合成与 分解、速度和加速度的合成等。

向量代数与空间解析几何-PPT

向量代数与空间解析几何-PPT

解: 由 cos2+cos2+cos2 =1,且 = = ,有
3cos2=3cos2=3cos2 =1,从而
cos cos cos 1 或 cos cos cos 1
3
3
例4. 设有P1P2,已知|| P1P2||=2,且与x轴和y轴的夹角
分别为
3

解. 设 P1P2
的4 方,向若角P1为为(1, ,0,,3),,有求P2的坐, 标 .
则力F 所作的功为 W=||F||cos ·||r||
定义1 对于向量a, b,数量
|| a |||| b || cosa, b
F
r
称为向量a与b的数量积;记为a·b.
这里0〈a, b〉 . 数量积亦称点 积或内积.
W = F·r
=〈a, b〉= 〈b, a〉
限定 0〈a, b〉 向量在轴 u 上的投影
设 a M1M 2
O
Pr ju M1M 2 u2 u1
a
b M2
a
M1
u1
u2
u
(1) Pr ju M1M 2 || M1M 2 || cos = ||a|| cos〈a, u〉
(2) Pr ju (a1 a2 an ) Pr jua1 Pr jua2 Pr juan
但 M1P P1P2
z
R2
R
M1Q Q1Q2 M1R R1R2
R1 M1
P
M2 Q
N
y
M1M 2
P1 O
Q1
Q2
P2
P1P2 Q1Q2 R1R2 x
称 P1P2 , Q1Q2 , R1R2 为 M1M 2 在Ox,Oy,Oz轴上的分向量 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a1
M1
M2 a2 M3
u1
u2
u u3
5. 向量的分解和向量的坐标
例1. 设P1与P2为u轴上的两点,坐标分别为u1和u2;又
e为与u轴正向一致的单位向量,则 P1P2(u2u1)e
事实上, 若u1<u2, 有||P1P2 ||u2 u1,且 P1 P2 与e 同向,故
P1P2 (u2u1)e
若u1>u2, 有||P1P2 ||u1u2,且 P1 P2 与e 反向,故
P 1 P 2 (u 1 u 2)e (u 2 u 1 )e
若u1=u2, 有|| P1P2 || 0,故 P1P2 0;又 (u2u1)e0
故也有
P1P2 (u2u1)e
设aM1M2
M 1M 2M 1NM 1RM 1PM 1QM 1R
但 M1PP1P2
z
R2
R
M1QQ1Q2 M1RR1R2 M1M2
=〈a, b〉= 〈b, a〉
限定 0〈a, b〉 向量在轴 u 上的投影
设aM1M2
O
PjruM1M2u2u1
a
b M2
a
M1
u1
u2
u
(1) Pju rM 1M 2||M 1M 2||cos= ||a|| cos〈a, u〉
(2) P j u ( a 1 r a 2 a n ) P j u a 1 r P j u a 2 r P j u a n r
由 ||a|| >0,故 ||a||·a° 也与 a 方向相同,且
于是
|| ||a||·a° || = ||a||·||a° ||= ||a||
a ||a||a。
而同时有
a。 1 a || a ||
称 a° 为 a 的单位向量. (常被用来表示向量 a 的方向.)
5. 向量在轴上的投影 向量间的夹角
–a
2. 向量的加法 c = a + b
b a
平行四边形法则
b a
三角形法则
a1+a2+…+an 运算规律: (1) a+b=b+a (交换律) (2) (a+b)+c=a+(b+c) (结合律) (3) a+0=a (4) a+(–a)=0
3. 向量减法 a–b= a+(–b)
b
a –b
4. 数与向量的乘法
化简求得 z 14 , 从而所求M点 (0,0,为 14)
9
9
坐标系. Oy轴与Oy轴垂直,单位等长; Ox轴与Oy轴
交角120(或135),单位长为Oy轴上的单位长的 2 倍
(或 1 倍) ;
2
2
直线. 空间中本来相互平行的直线在图中依然要保持
平行;
作图: 作点 P(2,1,3), Q(1,2,-1), R(-2,-1,-1)
R1 M1
P
P1 O
Q1
P2
M2 Q
N
y
Q2
P1P2 Q1Q2 R1R2 x
称 P1P2,Q1Q2,R1R2 为 M1M2 在Ox,Oy,Oz轴上的分向量 .
z
M 1 M 2P 1P i, j, k 分别为沿Ox, Oy,
§2 向量的概念及其表示
1. 向量 向量:既有大小又有方向的量
aB
模:向量的大小,记|| a ||, || AB || A
单位向量:模等于1的向量
零向量:模等于0的向量(方向任意) ,记0.
所有向量的共性:大小、方向,因此定义
a b
向量相等:①模相等, ②方向相同,记 a=b
负向量:与a的模相等而方向相反的向量, a 记 –a.
x
z
o
y
4. 两点间距离 数轴上两点 M1=x1, M2=x2, 有
d=| M1 M2|=| x2 – x1| (x2 x1)2 平面上两点 M1 (x1, y1), M2 (x2, y2), 有
d |M 1 M 2|(x 2 x 1 )2 (y 2 y 1 )2 设空间中两点M1 (x1, y1, z1), M2 (x2, y2, z2), 是否应有
模:||a||=| |·||a||
0
>0: 与a相同
方向:
a
a=
<0: 与a相反
=0: a=0
运算律:
(1) (a)=()a= (a) 结合律
(2) (+)a=a+a (a+b)=a+ b
(3) 1·a=a, (–1)a= – a
分配律
2a 1a
2
定理1 b//a R , 使 b= a.
a 0,设 a°与a方向相同的一个单位向量,
|A| M ( 0 4 ) 2 ( 0 1 ) 2 ( z 7 ) 2 6 1 6 z 4 z 2
|B | M ( 0 3 ) 2 ( 0 5 ) 2 ( z 2 ) 2 3 4 8 z z 2
由|AM|=|BM|,得 6 1 6 z 4 z 2 3 4 8 z z 2

