中考数学24题专项训练(含答案)-(1)解读

合集下载

天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习思路分析:观察近几年的中考真题可以发现,每年倒数第二题的出题形式,都是将几何图形放在平面直角坐标系中。

但是,由于解析几何要到高中才学,所以坐标系在这里其实只能起到一个确定点的坐标的作用。

当然,如果把直线看成一次函数图像,一次函数解析式就是直线方程,也就可以将直线交点问题,转化为方程组求解问题,但在这道题中通常都不需要这样做。

题目每年都会对几何图形进行变换,近六年的变换规律是:旋转、对称、旋转、对称、旋转、平移,明年应该大概率是旋转。

因为无论是对称变换、旋转变换还是平移变换,图形的大小和形状都不会发生改变,所以每年的题目都会涉及到全等。

由于在图形变换的过程中,全等的判定通常都是比较容易的,所以本题对全等的考察又主要在全等性质的应用上。

题目设问无论是点的坐标、线段的长还是图形的面积,其核心都是求距离。

所有的距离又都可以转化为求两点间的距离或求点到直线间的距离。

任意两点之间的距离公式虽然要高中才学,但我们可以将两点之间的距离转化为求一个直角三角形的斜边长,用勾股定理求解。

因此,我们会发现每年的题目中几乎都会涉及到勾股定理。

任意点到任意直线的距离公式也要到高中才会学习,但对于一些特殊情况,我们现在就可以做了。

每年的第一问,都是送分问,用一次勾股定理基本都可以解决。

第二问和第三问,解题的关键是要抓住全等的性质和特殊三角形。

第三问通常也会和其它知识点结合,但涉及的都是一些基础知识点,基本功扎实的同学,问题都不大。

最后提醒一下,当对图形进行旋转变换时,尤其需要注意其与圆的结合。

在研究点、直线、圆和圆的位置关系时,只需要研究它们和圆心的位置关系即可。

而在旋转变换时,旋转中心自然就是圆心。

真题练习参考答案。

2019重庆中考数学第24题专题训练---- 平行四边形(含大部分题目答案)

2019重庆中考数学第24题专题训练---- 平行四边形(含大部分题目答案)

6、重庆市沙坪坝区 2019 届九年级上学期期末
A E
D
G
F
A
D
G
E
F
B
C
第 24 题图 1
B
C
第 24 题图 2
3
7、已知,在平行四边形 ABCD 中,AE⊥BC,且 E 为 BC 的中点,AE=2BE,P 为 BC 上一点,连接 DP,作 EF⊥DP 于点 F,连接 AF. (1)若 AD=4,求 AE 的长; (2)求证: 2 AF+EF=DF.
G.点 H 在 BC 的延长线上,且 CH=AG, 连接 EH.
(1)若 BC 12 2 ,AB=13,求 AF 的长; (2)求证:EB=EH.
9
19、重庆市 2018 年初中学业水平暨高中招生考试数学( A 卷)
A
F
D
O
H
G
B
E
C
10
2019 重庆中考数学第 24 题专题训练---平行四边形答案
连接 AF 与 DE 交于点 G。 (1)若∠C=60°,AB=2,求 GF 的长; (2)过点 A 作 AH⊥AD,且 AH=CE,求证:AB=DG+AH
1
3、如图,已知 ABCD 中,DE⊥BC 于点 E,DH⊥AB 于点 H,AF 平分∠BAD,分别交 DC、DE、DH 于点 F、G、M,
(1)若∠F=60°,∠C=45°,BC= 2 6 ,请求出 AB 的长;(2)求证:CD=BF+DF.
F
E
D
A
B
G
C
6
13、重庆一中初 2019 级 17-18 学年度下期期末
已知在平行四边形 ABCD 中,过点 D 作 DE BC 于点 E ,且 AD DE .连接 AC 交 DE 于点 F ,作 DG AC 于点 G . (1)如图 1,若 EF 1 , AF 13 ,求 DG 的长;

初三中考数学第24题题型及解析

初三中考数学第24题题型及解析

第三讲中考数学第24题专练一1(14•长沙).如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE 与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB△AOC的面积.2.(2015•长沙)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.3(2016•长沙).如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求CDE ∠的度数;(2)求证:DF 是⊙O 的切线;(3)若AC =,求tan ABD ∠的值.4(17年长沙).如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.5(18*长沙)、如图,在ABC 中,AD 是边B C 上的中线,BAD CAD ,CE//AD ,CE 交B A 的延长线于点E,BC 8,A D 3。

(1)求C E 的长;(2)求证:ABC 为等腰三角形;(3)求ABC 的外接圆圆心P与内切圆圆心Q之间的距离。

6.(19*长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①条边成比例的两个凸四边形相似;( 命题)②三个角分别相等的两个凸四边形相似;( 命题)③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,111111AB BC CD A B B C C D ==,求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFDE 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.第四讲专练二1.(18雅礼一模)如图,已知AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)若BF=2,tan∠BDF=,求⊙O的半径.2.(19麓山三模)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tan D=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.3.(长沙第三次月考)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sin C=,AC=6,求⊙O的直径.4.(长沙第三次月考)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.1.(19广益三模)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=,求线段OE的长.2.(19中、南雅一模)如图,在矩形ABCD中,P为边CD上一点,把△BCP沿直线BP折叠,顶点C的对应点为C′,连接BC′与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)若E为AD的中点,求证:△ABE≌△DEC;(2)连接C′Q,求证:四边形C′QCP是菱形;(3)若AB=12,AD=25,且DE<AE,求菱形的边长.第三讲答案1(14•长沙).如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB,求△AOC的面积.解2.(2015•长沙)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D 在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.解:(1)∵点A(,0)与点B(0,﹣),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°﹣∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA﹣AF=,∴点E的坐标为:(,).3(2016•长沙).如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求CDE∠的度数;(2)求证:DF是⊙O的切线;(3)若AC=,求tan ABD∠的值.解(1)对角线AC为⊙O的直径90ADC∴∠=︒90CDE∴∠=︒…………………(2分)(2)(方法一)连接,OF OD,在Rt CDE∆中,点F为斜边CE的中点DF FC∴=在DOF∆和COF∆中DF CFOF OFOD OC=⎧⎪=⎨⎪=⎩∴DOF∆≌COF∆∴90ODF OCF∠=∠=︒∴DF OD⊥∴DF是⊙O的切线……………(5分)(方法二)证明:连接OD,AC为⊙O的直径,CE AC⊥90ADC CDE O∴∠=∠=, 90ACF O∠=又在Rt CDE∆中,点F为斜边CE的中点,DF FC CDF DCF ∴=∠=∠ 又OD OC = ODC OCD ∴∠=∠90ODF ODC CDF OCD DCF ∴∠=∠+∠=∠+∠=︒∴DF 是⊙O 的切线 …………………(5分)(方法三) 证明:连接OD ,CE AC ⊥,AC 为⊙O 的直径90ADC ADO ODC ∴∠=∠+∠=︒90DAO ACD ∠+∠=︒90ACD DCF ∠+∠=︒DAO DCF ∴∠=∠又OA OD = DAO ADO ∴∠=∠ ADO DCF ∴∠=∠又在Rt CDE ∆中,点F 为斜边CE 的中点,DF FC CDF DCF ∴=∠=∠ADO CDF ∴∠=∠90ODF ODC CDF ODC ADO ∴∠=∠+∠=∠+∠=︒∴DF 是⊙O 的切线 …………………(5分)(3) (方法一)由圆周角定理可得 ABD ACD ∠=∠由题中条件可得 90,ADC CDE CAD ECD ∠=∠=︒∠=∠, ADC ∴∆∽CDE ∆ ∴AD DC CD DE= ∴2CD AD DE =⋅ ………………(6分)由于AC = 所以可令 ,,DE a AD b ==则有,AC CD ==在Rt ACD ∆中,由勾股定理可得 222)b +=上式两边同时除以2a 并整理后得到 2()200bb a a +-= 解之可得 4b a =或5b a=-(舍去) …………………(8分)tan tan 2AD ABD ACDDC ∴∠=∠==== …………………(9分)(方法二)设DE x =,AD y =,AC =易证ACD ∆∽AED ∆ ∴2AC AD AE =∙2)()y x y =∙+( 即2220x y yx =+2()200yyx x +-= 解得4yx =或5yx =-(舍去)∴2CD x = ∴4tan tan 22xABD ACD x ∠=∠==(方法三)设DE a =,tan ABD m ∠=,则AC =,ACm EC =,CDm DE =∴ACEC m ==,CD mDE ma ==在Rt CDE ∆中222CD DE CE +=∴222()ma a += ∴22201m m +=∴222()200m m +-= ∴22(5)(4)0m m +-=∴24m =或25m =-(舍去) ∴tan 2ABD ∠=4(17年长沙).如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.5、如图,在 ABC 中,AD 是边 B C 上的中线,BAD CAD ,CE //AD ,CE 交 B A 的延长线于点 E ,BC 8,A D 3。

2019重庆中考数学第24题专题训练十二((含答案)

2019重庆中考数学第24题专题训练十二((含答案)

2019重庆中考数学第24题专题训练十二2019、11、重庆巴蜀中学初2019届初三上期末试卷MMPN2、重庆市南岸区11中、二外、珊瑚2018-2019学年度上期三校期末联考九年级数学4、2018-2019学年重庆实验外国语学校九年级数学定时练习试题如图△ABC,以AC为斜边向下作等腰直角△ADC,直角边AD交BC于点EBC=+求线段DC的长;(1)如图1,若∠ACB=30°,∠B=45°,BC=2(2)如图2,若等腰R△ADC的直角顶点D恰好落在线段BC的垂直平分线上,过点A作AF⊥BC于点F,连接DF,求证:AB.BB图1图2B6、如图,△ABC中,∠BAC=5°,点D是AB边上一点,且CB=CD,过点B作BH⊥CD于H,交AC于E(1)若CH=4,DH=2,求△BCD的面积;(2)求证:∠BEC=∠A+12∠BCD;(3)用等式表示AE与BD之间的数量关系;并证明。

