第二章 化学热力学基础

合集下载

2第二章 化学热力学基础

2第二章 化学热力学基础
反应进度ξ 用以表示化学反应进行的程度
aA + bB dD + eE
定义:

nB (t ) nB (0)
nA
B


nB
B
(mol )
nE

A
nB
B

nD
D

E
15
反应进度 1mol
即nA A a
nB B b
按化学反应进行1mol反应 14
CH4 (g) 2O2 (g) CO2 (g) 2H 2 O(l)
(c) CH4 (g) 3 O 2 (g) CO(g) 2H 2 O(l)
2 3 (d) CH4 (g) O2 (g) CO(g) 2H 2 O(g) 2
25
(2)一个体系从环境得到了160J的功,其内 能增加了200J,则体系与环境交换的热量 为 。 (a)360J (b)-360J (c)40J (d)-40J
U1
Q W 13
பைடு நூலகம்
U2
ΔU= U2 - U1 = Q +W
注:① Q 、W正负号 ② Q 、W、 ΔU单位一致(J、kJ)
例.某一体系在变化过程中从环境吸收了50 kJ的热, 对环境 做功4 kJ , 则热力学能的变化为? ΔU=Q+W =50- 4=46 kJ
14
§2-2 化学反应的焓变
一.反应进度ξ
kJ
= ΔU + ΔnRT J kJ (×10-3)
23
例:使1molH2O(l)在373K, P 下变成1mol H2O(g)需要 提供40.68kJ的热量,求此过程做功W,ΔH及ΔU
解:

化学热力学基础

化学热力学基础
体系因反抗外界压强发生体系变化时 所做的功。 2、计算
W = pΔV
第2章 化学热力学基础
§2.1 热力学第一定律
例:圆筒内装有理想气体,其截面积为 A,圆桶 上有活塞,外压为 p,有一热源使气体膨胀,把活塞 推出ΔL,问系统对外作功多少?
解: -WFΔL
因为 p F ,所以 F = pA A
代入上式 -W = pAL= pV= p(V2-V1) W = -pV (求体积功的公式)
第2章 化学热力学基础
§2.1 热力学第一定律
难点:
1、盖斯定律的运用,标准摩尔生成热的含义以及 化学反应热效应的计算;
2、熵的含义、熵值大小的一般规律、标准摩尔熵 的含义及化学反应熵变的计算,熵判断化学反 应进行方向的判断原则及适用条件;
3、吉布斯自由能的含义、标准摩尔吉布斯自由能 的含义以及化学反应吉布斯自由能变的计算, 吉布斯自由能判断化学反应进行方向的判断原 则及适用条件。
§2.2 热化学
反应热的测量: 弹式量热计:
弹式量热计适用于气体以及有机化合物的燃烧 反应。测得的反应热是恒容反应热QV。
杯式量热计: 适用于测量恒压热效应Qp ,如液相反应的反应
热,溶解热,中和热等。
第2章 化学热力学基础
§2.2 热化学
3、反应进度概念
(1) 定义
n B n B 0 ν B ξ
第2章 化学热力学基础
§2.2 热化学
正、逆反应的 H值大小相等,符号相反
H2(g)
+
1 2
O2(g) → H2O(l)
ΔrHm285.m 8 k o 1 Jl
H2O(l)

H2(g)
+
1 2

第2章 化学热力学基础和化学平衡

第2章 化学热力学基础和化学平衡

其变化值是可以确定的:

状态1(U1) → 状态2(U2)
△U= U2-U1
六、热力学第一定律

热力学第一定律(first law thermodynamics) 即能量守恒和转化定律(law of energy conservation and transformation) :

在任何过程中,能量是不会自生自灭的,
“恒容过程”。若体系变化时和环境之间无热量交换,
则称之为“绝热过程 ”。 途径 (path):完成一个热力学过程,可以采取多种
不同的方式。我们把每种具体的方式,称为一种途径。
过程着重于始态和终态;而途径着重于具体方式。
该过程可以经由许多不同的途径来完成。
下面给出其中两种途径: 0.5 10 5 Pa 4 dm3 1 10 5 Pa 途径 I 途径 II 2 10 5 Pa
四、热和功