M1
•M • M2 空间一点M在平面上的投影
3.点的直角坐标
z
R
M
O
P
Qy
x
M (x, y, z)
有序数组(x, y, z)称为点M的坐标,记为M(x, y, z)
x, y, z 分别称为点 M 的横、纵、立坐标.
討論题
原点O的坐标 坐标轴上的点的坐标
坐标面上的点的坐标
各卦限中的点的坐标 的符号
d |M 1 M 2 | ( x 2 x 1 ) 2 ( y 2 y 1 ) 2 ( z 2 z 1 ) 2
由勾股定理
z
R2
R
R1 M1
M2 Q
P1 P2
P O
N
y
Q1
Q2
x
|M 1M 2||M 1N|2|N2 M |2 |M 1P|2|PN |2|N2 M |2 |x 2 x 1|2 |y 2 y 1|2 |z2 z 1|2 (x 2 x 1 )2 (y 2 y 1 )2 (z2 z 1 )2
第 7章
向量代数与空间解析几何
§1 空间直角坐标系
1.空间直角坐标系
空间直角坐标系 Oxyz
z
坐标原点 O
坐标轴 Ox , Oy , Oz
坐标平面
O
y

xOy , yOz , xOz x
右手系
卦限
III z
II
VII
IV
x
VIII
I
o
y
VI
V
2. 点的投影 空间一点M在直线(或轴上)的投影
M•
M1 (x1, y1, z1), M2 (x2, y2, z2), d |M 1 M 2 | ( x 2 x 1 ) 2 ( y 2 y 1 ) 2 ( z 2 z 1 ) 2
特别地,点O (0, 0, 0) 与 M (x, y, z)之间的距离
dOM x2y2z2
例1. 在Oz轴上求与A(4,1,7)和B(3,5,2)等距离的点. 解: 设所求的点为M(0,0,z).
相关文档
最新文档