7、如图1,在五边形 ABCDE 中,∠E=90°,BC=DE 连接AC,AD,且AB=AD,AC ⊥BC (1)求证:AC=AE; (2)如图2,若∠ABC=∠CAD,AF 为BE 边上的中线,求证:AF ⊥CDABB图1 图2方法一:方法二:MN方法三:8、如图①,在等腰Rt △ABC 中,∠ACB=90°,点D 在AC 上(且不与点A,C 重合),以AD 为直角边向外作等腰Rt △ADE,使∠ADE=90°,连接CE,再以CE 、CB 为邻边作平行四边形CBFE (1)已知求线段CF 的长;(2)将Rt △ADE 绕点A 逆时针旋转角a(90°<a<180°),如图②,连接CD 、CE,再以CE 、CB 为邻边作平行四边形CBFE,设线段AB 、CE 交于点G ,求证BECF图① 图②9、已知,在△ABC中,∠ABC=45,高线AD、BE相交于点G,(1)如图,若∠CAD=30°,GE=2,求DG的长(2)如图2,连接DE,过点D作DF⊥DE交BE于点F,连接AF,过点D作DH⊥AF于点H交BE于点M求证:AF=2DM10、如图在ABC中,过点A作AE⊥BC交BC于E,D为△BC外一点且AD⊥DC,AD交BC 于F,连接、D,已知AE=BE,AD= DC.(1) AB=BC=,求DC长度;(2)求证:∠CBD+∠ACE=45B CADEMM11、八中2019级周考1512、如图,平行四边形ABCD 中,过点B 作BE⊥CD 于点E ,点F 是AD 上一点,连接BF 、CF,交BE 于点G.. (1)若CF 平分∠BCD,∠A=60°,BC=8,求线段CG 的长。

2020届中考数学总复习(24)命题与证明-精练精析(1)及答案解析

2020届中考数学总复习(24)命题与证明-精练精析(1)及答案解析

图形的性质——命题与证明1一.选择题(共8小题)1.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形2.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=03.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.424.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个5.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形6.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短7.已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个8.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形二.填空题(共7小题)9请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= _________ (写出一个x的值即可).10.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________ ,该逆命题是_________ 命题(填“真”或“假”).11.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y= 两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有_________ (只需填正确命题的序号)12.命题“对顶角相等”的逆命题为_________ .13.命题“对顶角相等”的题设是_________ ,结论是_________ .14命题“直角三角形两个锐角互余”的条件是_________ ,结论是_________ .15.请阅读下列语句:①一个数的相反数是它本身,则这个数一定是正数;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;③函数y=kx+b,当k>0时,图象有可能不经过第二象限;④两边一角对应相等的两个三角形全等;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好.其中正确的是_________ (只填序号)三.解答题(共5小题)16.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,_________ .求证:_________ .证明:17.已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.18.已知命题:“P是等边三角形ABC内的一点,若P到三边的距离相等,则PA=PB=PC.”证明这个命题,并写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.19.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.20.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):_________ .结论(求证):_________ .证明:_________ .图形的性质——命题与证明1参考答案与试题解析一.选择题(共8小题)1.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0考点:命题与定理;根的判别式.专题:常规题型.分析:先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.解答:解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选:D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个考点:命题与定理;平行四边形的判定.专题:常规题型.分析:分别利用平行四边形的判定方法判断得出即可.解答:解:(1)两组对边分别相等的四边形是平行四边形,此选项正确;(2)两组对角分别相等的四边形是平行四边形,此选项正确;(3)对角线互相平分的四边形是平行四边形,此选项正确;(4)一组对边平行且相等的四边形是平行四边形,此选项正确.故选:A.点评:此题主要考查了平行四边形的判定,熟练掌握平行四边形的判定是解题关键.5.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形考点:命题与定理.专题:常规题型.分析:根据等腰图形的性质对A矩形判断;根据矩形、正方形和菱形的判定方法分别对B、C、D矩形判断.解答:解:A、等腰梯形是轴对称图形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四边相等且有一个角为90°的四边形是正方形,所以C选项错误;D、有两条相互垂直的对称轴的四边形可以是菱形或矩形,所以D选项错误.故选:A.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.下列命题错误的是()A.所有的实数都可用数轴上的点表示 B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:常规题型.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:常规题型.分析:先对原命题进行判断,再判断出逆命题的真假即可.解答:解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.8.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形考点:命题与定理.分析:利用特殊的四边形的判定和性质定理逐一判断后即可确定正确的选项.解答:解:A、四条边都相等的是菱形,故错误,是假命题;B、菱形的对角线互相垂直但不相等,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形但不一定是正方形,故错误,是假命题;D、正确,是真命题.故选:D.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.二.填空题(共7小题)9.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可).考点:命题与定理.专题:开放型.分析:先进行配方得到x2+5x+5=x2+5x+﹣=(x﹣)2﹣,当x=时,则有x2+5x+5=﹣<0.解答:解:x2+5x+5=x2+5x+﹣=(x﹣)2﹣,当x=时,x2+5x+5=﹣<0,∴是假命题.故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.10.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).考点:命题与定理.分析:交换原命题的题设和结论即可得到该命题的逆命题.解答:解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.点评:本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.11.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y= 两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有①(只需填正确命题的序号)考点:命题与定理.专题:推理填空题.分析:利用菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识分别判断后即可确定答案.解答:解:①每一条对角线都平分一组对角的平行四边形是菱形,故①正确.②当m>0时,﹣m<0,y=﹣mx+1是y随着x的增大而减小,y= 是在同一象限内y随着x 的增大而减小,故②错误.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(﹣,1),故③错误.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为,故④错误,故答案为:①.点评:本题考查了命题与定理的知识,解题的关键是了解菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识,难度一般.12.命题“对顶角相等”的逆命题为如果两个角相等,那么它们是对顶角.考点:命题与定理.分析:把一个命题的题设和结论互换即可得到其逆命题.解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:如果两个角相等,那么它们是对顶角.故答案为:如果两个角相等,那么它们是对顶角.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.命题“对顶角相等”的题设是两个角是对顶角,结论是这两个角相等.考点:命题与定理.分析:任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论.解答:解:命题“对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题“对顶角相等”的题设是“两个角是对顶角”,结论是“这两个角相等”.点评:本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.14.命题“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.考点:命题与定理.分析:命题有条件和结论两部分组成,条件是已知的,结论是结果.解答:解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.点评:本题考查了命题的条件和结论的叙述.15.请阅读下列语句:①一个数的相反数是它本身,则这个数一定是正数;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;③函数y=kx+b,当k>0时,图象有可能不经过第二象限;④两边一角对应相等的两个三角形全等;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好.其中正确的是②③(只填序号)考点:命题与定理.分析:利用相反数的定义、根的判别式、一次函数的性质、全等三角形的判定及方差的意义分别判断后即可确定正确的答案.解答:解:①一个数的相反数是它本身,则这个数一定是正数,错误;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根,正确;③函数y=kx+b,当k>0时,图象有可能不经过第二象限,正确;④两边一角对应相等的两个三角形全等,错误;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好,错误,故答案为:②③.点评:本题考查了命题与定理的知识,解题的关键是了解相反数的定义、根的判别式、一次函数的性质、全等三角形的判定及方差的意义,属于基础题,比较简单.三.解答题(共5小题)16.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,在△ABC中,∠B=∠C.求证:AB=AC .证明:考点:命题与定理;等腰三角形的性质.专题:证明题.分析:根据图示,分析原命题,找出其条件与结论,然后根据∠B=∠C证明△ABC 为等腰三角形,从而得出结论.解答:解:在△ABC中,∠B=∠C,AB=AC,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.点评:本题主要考查学生对命题的定义的理解,难度适中.17.已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.考点:命题与定理.分析:根据平行线的性质与判定分析得出即可.解答:解:如图,点B、F、C、E在同一条直线上,则AB∥DE,是假命题,当添加:∠B=∠E时,AB∥DE,理由:∵∠B=∠E,∴AB∥DE.点评:此题主要考查了命题与定理,熟练利用平行线的判定得出是解题关键.18.已知命题:“P是等边三角形ABC内的一点,若P到三边的距离相等,则PA=PB=PC.”证明这个命题,并写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.考点:命题与定理.分析:首先画出图形,由PD⊥AB于D,PE⊥BC于E,PD=PE,根据角平分线的判定得出BP平分∠ABC,由BA=BC,根据等腰三角形三线合一的性质得出BP是AC的垂直平分线,同理,AP是BC的垂直平分线,CP是AB的垂直平分线,那么P是△ABC三边垂直平分线的交点,根据线段垂直平分线的性质即可证明PA=PB=PC;将原命题的题设与结论交换位置即可写出其逆命题;可证明其逆命题成立.先由PA=PB,AC=BC,根据线段垂直平分线的判定得出CP是AB的垂直平分线,根据等腰三角形三线合一的性质得出CP平分∠ACB,同理,BP平分∠ABC,AP平分∠BAC,那么P是△ABC三个角的角平分线的交点,根据角平分线的性质即可得出PD=PE=PF.解答:解:如图,已知P是等边三角形ABC内的一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,PD=PE=PF.求证:PA=PB=PC.证明:∵PD⊥AB于D,PE⊥BC于E,PD=PE,∴BP平分∠ABC,∵BA=BC,∴BP是AC的垂直平分线,同理,AP是BC的垂直平分线,CP是AB的垂直平分线,∴P是△ABC三边垂直平分线的交点,∴PA=PB=PC.逆命题:P是等边三角形ABC内的一点,若PA=PB=PC,则P到三边的距离相等.其逆命题成立.证明:∵PA=PB,∴P在AB的垂直平分线上,∵AC=BC,∴C在AB的垂直平分线上,∴CP是AB的垂直平分线,∴CP平分∠ACB,同理,BP平分∠ABC,AP平分∠BAC,∴P是△ABC三个角的角平分线的交点,∴PD=PE=PF.点评:本题考查了命题与定理,角平分线、线段垂直平分线的判定与性质,等腰三角形的性质,难度适中.利用数形结合是解题的关键.19.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.考点:推理与论证;反证法.专题:推理填空题.分析:用反证法证明就可以代入特殊值来看看,令b=4,c=5可以证明命题①不正确,b=1,c=,可以证明命题③不正确若,命题②正确可证明.解答:解:令b=4,c=5可以证明命题①不正确.若b=1,c=,可以证明命题③不正确.命题②正确,证明如下由c>1,且0<b<2,得0<<1<c.则c>>,c>>0故a2+ab+c=+(c﹣)>0点评:本题考查灵活运用反例的能力以及灵活掌握不等式的能力.20.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):①②.结论(求证):③.证明:省略.考点:命题与定理;平行线的判定与性质.专题:计算题.分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.故答案为①②;③;省略.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.。

2022年湖北省宜昌市中考数学试题(含答案解析)

2022年湖北省宜昌市中考数学试题(含答案解析)