热(heat):系统和环境之间,由于温度的差异而
交换的能量形式,用“Q”表示。

规定:系统吸热,Q为正;系统放热,Q为负。 功(work):除热之外,在系统和环境之间被传递 的能量形式,用“W”表示。 规定:系统对环境做功,W为负;环境对系统做 功,W为正。

体积功(volume work):由于系统体积改变(反 抗外力作用)而与环境交换的功。
0 νB B
B
νB 物质B的化学计量数(stoichiometric
number) ,量纲为一 注意:反应物的化学计量数为负值 生成物的化学计量数为正值
如反应: 1 N 2 3 H 2 NH 3
2 2
其化学计量数分别为:
ν(NH 3 ) 1 1 ν(N 2 ) 2 3 ν(H 2 ) 2

第二章 化学热力学基础

第二章 化学热力学基础

强度性质:体系的性质在数值上与体 系中物质的量无关,不具加和性。如温度、 压力、浓度、密度等。
11
上一页 下一页 本章目录
2.1.4 过程与途径
过程:体系状态发生变化的经过称为过程。 途径:完成过程的具体步骤称为途径。 298K, H2O(g) 途径1 298K,H2O(l) 始态 373K,H2O(l) 途径2
8
上一页 下一页 本章目录
状态函数:确定体系状态的宏观物理量 称为体系的状态函数。如质量、温度、压 力、体积、密度、组成等是状态函数。 状态函数的特点: 1. 体系的状态一定,状态函数值确定。 2. 状态函数的改变值只由体系的始态和 终态决定,与体系经过的途径无关。 3. 循环过程的状态函数改变值为零。
17
上一页 下一页 本章目录
能量守恒定律:自然界的一切物质都具 有能量,能量有不同的形式,能量可从一个 物体传递给另一个物体,也可从一种形式转 化为另一种形式,在传递和转化过程中,能 量总值不变。适用于宏观体系和微观体系。 电能 → 光能 化学能 → 机械能 机械能 → 电能
18
(电灯) (内燃机) (发电机)
上一页 下一页 本章目录
反应进度ξ表示化学反应进行的程度。 aA t=0 t + dD = gG + hH nD(0) nD (t) nG(0) nG (t) nH(0) nH (t)
nA(0) nA(t)

22
n B (t ) nB (0)
B

nB
B
上一页
下一页
本章目录
例:
t=0 t
31
上一页 下一页 本章目录
(2)注明物质的物态(g、l、s)或浓度, 如果固态物质有几种晶型,应注明晶型(P 有白磷、红磷,C有金刚石、石墨等). (3)反应热的数值与反应方程式的写法 有关。如:

化学热力学基础

化学热力学基础
2.2.3.1 热力学第一定律的应用
主要解决过程的能量效应问题,计算过程的功和反应热。
1、在计算应用过程中,不考虑非体积功。
即:W’= 0
2、化学反应发生后,T 始=T 终
ΔU = Q + W’+ W 体= Q + W 体 2.2.3.2 定容过程
定容热 QV: 若系统在变化过程中保持体积恒定,此时的热称为定容热。
2.4 热化学
规定:(1)在计算应用过程中,不考虑非体积功。即:W’= 0 (2)化学反应发生后,T 始=T 终
2.4.1 热化学方程式
热化学方程式表示指定的反应与指定条件下的反应热效应的关系的方程式。 H2 (g) + 1/2O2 (g) = H2O (l) △rHmθ =-285.8kJ/mol 1/2 N2 (g) + O2 (g) = NO2 (g) △rHmθ = 34kJ/mol
即: νA=-a,νB=B -b,νY=y,νZ=z
上式可简写成: 此式中的 B 代表反应物和产物。 反应进度(ξ):是表示物质变化进程的物理量。 其定义为: nBB(ξ)= nBB(0)- nBξB
式中nB(B 0)和nBBξ分别代表反应进度ξ=0(反应未开始)和ξ=ξ 时B的物质的量。由于反应未开始时nB(B 0) 为常量,因此
后,即系统的状态一定时,系统内部的能量总和(热力学能)就有确定的值。所以,热力学能
(U)是状态函数,其变化量 ΔU 与途径无关,其绝对值不可测定。可测量的只是ΔU
2.2.3 热力学第一定律
对于一与环境没有物质交换的系统(封闭系统),若环境对其作功 W 、系统从环境吸收热量 Q , 则系统的能量必有增加,根据能量守恒原理,增加的这部分能量等于 W 与 Q 之和:

《无机化学》第3版 宋天佑 第2章 化学热力学基础

《无机化学》第3版 宋天佑 第2章 化学热力学基础

此时,可以设计一个假想界面, 从分体积的概念出发,认为 VO 以内 是体系,以外是环境。
宇宙 体系和环境放在一起, 在热力学上称为宇宙。
按照体系和环境之间的物质及能量 的交换关系,可以将体系分为三类:
敞开体系、封闭体系和孤立体系
敞开体系 体系和环境之间 既有能量交换, 又有物质交换
封闭体系 体系和环境之间 有能量交换, 无物质交换;
折线 ABC 即是过程的 p-V 线。
p
16
1
V
1
16
图中两轴所表示的物理量的
单位之积为
105 Pa 10-3m3 =1.0 × 102 J
p
16
1
V
1
16
故图中的单位面积代表
1.0×102 J 体积功。
p
16
1
V
1
16
而 p-V 线下覆盖的面积即图
中阴影部分的面积为
1×(16 -1)=15 个 单位
p = 1105 Pa
恒温过程
p = 2105 Pa
V = 2 dm3
V = 1 dm3
V = V终 - V始 =1-2
= - 1 (dm3)
体积功 在热力学过程中, 体系对抗外压改变体积,产生体 积功。
在一截面积为 S 的 圆柱形筒内,理想气体 体系经历一热力学过程
截面积 S
I
受恒外力 F
蓄电池充电的化学反应, 是为了储存能量。
化学热力学,就是从化学反应的 能量出发,去研究化学反应的方向和 进行的限度的一门科学。
2. 1 热力学第一定律
2. 1. 1 热力学的基本概念和常用术语
体系 热力学中研究的对象, 称为体系。
环境 体系以外的其他部分, 称为环境。

第二章化学热力学基础学习重点

第二章化学热力学基础学习重点

第二章化学热力学基础学习重点一.理解并熟悉热力学有关的概念:体系和环境状态和状态函数过程和途径常见的三个体系:敞开、封闭、孤立体系常见的三个过程:等压、等容、等温过程热和功热力学能(内能)和焓变化学反应热,等容反应热、等压反应热生成焓和标准生成焓;键能和离解能,键能和反应热的关系熵和熵变,标准摩尔熵Gibbs自由能和Gibbs自由能变,标准摩尔生成Gibbs自由能二.理解并熟练运用几个定律(包括两个判据)1.盖斯定律2.热力学第一定律:△U=Q-W3.热力学第二定律:△S(孤立)= △S(体系)+ △(环境)4.热力学第三定律:0K时,任何纯物质的完美晶体,S=05.两个判据:ⅰ.熵判据:△S(孤立)= △S(体系)+ △S(环境) ………………自发过程△S(孤立)= △S(体系)+ △S(环境) ………………不能进行ⅱ.G判据:等温等压吓,体系的G减小的方向是不能做非体积功的化学反应进行的方向.不及化学反应如此,任何等温等压虾,不做非体积功的自发过程的G都将减小.这正是热力学第二定律的另一种表述形式.△G<0 …………………自发进行△G>0 …………………不能自发进行△G=0 …………………可逆发应三.熟练掌握并运用几个热力学攻势(方程式)进行计算1.△U=Q-W2.Q v=△U3.Q p=△HH=U+PV △H=△U+△(PV)4.△r H mθ=∑υB△f H mθ(B)5.△S=Q r/T △r S mθ=∑υB△f S mθ(B)6.△G=△H-T△S 并分析自发进行的四种情况△r G mθ=∑υB△f G mθ(B)四.热力学的标准状态,尤其要注意所给定的热力学条件五.热力学化学方程式的书写六.问题:1.P△V和△(PV)2.H和Q。