机密★启用前2022年湖北省宜昌市初中学业水平考试数学试题(本试卷共24题,满分120分,考试时间120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效,考试结束,请将本试题卷和答题卡一并上交。

参考公式:一元二次方程ax2 + bx + c = 0的求根公式是x = −b ±√b2− 4ac2a(b2−4ac ≥0),二次函数y = ax2 + bx + c图像的顶点坐标(−b2a,4ac−b24a),弧长l =nπr180,S扇形= nπr2 360一、选择题(下列各题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号,每题3分,计33分.)1.下列说法正确的个数是①2022-的相反数是2022;②2022-的绝对值是2022;③12022的倒数是2022.A.3B.2C.1D.02.将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.3.在2022年“书香宜昌⋅全民读书月”暨“首届屈原文化月”活动中,100多个社区图书室、山区学校、农家书屋、“护苗”工作站共获赠了价值100万元的红色经典读物、屈原文化优秀读物和智能书柜.“100万”用科学记数法表示为A.410010⨯B.5110⨯C.6110⨯D.7110⨯4.下列运算错误的是A.336x x x⋅=B.826x x x÷=C.326()x x=D.336x x x+=5.已知经过闭合电路的电流I (单位:)A 与电路的电阻R (单位:)Ω是反比例函数关系.根据下表判断a 和b 的大小关系为/I A 5 ⋯ a ⋯ ⋯ ⋯ b ⋯ 1 /R Ω2030 40 50 60 70 80 90100A .a b >B .a bC .a b <D .a b6.如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于 点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为A .25B .22C .19D .187.如图,四边形ABCD 内接于O ,连接OB ,OD ,BD ,若110C ∠=︒,则∠OBD = A .15︒B .20︒C .25︒D .30︒8.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1 艘大船与1艘小船一次共可以满载游客的人数为 A .30B .26C .24D .229.如图是小强散步过程中所走的路程s (单位:)m 与步行时间t (单位:)min 的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为 A .50/m min B .40/m min C .200/7m min D .20/m min10.如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是A.(1,3)B.(3,4)C.(4,2)D.(2,4)11.某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是A.13B.23C.19D.29二、填空题(将答案写在答题卡上指定的位置.每题3分,计12分)12.中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:21(3)---=.13.如图,点A,B,C都在方格纸的格点上,ABC∆绕点A顺时针方向旋转90︒后得到△AB C'',则点B运动的路径BB'的长为.14.如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西35︒方向,则ACB∠的大小是.15.如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若3AF=,4DG=,5FG=,矩形ABCD的面积为.三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分) 16.(本题满分6分)求代数式222232x y xx y y x ++--的值,其中2x y =+. 17.(本题满分6分)解不等式13132x x --+,并在数轴上表示解集.18.(本小题满分7分)某校为响应“传承屈原文化⋅弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香宜昌建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:请你根据图表中提供的信息,解答下面的问题:(1)扇形统计图中,120~150分钟时间段对应扇形的圆心角的度数是 ;a = ;样本数据的中位数位于 ~ 分钟时间段;(2)请将表格补充完整;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.19.(本小题满分7分)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26AB m =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5CD m =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1)m .20.(本小题满分8分)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒︒.(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin660.91︒≈,cos660.41︒≈,tan66 2.25)︒≈如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?21.(8分)已知菱形ABCD 中,E 是边AB 的中点,F 是边AD 上一点. (1)如图1,连接CE ,CF .CE AB ⊥,CF AD ⊥.①求证:CE CF =; ②若2AE =,求CE 的长;(2)如图2,连接CE ,EF .若3AE =,24EF AF ==,求CE 的长.22.(本小题满分10分)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m,则5月份再生纸项目月利润达到66万元.求m 的值; (3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?23.(本小题满分11分)已知,在ABC ∆中,90ACB ∠=︒,6BC =,以BC 为直径的O 与AB 交于点H ,将ABC ∆沿射线AC 平移得到DEF ∆,连接BE .(1)如图1,DE 与O 相切于点G .①求证:BE EG =; ②求BE CD ⋅的值;(2)如图2,延长HO 与O 交于点K ,将DEF ∆沿DE 折叠,点F 的对称点F '恰好落在射线BK 上.①求证://HK EF '; ②若3KF '=,求AC 的长.24.(12分)已知抛物线22y ax bx =+-与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点C .直线l 由直线BC 平移得到,与y 轴交于点(0,)E n .四边形MNPQ 的四个顶点的坐标分别为(1,3)M m m ++,(1,)N m m +,(5,)P m m +,(5,3)Q m m ++.(1)填空:a = ,b = ;(2)若点M 在第二象限,直线l 与经过点M 的双曲线ky x=有且只有一个交点,求2n 的最大值;(3)当直线l 与四边形MNPQ 、抛物线22y ax bx =+-都有交点时,存在直线l ,对于同一条直线l 上的交点,直线l 与四边形MNPQ 的交点的纵坐标都不大于它与抛物线22y ax bx =+-的交点的纵坐标.①当3m =-时,直接写出n 的取值范围; ②求m 的取值范围.2022年湖北省宜昌市初中学业水平考试数学试题参考答案一、选择题(每题3分,计33分)1.A 2.D 3.C 4.D5.A6.C7.B8.B9.D10.C11.A二、填空题(每题3分,计12分)12.10-13.52π 14.85︒ 15.48.三、解答题(本大题共有9题,计75分.) 16.解:原式32()()()()x y xx y x y x y x y +=-+-+- 2()()()x y x y x y +=+-2x y=-, 当2x y =+时,原式212y y==+-.17.(6分)解:去分母得:2(1)3(3)6x x --+,去括号得:22396x x --+, 移项得:23962x x --++, 合并同类项得:1x --, 系数化为1得:1x .18.(7分)解:(1)120~150分钟时间段对应扇形的圆心角的度数是:36010%36︒⨯=︒,本次调查的学生有:410%40÷=(人),10%100%25%40a =⨯=, a ∴的值是25,∴中位数位于60~90分钟时间段,故答案为:36︒,25,60,90;(2)一个小组的两个端点的数的平均数,叫做这个小组的组中值3060x ∴<时间段的组中值为(3060)245+÷=, 90120x <时间段的频数为:40620410---=,故答案为:45,10; (3)45675201051013548440⨯+⨯+⨯+⨯=(分钟), 答:估计该校八年级学生周末课外平均阅读时间为84分钟.19.(7分)解:(1)OC AB ⊥,AD BD ∴=;(2)设主桥拱半径为R ,由题意可知26AB =,5CD =,1132BD AB ∴==, 5OD OC CD R =-=-, 90OBD ∠=︒,222OD BD OB ∴+=,222(5)13R R ∴-+=,解得19.419R =≈,答:这座石拱桥主桥拱的半径约为19m .20.(8分)解:(1)5372α︒︒,当72α=︒时,AO 取最大值,在Rt AOB ∆中,sin AOABO AB∠=, sin 4sin7240.95 3.8AO AB ABO ∴=⋅∠=⨯︒=⨯=(米),∴梯子顶端A 与地面的距离的最大值为3.8米;(2)在Rt AOB ∆中,cos 1.6440.41BOABO AB∠==÷=, cos660.41︒≈,66ABO ∴∠=︒,5372α︒︒,∴人能安全使用这架梯子.21.(8分)(1)①证明:CE AB ⊥,CF AD ⊥,90BEC DFC ∴∠=∠=︒,四边形ABCD 是菱形,B D ∴∠=∠,BC CD =,()BEC DFC AAS ∴∆≅∆, CE CF ∴=;②解:连接AC ,如图1,E 是边AB 的中点,CE AB ⊥,BC AC ∴=,四边形ABCD 是菱形,BC AC ∴=,ABC ∴∆是等边三角形,60EAC ∠=︒,在Rt ACE ∆中,2AE =,tan 602323CE AE ∴=⋅︒=⨯=;(2)解:方法一:如图2, 延长FE 交CB 的延长线于M , 四边形ABCD 是菱形,//AD BC ∴,AB BC =,AFE M ∴∠=∠,A EBM ∠=∠, E 是边AB 的中点, AE BE ∴=,()AEF BEM AAS ∴∆≅∆,ME EF ∴=,MB AF =,3AE =,24EF AF ==,4ME ∴=,2BM ,3BE =,26BC AB AE ∴===, 8MC ∴=,∴2142MB ME ==,4182ME MC ==, ∴MB MEME MC=, M ∠为公共角,MEB MCE ∴∆∆∽, ∴24BE MB EC ME ==, 3BE =,6CE ∴=;方法二:如图3,延长FE 交CB 的延长线于M ,过点E 作EN BC ⊥于点N , 四边形ABCD 是菱形,//AD BC ∴,AB BC =,AFE M ∴∠=∠,A EBM ∠=∠,E 是边AB 的中点,AE BE ∴=,()AEF BEM AAS ∴∆≅∆,ME EF ∴=,MB AF =,3AE =,24EF AF ==,4ME ∴=,2BM ,3BE =,26BC AB AE ∴===,8MC ∴=,在Rt MEN ∆和Rt BEN ∆中,222ME MN EN -=,222BE BN EN -=, 2222ME MN BE BN ∴-=-,22224(2)3BN BN ∴-+=-,解得:34BN =,321644CN ∴=-=, 2222231353()416EN BE BN ∴=-=-=, 在Rt ENC ∆中,22213544157636161616CE EN CN =+=+==, 6CE ∴=. 22.(10分)解:(1)设3月份再生纸的产量为x 吨,则4月份再生纸的产量为(2100)x -吨, 依题意得:2100800x x +-=,解得:300x =,21002300100500x ∴-=⨯-=.答:4月份再生纸的产量为500吨.(2)依题意得:1000(1%)500(1%)6600002m m +⨯+=, 整理得:230064000m m -+=,解得:120m =,2320m =-(不合题意,舍去).答:m 的值为20.(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨, 依题意得:21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅, 21200(1)1500y ∴+=.答:6月份每吨再生纸的利润是1500元.23.(11分)(1)①证明:将ABC ∆沿射线AC 平移得到DEF ∆, //BE CF ∴,90ACB ∠=︒,90CBE ACB ∴∠=∠=︒,连接OG ,OE ,DE 与O 相切于点G ,90OGE ∴∠=︒,90OBE OGE ∴∠=∠=︒,OB OG =,OE OE =,Rt BOE Rt GOE(HL)∴∆≅∆,BE GE ∴=;②解:过点D 作DM BE ⊥于M ,90DMB ∴∠=︒,由(1)知90CBE BCF ∠=∠=︒,∴四边形BCDM 是矩形,CD BM ∴=,DM BC =,由(1)可知BE GE =,同理可证CD DG =,设BE x =,CD y =,在Rt DME ∆中,222MD EM DE +=,222()6()x y x y ∴-+=+,9xy ∴=,即9BE CD ⋅=;(2)①证明:延长HK 交BE 于点Q , 设ABC α∠=,OB OH =,BHO OBH α∴∠=∠=,2BOQ BHO OBH α∴∠=∠+∠=,902BQO α∴∠=︒-,ABC ∆沿射线AC 平移得到DEF ∆,DEF ∆沿DE 折叠得到DEF '∆, DEF DEF ABC α'∴∠=∠=∠=,902BEF α'∴∠=︒-,BQO BEF '∴∠=∠,//HK EF '∴;②解:连接FF ',交DE 于点N ,DEF ∆沿DE 折叠,点F 的对称点为F ',ED FF '∴⊥,12FN FF '=, HK 是O 的直径,90HBK ∴∠=︒,点F '恰好落在射线BK 上, BF AB '∴⊥,ABC ∆沿射线AC 方向平移得到DEF ∆, //AB DE ∴,BC EF =,∴点B 在FF '的延长线上,BC 是O 的直径,HK EF ∴=,在HBK ∆和ENF ∆中,HBK ENF BHO NEF HK EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()HBK ENF AAS ∴∆≅∆,BK NF ∴=,设BK x =,则3233BF BK KF FF x x x ''=++=++=+, OB OK =,OBK OKB ∴∠=∠,又90HBK BCF ∠=∠=︒,HBK FCB ∴∆∆∽, ∴BK HK BC BF=, ∴6633x x =+, 解得:13x =,24x =-(不合题意,舍去),3BK ∴=,在Rt HBK ∆中,31sin 62BK BHK KH ∠===, 30BHK ∴∠=︒,30ABC ∴∠=︒, 在Rt ACB ∆中,tan tan30AC ABC BC∠=︒=,6tan306AC ∴=⋅︒== 即AC的长为24.(12分)解:(1)将(1,0)A -,(4,0)B 代入22y ax bx =+-, ∴2016420a b a b --=⎧⎨+-=⎩, 解得1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, 故答案为:12,32-;(2)设直线BC 的解析式为y dx e =+, (4,0)B ,(0,2)C -,∴402d e e +=⎧⎨=-⎩,解得122d e ⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为122y x =-,直线BC 平移得到直线l ,直线l 与y 轴交于点(0,)E n , ∴直线l 的解析式为12y x n =+, 双曲线ky x =经过点(1,3)M m m ++,(1)(3)k m m ∴=++,243m m y x ++∴=,直线l 与双曲线ky x =有且只有一个交点, 联立方程组21243y x nm m y x⎧=+⎪⎪⎨++⎪=⎪⎩,整理得2222860x nx m m +---=,∴△0=,即2244(286)0n m m ----=,222860n m m ∴+++=,2222862(2)2n m m m ∴=---=-++, M 点在第二象限,10m ∴+<,30m +>,31m ∴-<<-,∴当2m =-时,2n 可以取得最大值2;(3)如图1,当直线l 与抛物线有交点时,联立方程组21322212y x x y x n⎧=--⎪⎪⎨⎪=+⎪⎩,整理得,24420x x n ---=,△0,即8160n +,4n ∴-,当4n =-时,直线142y x =-与抛物线的交点为(2,3)F -;①当3m =-时,四边形NMPQ 的顶点分别为(2,0)M -,(2,3)N --,(2,3)P -,(2,0)Q ,如图2,当直线l 经过点(2,3)P -时,此时P 点与F 点重合, 4n ∴=-时,直线l 与四边形MNPQ 、抛物线都有交点,且满足直线l 与矩形MNPQ 的交点的纵坐标都不大于与抛物线的交点的纵坐标; 如图3,当直线l 经过点A 时,12n =, 当直线l 经过点M 时,如图4,1n =, ∴112n , 综上所述:n 的取值范围为:112n 或4n =-; ②当m 的值逐渐增大到使矩形MNPQ 的顶点(1,3)M m m ++在直线142y x =-上时,直线l 与四边形MNPQ 、抛物线同时有交点,且同一直线l 与四边形MNPQ 的交点的纵坐标都小于它与抛物线的交点的纵坐标,13(1)42m m ∴+=+-, 解得13m =-;如图5,当m 的值逐渐增大到使矩形MNPQ 的顶点(1,3)M m m ++在这条开口向上的抛物线上(对称轴左侧)时,存在直线l (即经过此时点M 的直线)l 与四边形MNPQ 、平行同时有交点,且同一直线l 与四边形MNPQ 的交点的纵坐标都不大于它与抛物线的交点的纵坐标, ∴213(1)(1)2322m m m +-+-=+,解得m =(舍)或m = 综上所述:m 的取值范围为357132m--。

2023年中考数学----《函数基础知识--自变量的取值范围与函数值》专项练习题(含答案解析)

2023年中考数学----《函数基础知识--自变量的取值范围与函数值》专项练习题(含答案解析)

2023年中考数学复习----《函数基础知识--自变量的取值范围与函数值》知识总结与专项练习题(含答案解析)知识总结1. 函数的概念:设在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量。

2. 自变量的取值范围:(1)使函数表示有意义。

①分母不能为0。

②被开方数大于等于0。

③幂的底数和指数不能同时为0。

(2)满足实际问题的实际意义。

3. 函数值:函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值。

专项练习题1、(2022•黄石)函数y =113−++x x x 的自变量x 的取值范围是( ) A .x ≠﹣3且x ≠1 B .x >﹣3且x ≠1C .x >﹣3D .x ≥﹣3且x ≠1 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:函数y =+的自变量x 的取值范围是:x +3>0,且x ﹣1≠0,解得:x >﹣3且x ≠1.故选:B .2、(2022•丹东)在函数y =x x 3+中,自变量x 的取值范围是( ) A .x ≥3 B .x ≥﹣3C .x ≥3且x ≠0D .x ≥﹣3且x ≠0 【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【解答】解:由题意得:x +3≥0且x ≠0,解得:x ≥﹣3且x ≠0,故选:D .3、(2022•牡丹江)函数y =2−x 中,自变量x 的取值范围是( )A .x ≤﹣2B .x ≥﹣2C .x ≤2D .x ≥2【分析】根据二次根式(a ≥0),可得x ﹣2≥0,然后进行计算即可解答.【解答】解:由题意得: x ﹣2≥0,∴x ≥2,故选:D .4、(2022•恩施州)函数y =31−+x x 的自变量x 的取值范围是( ) A .x ≠3 B .x ≥3C .x ≥﹣1且x ≠3D .x ≥﹣1 【分析】利用分式有意义的条件和二次根式有意义的条件得到不等式组,解不等式组即可得出结论.【解答】解:由题意得:,解得:x ≥﹣1且x ≠3.故选:C .5、(2022•连云港)函数y =1−x 中自变量x 的取值范围是( )A .x ≥1B .x ≥0C .x ≤0D .x ≤1【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x ﹣1≥0,∴x ≥1.故选:A .6、(2022•黑龙江)函数31−−=x x y 自变量x 的取值范围是( ) A .x ≥1且x ≠3 B .x ≥1C .x ≠3D .x >1且x ≠3 【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,x ﹣1≥0且x ﹣3≠0,解得x ≥1且x ≠3.故选:A .7、(2022•无锡)函数y =x −4中自变量x 的取值范围是( )A .x >4B .x <4C .x ≥4D .x ≤4【分析】因为当函数用二次根式表达时,被开方数为非负数,所以4﹣x ≥0,可求x 的范围.【解答】解:4﹣x ≥0,解得x ≤4,故选:D .8、(2022•安顺)要使函数y =12−x 在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:2x ﹣1≥0,解得:x ≥,故答案为:x ≥.9、(2022•哈尔滨)在函数y =35+x x 中,自变量x 的取值范围是 . 【分析】根据分母不能为0,可得5x +3≠0,然后进行计算即可解答.【解答】解:由题意得:5x +3≠0,∴x ≠﹣,故答案为:x ≠﹣.10、(2022•巴中)函数y =31−x 中自变量x 的取值范围是 . 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:x ﹣3>0,解得:x >3.故答案为:x >3.x −4。

2024年北京市中考数学试题(含答案解析)

2024年北京市中考数学试题(含答案解析)
D、是轴对称图形,但不是中心对称图形,故不符合题意;
2.【答案】B
【详解】解:∵ ,
∴ ,
∵ , ,
∴ ,
3.【答案】C
【详解】解:A、由数轴可知 ,故本选项不符合题意;
B、由数轴可知 ,由绝对值的意义知 ,故本选项不符合题意;
C、由数轴可知 ,而 ,则 ,故 ,故本选项符合题意;
D、由数轴可知 ,而 ,因此 ,故本选项不符合题意.
(1)当 时,求抛物线的顶点坐标;
(2)已知 和 是抛物线上的两点.若对于 , ,都有 ,求 的取值范围.
27.已知 ,点 , 分别在射线 , 上,将线段 绕点 顺时针旋转 得到线段 ,过点 作 的垂线交射线 于点 .
(1)如图1,当点 在射线 上时,求证: 是 的中点;
(2)如图2,当点 在 内部时,作 ,交射线 于点 ,用等式表示线段 与 的数量关系,并证明。
7.下面是“作一个角使其等于 ”的尺规作图方法.
(1)如图,以点 为圆心,任意长为半径画弧,分别交 , 于点 , ;
(2)作射线 ,以点 为圆心, 长为半径画弧,交 于点 ;以点 为圆心, 长为半径画弧,两弧交于点 ;
(3)过点 作射线 ,则 .
上述方法通过判定 得到 ,其中判定 的依据是()
A.三边分别相等的两个三角形全等
评委1
评委2
评委3
评委4
评委5



若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是____________,表中 ( 为整数)的值为____________.
24.如图, 是 的直径,点 , 在 上, 平分 .
(1)求证: ;
(2)延长 交 于点 ,连接 交 于点 ,过点 作 的切线交 的延长线于点 .若 , ,求 半径的长.