第2章 化学热力学基础

第2章  化学热力学基础

第2章 化学热力学基础2-1. 估计下列过程ΔS 、ΔH 、ΔG 的符号。

(1)硫酸溶于水 (2)室温下冰融化 (3)NaNO 3(s)溶于水解:(1)ΔS >0,ΔH <0,ΔG <0;(2)ΔS >0,ΔH >0,ΔG <0;(3)ΔS >0,ΔH >0,ΔG <0。

2-2. 确定下列各组物质熵值的大小顺序。

(1)H 2O(l)、H 2O(g)、H 2O(s); (3)CH 4(g)、C 2H 6 (g);(2)H 2(g,310K )、H 2(g ,298K) (4)Fe(s)、Fe 2O 3(s)。

解:(1)S (H 2O,g)>S (H 2O,l)>S (H 2O,s) (2)S (H 2,g,80)>℃S (H 2,g,25)℃(3)S (C 2H 6,g) > S (CH 4,g) (4)S (Fe 2O 3,s)>S (Fe,s)2-3. 计算体系热力学能的变化 (1)体系从环境吸热1000J ,并对环境作功540J ;(2)体系向环境放热535J ,环境对体系作功250J 。

解: (1)ΔU =Q +W =(+1000)+(-540)=460(J)(2)ΔU =Q +W =(-250)+(+535)=285(J)2-4. 求下列反应的Δr H m θ。

[Δf H m θ ( Fe 2O 3,s)=-822.2kJ·mol -1,Δf H m θ ( Al 2O 3,s)=-1670kJ·mol -1,其余Δf H m θ值查附录一 ](1)4NH 3(g) + 5O 2(g) = 4NO(g)+ 6H 2O(g) (2)C 2H 4(g)+ H 2O(g)= C 2H 5OH(l)(3)Fe 2O 3(s)+ 2Al(s) = 2Fe(s)+ Al 2O 3(s)解: (1) Δr H m θ =4Δf H m θ(NO,g)+6Δf H m θ(H 2O,g)-[4Δf H m θ( NH 3,g)+5Δf H m θ(O 2,g)]=4×90.25+6×(-241.8)-[4×(-46.11)+5×0]=-905.36(kJ·mol -1)(2) Δr H m θ=Δf H m θ(C 2H 5OH,l)-[Δf H m θ(C 2H 4,g)+Δf H m θ(H 2O,g)]=-277.7-[(52.26+(-241.8)]=-88.16(kJ·mol -1)(3) Δr H m θ=2Δf H m θ(Fe,s)+ Δf H m θ(Al 2O 3,s)- [Δf H m θ(Fe 2O 3,s)+ 2Δf H m θ(Al,s)]=2×0+(-1670)-[(-822.2)+2×0] = -847.8 kJ·mol -12-5. 已知Δc H m θ(C 3H 8,g)=-2220.9kJ·mol -1,Δf H m θ(H 2O,l)=-285.8kJ·mol -1,Δf H m θ(CO 2,g)=-393.5kJ·mol -1,求C 3H 8(g)的Δf H m θ。