上海中考数学第24题分析(中)

上海中考数学第24题分析(中)

上海中考数学第24题分析(中)——二次函数中的三角形存在问题一、我们先复习下各类特殊三角形的性质1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。

判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。

2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。

判定:有一个角是直角的三角形是直角三角形。

3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。

判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

二、两圆一线VS两线一圆1、“两圆一线”模型如图,线段AB,在平面内找一点C使得△ABC为等腰三角形;这样的点C的集合如下图所示,在以点A,B分别为圆心且AB为半径的圆和AB的垂直平分线上,除了与AB在同一直线上的点外的所有点,简称“两圆一线”。

2、“两线一圆”模型如图,线段AB,在平面内找一点C使得△ABC为直角三角形;这样的点C的集合如下图所示,分别过点A,B作线段AB的垂线,并以AB为直径画圆,除点A,B以外的点都可以与点A,B构成直角三角形,这个模型简称“两线一圆”。

三、关于等腰三角形找点(作点)和求点的方法1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图上找出存在点的个数,只找不求。

2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分顶点进行讨论,例1:已知两点A、B,在二次函数图像上求一点C,使得△ABC 为等腰三角形解法——这是求点法:第一步:先运用两点间的距离公式分别求出线段AB、BC、AC的长度;第二步:作假设,(1)以点A为顶点的两条腰相等,即AB=AC;(2)以点B为顶点的两条腰相等,即BA=BC;(3)以点C为顶点的两条腰相等,即CA=CB;第三步:根据以上等量关系,求出所求点的坐标第四步:进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。

数学九上复习题24答案

数学九上复习题24答案

数学九上复习题24答案【题目】1. 解一元二次方程:\( ax^2 + bx + c = 0 \),其中 \( a \),\( b \), \( c \) 是已知数。

2. 求函数 \( y = 2x^2 + 3x - 5 \) 的顶点坐标。

3. 已知 \( \frac{1}{x} + \frac{1}{y} = 3 \) 和 \( \frac{1}{x} - \frac{1}{y} = 1 \),求 \( x \) 和 \( y \) 的值。

4. 证明:\( \sqrt{a^2 + b^2} \) 是 \( a \) 和 \( b \) 的欧几里得距离。

5. 解不等式:\( |x - 3| < 2 \)。

【答案】1. 解一元二次方程 \( ax^2 + bx + c = 0 \) 的一般步骤是使用求根公式:\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]如果 \( b^2 - 4ac > 0 \),方程有两个实数根;如果 \( b^2 - 4ac = 0 \),方程有一个实数根;如果 \( b^2 - 4ac < 0 \),方程没有实数根。

2. 函数 \( y = 2x^2 + 3x - 5 \) 的顶点坐标可以通过完成平方来求得:\[ y = 2(x^2 + \frac{3}{2}x) - 5 \]\[ y = 2(x + \frac{3}{4})^2 - 2(\frac{3}{4})^2 - 5 \]\[ y = 2(x + \frac{3}{4})^2 - \frac{9}{8} - 5 \]\[ y = 2(x + \frac{3}{4})^2 - \frac{49}{8} \]顶点坐标为 \( (-\frac{3}{4}, -\frac{49}{8}) \)。

3. 根据方程组:\[ \frac{1}{x} + \frac{1}{y} = 3 \]\[ \frac{1}{x} - \frac{1}{y} = 1 \]将两个方程相加和相减,得到:\[ \frac{2}{x} = 4 \]\[ \frac{2}{y} = 2 \]解得 \( x = \frac{1}{2} \) 和 \( y = 1 \)。

2019重庆中考数学第24题专题训练二(含部分答案)

2019重庆中考数学第24题专题训练二(含部分答案)

2019重庆中考数学第24题专题训练二1、如图,∠ABC=90°,∠DEB=90°,BA=BC,BD=BE,连接AE,CD,AE所在直线交CD于点F,连接BF.(1)连接AD,EC,求证:AD=EC;(2)若BF⊥AF,求证:F点为CD的中点.2.在等腰直角三角形ACB中,∠ACB=90°,AC=BC,点F是AC的中点,过点A作BF的延长线的垂线,垂足为点D,连接CD,过点C作CE⊥CD交BF于点E.(1)如图1,若CE=AD=1,求AC的长;(2)如图2,连接AE,求证:AE=2CF.3、如图,矩形ABCD中,BC=2AB,点E是边AD的中点,点F是线段AE上ー点(点F不与点A,E重合)连接BF,过点F作直线BF的垂线,与线段CE交于点G,点H是线段BG的中点.(1)若CE=2求矩形ABCD的面积;(2)求证:BF=EH.4、如图1,在正方形ABCD中,对角线AC与BD交于点O,H为CD边上一点,连接BH交AC于K,E 为BH上一点,连接AE交BD于点F.(1)若AE⊥BH于E,且CK=,AD=6,求AF的长;(2)如图2,若AE=BE,且∠BEO=∠EAO,求证:AE=2OE.5、如图,在△ABC中,∠BAC=90°,AB=AC,点D为形外一点,BD⊥CD于点D,CD交AB于E. (1)如图1,若∠ABD=15°,BE=6,求BC的长;(2)如图2,连接AD,作AF⊥BC于F,交CD于M,若DA=DB,求证:CE=CM.6.(2017春・垫江县期末)已知,如图1在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,BE与AD交于点F.(1)若BF=5,DC=3,求AB的长;(2)在图1上过点F作BE的垂线,过点A作AB 的垂线,两条垂线交于点G,连接BG,得如图2。

①求证:∠BGF=45°;②求证:AB=AG+AF.2019重庆中考数学第24题专题训练二答案解析。

2023年中考数学----有理数之绝对值与偶次方的非负性专项练习题(含答案解析)

2023年中考数学----有理数之绝对值与偶次方的非负性专项练习题(含答案解析)

2023年中考数学----有理数之绝对值与偶次方的非负性专项练习题
(含答案解析)
知识回顾
1. 绝对值的非负性: 根据绝对值的定义可知,a 是一个非负数,恒大于等于0。

即a ≥0。

2. 偶次方的非负性:
任何数的偶次方都恒大于等于0。

即()0≥为偶数n a n 。

几个非负数的和等于0,则这几个非负数分别等于0。

即0=+b a ,则0==b a ;022=+b a ,则0==b a ;02=+b a ,则0==b a 。

专项练习题
1、(2022•西藏)已知a ,b 都是实数,若|a +1|+(b ﹣2022)2=0,则a b = .
【分析】根据绝对值、偶次幂的非负性求出a 、b 的值,再代入计算即可.
【解答】解:∵|a +1|+(b ﹣2022)2=0,
∴a +1=0,b ﹣2022=0,
即a =﹣1,b =2022,
∴a b =(﹣1)2022=1,
故答案为:1.
2、(2022•泸州)若(a ﹣2)2+|b +3|=0,则ab = .
【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.
【解答】解:由题意得,a ﹣2=0,b +3=0,
解得a=2,b=﹣3,
所以,ab=2×(﹣3)=﹣6.故答案为:﹣6.。

上海中考数学24题专项训练

上海中考数学24题专项训练

历年中考24题专项训练(08中考)24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图12,在平面直角坐标系中,为坐标原点.二次函数的图像经过点,顶点为.(1)求这个二次函数的解析式,并写出顶点的坐标;(2)如果点的坐标为,,垂足为点,点在直线上,,求点的坐标.yx(09中考)24. (本题满分12分,每小题满分各4分) 在直角坐标平面内,为原点,点的坐标为(1,0),点的坐标为(0,4),直线∥轴(如图7所示).点与点关于原点对称,直线(为常数)经过点,且与直线相交于点,联结. (1)求的值和点的坐标; (2)设点在轴的正半轴上,若是等腰三角形,求点的坐标; (3)在(2)的条件下,如果以为半径的圆与圆外切,求圆的半径.A O 1 -1 123 4 C M图7(10中考)24.如图8,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3) .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l 的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n 的值.图8(11中考)24.(本题满分12分,每小题满分各4分) 已知平面直角坐标系(图9),一次函数的图像与轴交于点,点在正比例函数的图像上,且.二次函数的图像经过点、.(1) 求线段的长;(2) 求这个二次函数的解析式; (3) 如果点在轴上,且位于点下方.点在上述二次函数的图像上,点在一次函数的图像上,且四边形是菱形,求点的坐标.图9O11xy(12中考)24.如图,在平面直角坐标系中,二次函数过点,和,,并与轴交于点,点在线段上,设,点在第二象限,且,,于.①求二次函数的解析式; ②用含的代数式表示和的长;③当时,求的值.xDFEO BACy(13中考)24. 如图9,在平面直角坐标系中,顶点为M 的抛物线经过点A 和轴正半轴上的点B ,AO = BO = 2,∠AOB = 120°. (1)求这条抛物线的表达式;(2)联结OM ,求∠AOM 的大小;(3)如果点C 在轴上,且△ABC 与△AOM 相似,求点C 的坐标.图9MABO(14中考)24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP的面积相等,求t的值.(15中考)24.(本题满分12分,每小题满分各4分)已知在平面直角坐标系中(如图6),抛物线与轴的负半轴相交于点,与轴相交于点,.点在抛物线上,线段与轴的正半轴相交于点,线段与轴相交于点.设点的横坐标为.(1)求这条抛物线的表达式;(2)用含的代数式表示的长;(3)当时,求的正弦值.11图6(16中考)24.如图8,抛物线()经过点,与轴的负半轴交于点,与轴交于点,且,抛物线的顶点为;(1)求这条抛物线的表达式;(2)联结、、、,求四边形的面积;(3)如果点在轴的正半轴上,且,求点的坐标;图8。

中考数学24题专题训练(圆及平行四边形)

中考数学24题专题训练(圆及平行四边形)

如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求∠CDE 的度数; (2)求证:DF 是⊙O 的切线; (3)若AC=2DE ,求tan ∠ABD 的值.已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过点D 的直线交AC 于E 点,且△AEF 为等边三角形 (1)求证:△DFB 是等腰三角形;(2)若DA=7AF ,求证上:CF ⊥AB在平面直角坐标中,△ABC 三个顶点坐标为A (﹣,0)、B (,0)、C (0,3).(1)求△ABC 内切圆⊙D 的半径.(2)过点E (0,﹣1)的直线与⊙D 相切于点F (点F 在第一象限),求直线EF 的解析式.(3)以(2)为条件,P 为直线EF 上一点,以P 为圆心,以2为半径作⊙P .若⊙P 上存在一点到△ABC 三个顶点的距离相等,求此时圆心P 的坐标.第25题图ED F CBOA如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF 中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图2所示,求MG 2+MH 2的值.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E FG H ,将矩形1111E FG H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD 的面积为?(直接写出答案)(3)当△CQD 的面积为,且Q位于以CD为直径的上半圆,CQ>QD时(如图2),求AP 的长.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B()0,2-,点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO。

中考数学24题评分标准(一)

中考数学24题评分标准(一)

中考数学24题评分标准(一)中考数学24题评分标准一、总体要求•评分标准以解题思路、步骤、答案准确性为主要依据;•评分应客观公正,遵循标准答案的要求;•题目中未明确要求的内容,不计入评分。

二、具体评分细则1. 解题思路(5分)•解题思路清晰,合理性强:+5分;•解题思路基本正确,稍有瑕疵:+3分;•解题思路模糊,错误较多:+1分;•解题思路混乱,错误严重:0分。

2. 步骤和计算过程(10分)•步骤清晰,计算过程正确,无漏算、错算:+10分;•步骤基本清晰,计算过程基本正确,个别错误可接受范围内:+6分;•步骤不够清晰,计算过程中有较多错误,但答案基本正确:+3分;•步骤混乱,计算过程错误较多,答案不正确或近似:+1分;•步骤混乱,计算过程严重错误,答案错误较多:0分。

3. 答案的准确性与合理性(9分)•结果完全正确,解释合理:+9分;•结果基本正确,解释基本合理:+6分;•结果基本正确,解释不够清晰或有瑕疵:+3分;•结果不完全正确,解释含糊不清或错误:+1分;•结果完全错误,解释混乱或无解释:0分。

4. 符号使用(1分)•符号使用正确,符合数学规范:+1分;•符号使用基本正确,个别使用有瑕疵:分;•符号使用错误较多,使计算过程混乱:0分。

5. 书写和排版(5分)•书写规范,排版整洁,清晰可辨:+5分;•书写基本规范,排版基本整洁,辨认困难:+2分;•书写较差,排版混乱,辨认困难:+1分;•书写极差,排版极混乱,几乎无法辨认:0分。

三、总结•中考数学24题的评分标准主要根据解题思路、步骤、答案准确性、符号使用和书写排版五个方面进行评分。

•评分要求客观公正,遵循标准答案,将解题思路、步骤、答案准确性、符号使用和书写排版的优劣进行综合评定。

•解题思路和步骤的清晰性、答案的准确性和合理性、符号的正确使用、书写和排版的规范性都将对最终评分产生重要影响。

•学生在备考中应注重解题思路和步骤的训练,同时注意答案的准确性和合理性,符号的正确使用以及书写和排版的规范性。

2024年上海市中考数学真题卷含答案解析

2024年上海市中考数学真题卷含答案解析

2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B.290x -=C. 2660x x -+= D. 2690x x -+=4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯.形6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含B. 相交C. 外切D. 相离二、填空题(每题4分,共48分)7 计算:()324x =___________.8 计算()()a b b a +-=______.9.1=,则x =___________.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b的式子表示).16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人...17. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18. 对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为__________.三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)19.计算:102|124(1-++.20. 解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.21. 在平面直角坐标系xOy 中,反比例函数ky x=(k 常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠值.22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三为的角板互不重叠),直角三角形斜边上的高都为h .(1)求:①两个直角三角形的直角边(结果用h 表示);②小平行四边形的底、高和面积(结果用h 表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23. 如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC =⋅;(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =.24. 在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.25. 在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-【答案】C 【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠【答案】D 【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可.得到答案,熟练掌握求函数定义域的方法是解决问题的关键.【详解】解:函数2()3xf x x -=-的定义域是30x -≠,解得3x ≠,故选:D .3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B.290x -=C. 2660x x -+= D. 2690x x -+=【答案】D 【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类【答案】B【解析】【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形 B. 矩形C. 直角梯形D. 等腰梯形【答案】A 【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBC OAD S S ∴= ,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBC OAD S S OC BF OB CH OD AE OA DG∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形,故选:A .6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含 B. 相交C. 外切D. 相离【答案】B 【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解: 圆A 半径为1,圆P 半径为3,圆A 与圆P 内切,∴圆A 含在圆P 内,即312PA =-=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB =325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7. 计算:()324x =___________.【答案】664x 【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8. 计算()()a b b a +-=______.【答案】22b a -【解析】【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9. 1=,则x =___________.【答案】1【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)【答案】3810⨯【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键.【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍,故答案为:3810⨯.11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)【答案】减小【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =-,结合正比例函数的性质,即可得出y 的值随x 的增大而减小.【详解】解: 正比例函数y kx =的图象经过点(7,13)-,137k ∴-=,解得:137k =-,又1307k =-< ,y ∴的值随x 的增大而减小.故答案为:减小.12. 菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 菱形,∴AB BC =,∴()()11180180665722BAC ACB ABC ∠=∠=︒-∠=︒-︒=︒,在是故答案为:57︒.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个,∵摸到绿球的概率是35,∴球的总数为3355x x ÷=个,∴白球的数量为532x x x -=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 为正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b 的式子表示).【答案】23a b - 【解析】【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+ .【详解】解: 四边形ABCD 是平行四边形,DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE a b =+=-=- ,∴23DC a b =-,故答案为:23a b - .16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解,∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=,由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=,∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人),故答案为:200017. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.【答案】27或47##47或27【解析】【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB 之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折性质知:FCD FC D ''∠=∠,CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。

天津中考数学24题的解题技巧(一)

天津中考数学24题的解题技巧(一)

天津中考数学24题的解题技巧(一)天津中考数学24题的解题技巧详解问题描述在天津市中考数学试卷中,第24题难度较高,需要一些特定的解题技巧和方法。

以下是针对这道题目的详细解答。

解题技巧一:理清题目要求1.仔细阅读题目,理解题目所要求的内容。

2.判断题目是否给出了所需要的数据和条件。

3.将题目中的关键信息记录下来,以便后续使用。

解题技巧二:使用图示方法1.假设数轴上A点和B点分别代表两个物体的位置。

2.假设物体A每秒的移动速度为a,物体B每秒的移动速度为b。

3.根据题目中的条件,画出物体A和物体B的运动轨迹。

4.分析两个物体的相对位置和相对速度。

解题技巧三:利用相对速度进行计算1.整理并列出题目中给出的数据和条件。

2.使用已知的物体速度和相对速度的关系来计算题目所要求的结果。

3.注意单位的换算和统一。

解题技巧四:进行逻辑推理1.使用逻辑推理的方法,理清问题的关键信息和所需要的计算步骤。

2.利用已知的条件和数据,进行逐步的推演和求解。

3.注意每一步的计算过程和计算结果的合理性。

解题技巧五:检查计算结果1.在解题过程中,要经常检查计算结果的合理性。

2.检查每一步的计算过程和计算结果是否符合数学常识和题目要求。

3.遇到不合理的结果要进行仔细检查,找出错误原因。

结论通过运用上述解题技巧,我们可以更加有效地解决天津中考数学24题,提高解题的准确性和效率。

同时,在解题过程中,要保持清晰的思维和逻辑,注重细节和正确性。

希望同学们能够充分掌握这些技巧,取得更好的成绩。

解题技巧一:理清题目要求在解题之前,我们首先需要理清题目的要求。

仔细阅读题目,确保我们明确题目要求我们找到什么,或者需要进行什么样的计算或判断。

只有明确了题目要求,我们才能有针对性地进行解题。

解题技巧二:使用图示方法解题过程中,图示方法往往能够帮助我们更加直观地理解问题。

对于数轴问题,我们可以假设数轴上的不同点代表不同的物体位置,利用图像将问题可视化,有助于我们更好地理解问题的条件和要求。

中考数学24题评分标准

中考数学24题评分标准

中考数学24题评分标准评分标准是为了客观、公正地评价学生在中考数学考试中的表现。

准确的评分标准不仅能够帮助学生更好地了解自己的学术水平,也能够让教师和家长更准确地了解学生的学习情况。

本文将探讨中考数学24题的评分标准,并对每个题目进行具体分析。

题目一:计算(10分)这道题目考察的是学生的基本计算能力。

在对学生的答案进行评分时,主要考虑答案的准确性和计算过程的正确性。

如果学生的答案与正确答案一致,并且计算过程完全正确,则可以给予满分。

如果答案错误,但计算过程正确的话,可以给予部分分。

如果学生的答案和计算过程都有错误,则分数将相应扣除。

题目二:代数应用(15分)本题考察学生对代数运算的掌握和应用能力。

在评分时,要关注学生是否正确运用代数表达式进行计算,并且将最终答案写出。

如果答案正确,并且计算过程准确无误,则可给予满分。

如果学生运用了错误的代数表达式,但在计算中没有出现错误,则可以给部分分。

若答案和计算过程都有错误,则分数将相应扣除。

题目三:几何图形(20分)本题考察学生对几何图形的认识和运用能力。

在评分时,要关注学生对几何图形性质的理解和应用。

如果学生正确地运用了几何性质,并给出了正确的解答和推理过程,则可以给予满分。

如果学生在运用几何性质时出现错误,但推理过程正确,则可以给部分分。

若学生在解答和推理过程中都有错误,则分数将相应扣除。

题目四:函数与图像(15分)本题考察学生对函数和图像的理解和应用能力。

在评分时,要关注学生对函数的定义、性质以及图像的认识。

如果学生能准确描述函数和图像的特征,并正确解答问题,则可以给予满分。

如果学生的回答不完全准确,但理解和应用正确的话,则可以给部分分。

若学生的回答和应用都有错误,则分数将相应扣除。

题目五:数据与统计(10分)本题考察学生对数据和统计的理解和分析能力。

在评分时,要关注学生对数据的整理和解读。

如果学生正确地整理数据,并给出准确的解释和结论,则可以给予满分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学24题专题练习1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:B G=D G+CD.在B G上取BH=AB=CD,连EH,显然△ABE与△CDE全等,则∠ABE=∠DCE,∠AEB=∠DEC又∠BEC=90°=∠BFC,对顶角∠BGE=∠CGF,故∠FBE=∠DCE,所以∠ABE=∠FBE在BF上取BH=AB,连接EH,由BH=AB,∠ABE=∠FBE,BE=BE,故△ABE与△HBE全等故∠AEB=∠HEB,AE=EH而∠AEB+∠DEC+∠BEC=180°,∠AEB=∠DEC,∠BEC=90°所以∠AEB=∠DEC=45°=∠HEB故∠AEH=∠AEB+∠HEB=90°=∠HED同理,∠DEG=45°=∠HEGEH=AE=ED,EG=EG故△HEG与△FEG全等,所以HG=DG即BG=BH+HG=AB+DG=DG+CD2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD 延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BC E的面积;(2)求证:B D=E F+CE.4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD 交BA的延长线于G,且DG=DE,AB=,CF=6.(1)求线段CD的长;(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.(1)若AB=6cm,,求梯形A BC D的面积;(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EF H=∠FH G,求证:HD=BE+BF.7、已知:如图,ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD 于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;(1)证明:EF=EA;(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG 是梯形ABCD的高.(1)求证:AE=GF;(2)设AE=1,求四边形DEGF的面积.13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB 的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC 的中点F,连接AF、BF.(1)求证:AD=BE;(2)试判断△ABF的形状,并说明理由.15、如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.(1)求证:CD=BE;(2)若AD=3,DC=4,求AE.18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.20、如图,梯形ABCD中,AD∥BC,点E在BC上,A E=B E,且AF⊥A B,连接EF.(1)若EF⊥AF,A F=4,AB=6,求 AE的长.(2)若点F是C D的中点,求证:CE=B E﹣AD.21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=(AD+BC);(2)若AC=6,求梯形ABCD的面积.22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.(1)证明:△ABE≌△DAF;(2)求∠BPF的度数.25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.(1)求∠ABC的度数;(2)如果BC=8,求△DBF的面积?26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.27、已知,如图,AD∥BC,∠A B C=90°,A B=B C,点E是A B上的点,∠E C D=45°,连接ED,过D 作D F⊥BC于F.(1)若∠BEC=75°,FC=3,求梯形A B CD的周长.(2)求证:E D=B E+F C.28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.(1)求证:△BCE≌△AFE;(2)若AB⊥BC且BC=4,AB=6,求EF的长.29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.(1)求证:四边形ABED是菱形;(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.参考答案1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,∴AB=DC,∠BAE=∠CDE,AE=DE,∴△BAE≌△CDE,∴BE=CE;(2)延长CD和BE的延长线交于H,∵BF⊥CD,∠HEC=90°,∴∠EBF+∠H=∠ECH+∠H=90°∴∠EBF=∠ECH,又∠BEC=∠CEH=90°,BE=CE(已证),∴△BEG≌△CEH,∴EG=EH,BG=CH=DH+CD,∵△BAE≌△CDE(已证),∴∠AEB=∠GED,∠HED=∠AEB,∴∠GED=∠HED,又EG=EH(已证),ED=ED,∴△GED≌△HED,∴DG=DH,∴BG=DG+CD.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.∴△EBH≌△GFC;(2)解:∵ED平分∠AEF,∠A=∠DFE=90°,∴AD=DF,∵DF=DC﹣FC,∵△EBH≌△GFC,∴FC=BH=1,∴AD=4﹣1=3.3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BCE的面积;(2)求证:BD=EF+CE.(2)过E点作EM⊥DB于点M,四边形FDME是矩形,FE=DM,∠BME=∠BCE=90°,∠BEC=∠MBE=60°,△BME≌△ECB,BM=CE,继而可证明BD=DM+BM=EF+CE.(1)解:∵AD=CD,∴∠DAC=∠DCA,∵DC∥AB,∴∠DCA=∠CAB,∴,∵DC∥AB,AD=BC,∴∠DAB=∠CBA=60°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°,∴∠BCE=180°﹣∠ACB=90°,∵BE⊥AB,∴∠ABE=90°,∴∠CBE=∠ABE﹣∠ABC=30°,在Rt△BCE中,BE=2CE=2,,∴…(5分)(2)证明:过E点作EM⊥DB于点M,∴四边形FDME是矩形,∴FE=DM,∵∠BME=∠BCE=90°,∠BEC=∠MBE=60°,∴△BME≌△ECB,∴BM=CE,∴BD=DM+BM=EF+CE…(10分)4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E作EF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.解答:(1)证明:延长EF交AD于G(如图),在平行四边形ABCD中,AD∥BC,AD=BC,∵EF∥CA,EG∥CA,∴四边形ACEG是平行四边形,∴AG=CE,又∵,AD=BC,∴,∵AD∥BC,∴∠ADC=∠ECF,在△CEF和△DGF中,∵∠CFE=∠DFG,∠ADC=∠ECF,CE=DG,∴△CEF≌△DGF(AAS),∴CF=DF,∵四边形ABCD是平行四边形,∴OB=OD,∴OF∥BE.(2)解:如果梯形OBEF是等腰梯形,那么四边形ABCD是矩形.证明:∵OF∥CE,EF∥CO,∴四边形OCEF是平行四边形,∴EF=OC,又∵梯形OBEF是等腰梯形,∴BO=EF,∴OB=OC,∵四边形ABCD是平行四边形,∴AC=2OC,BD=2BO.∴AC=BD,∴平行四边形ABCD是矩形.5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.(1)求线段CD的长;(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.(1)解:连接BD,由∠ABC=90°,AD∥BC得∠GAD=90°,又∵BF⊥CD,∴∠DFE=90°又∵DG=DE,∠GDA=∠EDF,∴△GAD≌△EFD,∴DA=DF,又∵BD=BD,∴Rt△BAD≌Rt△BFD(HL),∴BF=BA=,∠ADB=∠BDF又∵CF=6,∴BC=,又∵AD∥BC, ∴∠ADB=∠CBD, ∴∠BDF=∠CBD, ∴CD=CB=8.(2)证明:∵AD∥BC, ∴∠E=∠CBF, ∵∠HDF=∠E, ∴∠HDF=∠CBF,由(1)得,∠ADB=∠CBD, ∴∠HDB=∠HBD, ∴HD=HB,由(1)得CD=CB ,CBD CDBCBD HDF CDB CBH ∴∠=∠∴∠-∠=∠-∠∠∠∴即BDH=HBD HB=HD∴△CDH≌△CBH, ∴∠DCH=∠BCH, ∴∠BCH=∠BCD==.6、如图,直角梯形ABCD 中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm ,,求梯形ABCD 的面积;(2)若E 、F 、G 、H 分别是梯形ABCD 的边AB 、BC 、CD 、DA 上一点,且满足EF=GH ,∠EFH=∠FHG,求证:HD=BE+BF .解:(1)连AC ,过C 作CM⊥AD 于M ,如图, 在Rt△ABC 中,AB=6,sin∠ACB==,∴AC=10,在Rt△CDM中,∠D=45°,∴DM=CM=AB=6,∴AD=6+8=14,∴梯形ABCD的面积=•(8+14)•6=66(cm2);(2)证明:过G作GN⊥AD,如图,∵∠D=45°,∴△DNG为等腰直角三角形,∴DN=GN,又∵AD∥BC,∴∠BFH=∠FHN,而∠EFH=∠FHG,∴∠BFE=∠GHN,∵EF=GH,∴Rt△BEF≌Rt△NGH,∴BE=GN,BF=HN,∴DA=AN+DN=AN+DG=BF+BE.7、已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.(1)证明:在△DAE和△DCE中,∠ADE=∠CDE(正方形的对角线平分对角),ED=DE(公共边),AE=CE(正方形的四条边长相等),∴△DAE≌△DCE (SAS),∴∠DAE=∠DCE(全等三角形的对应角相等);(2)解:如图,由(1)知,△DAE≌△DCE,∴AE=EC,∴∠EAC=∠ECA(等边对等角);又∵CG=CE(已知),∴∠G=∠CEG(等边对等角);而∠CEG=2∠EAC(外角定理),∠ECB=2∠CEG(外角定理),∴4∠EAC﹣∠ECA=∠ACB=45°,∴∠G=∠CEG=30°;过点C作CH⊥AG于点H,∴∠FCH=30°,∴在直角△ECH中,EH=CH,EG=2CH,在直角△FCH中,CH=CF,∴EG=2×CF=3CF.9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.(1)证明:连接PC.∵ABCD是正方形,∴∠ABE=∠ADF=90°,AB=AD.∵BE=DF,∴△ABE≌△ADF.(SAS)∴∠BAE=∠DAF,AE=AF.∴∠EAF=∠BAD=90°.∵P是EF的中点,∴PA=EF,PC=EF,∴PA=PC.又 AD=CD,PD公共,∴△PAD≌△PCD,(SSS)∴∠ADP=∠CDP,即DP平分∠ADC;(2)作PH⊥CF于H点.∵P是EF的中点,∴PH=EC.设EC=x.由(1)知△EAF是等腰直角三角形,∴∠AEF=45°,∴∠FEC=180°﹣45°﹣75°=60°,∴EF=2x,FC=x,BE=2﹣x.在Rt△ABE中,22+(2﹣x)2=(x)2解得 x1=﹣2﹣2(舍去),x2=﹣2+2.∴PH=﹣1+,FD=(﹣2+2)﹣2=﹣2+4.∴S△DPF=(﹣2+4)×=3﹣5.10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;(1)证明:EF=EA;(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.(1)证明:∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.∵E为CD的中点,∴ED=EC.∴△ADE≌△FCE.∴EF=EA.(5分)(2)解:连接GA,∵AD∥BC,∠ABC=90°,∴∠DAB=90°.∵DG⊥BC,∴四边形ABGD是矩形.∴BG=AD,GA=BD.∵BD=BC,∴GA=BC.由(1)得△ADE≌△FCE,∴AD=FC.∴GF=GC+FC=GC+AD=GC+BG=BC=GA.∵由(1)得EF=EA,∴EG⊥AF.(5分)11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.(1)证明:∵△ADF为等边三角形,∴AF=AD,∠FAD=60°(1分)∵∠DAB=90°,∠EAD=15°,AD=AB(2分)∴∠FAE=∠BAE=75°,AB=AF,(3分)∵AE为公共边∴△FAE≌△BAE(4分)∴EF=EB(5分)(2)解:如图,连接EC.(6分)∵在等边三角形△ADF中,∴FD=FA,∵∠EAD=∠EDA=15°,∴ED=EA,∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°.(7分)由(1)△FAE≌△BAE知∠EBA=∠EFA=30°.∵∠FAE=∠BAE=75°,∴∠BEA=∠BAE=∠FEA=75°,∴BE=BA=6.∵∠FEA+∠BEA+∠GEB=180°,∴∠GEB=30°,∵∠ABC=60°,∴∠GBE=30°∴GE=GB.(8分)∵点G是BC的中点,∴EG=CG∵∠CGE=∠GEB+∠GBE=60°,∴△CEG为等边三角形,∴∠CEG=60°,∴∠CEB=∠CEG+∠GEB=90°(9分)∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2∴CE=,∴BC=(10分);解法二:过C作CQ⊥AB于Q,∵CQ=AB=AD=6,∵∠ABC=60°,∴BC=6÷=4.12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.(1)求证:AE=GF;(2)设AE=1,求四边形DEGF的面积.(1)证明:∵AB=DC,∴梯形ABCD为等腰梯形.∵∠C=60°,∴∠BAD=∠ADC=120°,又∵AB=AD,∴∠ABD=∠ADB=30°.∴∠DBC=∠ADB=30°.∴∠BDC=90°.(1分)由已知AE⊥BD,∴AE∥DC.(2分)又∵AE为等腰三角形ABD的高,∴E是BD的中点,∵F是DC的中点,∴EF∥BC.∴EF∥AD.∴四边形AEFD是平行四边形.(3分)∴AE=DF(4分)∵F是DC的中点,DG是梯形ABCD的高,∴GF=DF,(5分)∴AE=GF.(6分)(2)解:在Rt△AED中,∠ADB=30°,∵AE=1,∴AD=2.在Rt△DGC中∠C=60°,并且DC=AD=2,∴DG=.(8分)由(1)知:在平行四边形AEFD中EF=AD=2,又∵DG⊥BC,∴DG⊥EF,∴四边形DEGF的面积=EF•DG=.(10分)13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.解答:(1)证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE,∴AB=AF.∴AE﹣AB=AC﹣AF,即FC=BE;(2)解:∵AD=DC=2,DF⊥AC,∴AF=AC=AE.∴AG=CG,∴∠E=30°.∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴FC=,∵AD∥BC,∴∠ACG=∠FAD=30°,∴CG=2,∴AG=2.14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC 的中点F,连接AF、BF.(1)求证:AD=BE;(2)试判断△ABF的形状,并说明理由.(1)证明:∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=90°,∴∠BAD=∠ABC=90°,∵DE⊥EC,∴∠AED+∠BEC=90°∵∠AED+∠ADE=90°,∴∠BEC=∠ADE,∵∠DAE=∠EBC,AE=BC,∴△EAD≌△EBC,∴AD=BE.(2)答:△ABF是等腰直角三角形.理由是:延长AF交BC的延长线于M,∵AD∥BM,∴∠DAF=∠M,∵∠AFD=∠CFM,DF=FC,∴△ADF≌△MFC,∴AD=CM,∵AD=BE,∴BE=CM,∵AE=BC,∴AB=BM,∴△ABM是等腰直角三角形,∵△ADF≌△MFC,∴AF=FM,∴∠ABC=90°,∴BF⊥AM,BF=AM=AF,∴△AFB是等腰直角三角形.15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.解答:(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴,∴△ADC≌△AEC,(AAS)∴AD=AE;(2)解:由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.(1)证明:∵AD∥CB,∴∠ADB=∠CBD,又BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴△ABD是等腰三角形,已知E是BD的中点,∴AE⊥BD.(2)解:延长AE交BC于G,∵BD平分∠ABC,∴∠ABE=∠GBE,又∵AE⊥BD(已证),∴∠AEB=∠GEB,BE=BE,∴△ABE≌△G BE,∴AE=GE,BG=AB=AD,又F是AC的中点(已知),所以由三角形中位线定理得:EF=CG=(BC﹣BG)=(BC﹣AD)=×(14﹣4)=5.答:EF的长为5.17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.(1)求证:CD=BE;(2)若AD=3,DC=4,求AE.(1)证明:∵AD∥BC,∴∠DAC=∠BCE,而BE⊥AC,∴∠D=∠BEC=90°,AC=BC,∴△BCE≌△CAD.∴CD=BE.(2)解:在Rt△ADC中,根据勾股定理得AC==5,∵△BCE≌△CAD,∴CE=AD=3.∴AE=AC﹣CE=2.18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.解:如图,过点D作DF∥AB,分别交AC,BC于点E,F.(1分)∵AB⊥AC,∴∠AED=∠BAC=90度.∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4×=2(2分)在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=1,∴DE=AE=.∴CE=AC﹣AE=.(4分)在Rt△DEC中,∠CED=90°,∴DC==.(5分)19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.证明:∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,∴△FCE≌△F′CE,∴EF′=EF=DF′+ED,(2)解:∵AB=BC,∠B=80°,∴∠ACB=50°,由(1)得∠FEC=∠DEC=70°,∴∠ECB=70°,而∠B=∠BCD=80°,∴∠DCE=10°,∴∠BCF=30°,∴∠ACF=∠BCA﹣∠BCF=20°.20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求 AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.解:(1)作EM⊥AB,交AB于点M.∵AE=BE,EM⊥AB,∴AM=BM=×6=3;∵∠AME=∠MAF=∠AFE=90°,∴四边形AMEF是矩形,∴EF=AM=3;在Rt△AFE中,AE==5;(2)延长AF、BC交于点N.∵AD∥EN,∵∠AFD=∠NFC,DF=FC,∴△ADF≌△NCF(AAS),∴AD=CN;∵∠B+∠N=90°,∠BAE+∠EAN=90°,又AE=BE,∠B=∠BAE,∴∠N=∠EAN,AE=EN,∴BE=EN=EC+CN=EC+AD,∴CE=BE﹣AD..21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=(AD+BC);(2)若AC=6,求梯形ABCD的面积.解:(1)证明:过D作DE∥AC交BC延长线于E,(1分)∵AD∥BC,∴四边形ACED为平行四边形.(2分)∴CE=AD,DE=AC.∵四边形ABCD为等腰梯形,∴BD=AC=DE.∵AC⊥BD,∴DE⊥BD.∴△DBE为等腰直角三角形.(4分)∵DH⊥BC,∴DH=BE=(CE+BC)=(AD+BC).(5分)(2)∵AD=CE,∴.(7分)∵△DBE为等腰直角三角形BD=DE=6,∴.∴梯形ABCD的面积为18.(8分)注:此题解题方法并不唯一.22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∵∠AGD=∠BAD,AG=AD,∴△AGE≌△DAB;(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;当P与F重合时,△PCD是等腰三角形,∴PB=2;当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.(1)证明:△ABE≌△DAF;(2)求∠BPF的度数.解答:(1)证明:∵在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,∴AB=CD,∵AD=DC,∴BA=AD,∠BAE=∠ADF=120°,∵DE=CF,∴AE=DF,在△BAE和△ADF中,,∴△ABE≌△DAF(SAS).(2)解:∵由(1)△BAE≌△ADF,∴∠ABE=∠DAF.∴∠BPF=∠ABE+∠BAP=∠BAE.而AD∥BC,∠C=∠ABC=60°,∴∠BPF=120°.25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.(1)求∠ABC的度数;(2)如果BC=8,求△DBF的面积?解答:解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠DBC=∠ABD,∵在梯形ABCD中AB=DC,∴∠ABC=∠DCB=2∠DBC,∵BD⊥DC,∴∠DBC+2∠DBC=90°∴∠DBC=30°∴∠ABC=60°(2)过点D作DH⊥BC,垂足为H,∵∠DBC=30°,BC=8,∴DC=4,∵CF=CD∴CF=4,∴BF=12,∵∠F+∠FDC=∠DCB=60°,∠F=∠FDC∴∠F=30°,∵∠DBC=30°,∴∠F=∠DBC,∴DB=DF,∴,在直角三角形DBH中,∴,∴,∴,即△DBF的面积为.26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D 作DF⊥BC于F.(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.(2)求证:ED=BE+FC.解:(1)∵∠BEC=75°,∠ABC=90°,∴∠ECB=15°,∵∠ECD=45°,∴∠DCF=60°,在Rt△DFC中:∠DCF=60°,FC=3,∴DF=3,DC=6,由题得,四边形ABFD是矩形,∴AB=DF=3,∵AB=BC,∴BC=3,∴BF=BC﹣FC=3﹣3,∴AD=DF=3﹣3,∴C=3×2+6+3﹣3=9+3,梯形ABCD答:梯形A B CD的周长是9+3.(2)过点C作CM垂直AD的延长线于M,再延长DM到N,使M N=BE,∴C N=CE,可证∠N C D=∠DCE,∵CD=CD,∴△D E C≌△D N C,∴E D=EN,∴E D=B E+F C.28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.(1)求证:△BCE≌△AFE;(2)若AB⊥BC且BC=4,AB=6,求EF的长.(1)证明:∵AD∥BC,E是AB的中点,∴AE=BE,∠B=∠EAF,∠BCE=∠F.∴△BCE≌△AFE(AAS).(2)解:∵AD∥BC,∴∠DAB=∠ABC=90°.∵AE=BE,∠AEF=∠BEC,∴△BCE≌△AFE.∴AF=BC=4.∵EF2=AF2+AE2=9+16=25,∴EF=5.29、已知:如图,在梯形ABCD中,AD∥B C,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.(1)∵DC=BC,∠1=∠2,CF=CF,∴△DCF≌△BCF.(2)延长DF交BC于G,∵AD∥BG,AB∥DG,∴四边形ABGD为平行四边形.∴AD=BG.∵△DFC≌△BFC,∴∠EDF=∠GBF,DF=BF.又∵∠3=∠4,∴△DFE≌△BFG.∴DE=BG,EF=GF.∴AD=DE.(3)∵EF=GF,DF=BF,∴EF+BF=GF+DF,即:BE=DG.∵DG=AB,∴BE=AB.=DF+FE+DE=6,∵C△DFE∴BF+FE+DE=6,即:EB+DE=6.∴AB+AD=6.又∵AD=2,∴AB=4.∴DG=AB=4.∵BG=AD=2,∴GC=BC﹣BG=5﹣2=3.又∵DC=BC=5,在△DGC中∵42+32=52∴DG2+GC2=DC2∴∠DGC=90°.∴S=(AD+BC)•DG梯形ABCD=(2+5)×4=14.30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.(1)求证:四边形ABED是菱形;(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.解答:解:(1)证明:∵AD∥BC, DE2=CD2+CE2=42+32=25,∴∠OAD=∠OEB,∴DE=5又∵AB=AD,AO⊥BD,∴AD=BE=5,=.∴OB=OD,∴S梯形ABCD又∵∠AOD=∠EOB,∴△ADO≌△EBO(AAS),∴AD=EB,又∵AD∥BE,∴四边形ABCD是平行四边形,又∵AB=AD∴四边形ABCD是菱形.(2)∵四边形ABCD是菱形,∴AD=DE=BE,。

相关文档
最新文档