第二章 化学热力学基础

第二章 化学热力学基础

19
20
5)标准摩尔生成焓 在标准压力下,由最稳定相态的单质为原料,生成 1摩尔 某物质的反应的焓变,称为该物质的标准摩尔生成焓 H o
f m
298.15 K温度下的许多物质的标准摩尔生成焓数据可查附录。
根据标准摩尔生成焓可以推算相关反应的焓变ΔrHo
例如, CO(g) + H2O(g) → CO2(g) + H2(g)
1
第二章 化学热力学基础
从给定的原料出发,能否生成期望的目标产物? 是否可能把原料全部转变成目标产物? 化学热力学的研究目标:
判断化学反应能否发生。(自发过程进行的方向)
判断化学反应的最大限度。(化学反应的平衡原理)
自发过程的概念
由分子、原子构成的体系,在一定的条件下,听其自然, 不去管它,这个体系会发生一些变化,这样的变化过程 称为自发(变化)过程。
2
传热:高温物体向低温物体传热,直至温度相等 气体做功:高压力向低压力膨胀,直至压力相等 溶液扩散:溶质从浓溶液向稀溶液扩散,直至浓度相等 电流:电子从低电势向高电势流动,直至电势相等 化学反应:锌投入硫酸溶液产生氢气, 直至化学平衡。 自发过程的共同特征: 不去管它就会发生;进行到平衡为止;不会“自动”反向进行。 (化学)热力学 从热和功入手,研究(化学)自发过程进行的方向、限度。
Q r Q ir
所以
Qr T

Q ir T
其中下标r、ir 分别表示可逆(reversible)和不可逆(irreversible)。 所以,热的数值能够反映过程是可逆的(平衡)或不可逆的(自发)。
2. 熵
1) 熵的定义
Entropy,用 S 表示 (可以证明熵是状态函数)
23

基础化学第二章化学热力学基础

基础化学第二章化学热力学基础
途径无关。所以,Qp,W′=0必然也取决于
系统的始态和终态,与实现变化的途径
无关。
吸热反应和放热反应
➢吸热反应:如反应中分子数增多,分 子平均动能减小,体系温度降低。
➢放热反应:如形成稳定的生成物,总 势能降低,分子热运动加剧,体系温 度升高。
➢化学反应的热效应(反应热):化学 反应过程中只做体积功(反抗外压), 反应后体系的温度回到起始温度时体 系所吸收(或放出)的热量。

(1)若
B
B
为液相或固相B :
B
r Hm(T,l 或 s) rUm(T,l 或 s)
▪ (2)若有气体参加反应:
r Hm (T ) rUm (T ) B pVm,B(g)
B
rUm (T ) RT B(g)
B
例2-2 正庚烷的燃烧反应为:
C7H16 (l)+11O2 (g) 7CO2 (g)+8H2O(l) 298.15 K 时,在弹式热量计(一种恒容热量计)中
根据体系与环境间物质、能量交换情况, 把系统分为三类:
(1)敞开系统:系统与环境之间既 有能量交换,又有物质交换。
(2)封闭系统:系统与环境之间只 有能量交换,没有物质交换。
(3)隔离系统:系统与环境之间既 没有能量交换,也没有物质交换。
相:系统中物理性质和化学性质完全相 同的均匀部分称为相。
➢ 相与相之间存在明显的界面。 均相系统:通常把只含有一个相的系统
标准压力 p o(100 kPa),且表现理想气
体特性时,气态纯B的(假想)状态。 (2)液态和固态纯物质B的标准状态,
分别是在标准压力 p o 下纯液态和纯固
态物质 B 的状态。
(3)溶液中的溶剂A的标准状态,为标

第2章-化学热力学基础1

第2章-化学热力学基础1
返回主目录 返回主目录 返回次目录 返回次目录
4.相
系统中物理性质和化学性质完全相同,并与其 它部分在明确界面分隔开来的任何均匀部分称为 一相(phase)。
只含一个相的系统称为均相系统或单相系统。
例如:混合气体、NaCl水溶液、金刚石等。 相可以是纯物质或均匀的混合物组成。相和组分 不是一个概念。
2 状态与状态函数
热力学中是用体系的一系列性质来规定其状态(热力学平 衡态)。
状态:
描述一个体系的一系列物理性质和化学性质的总和就称为 体系的状态。 如质量、温度、压力、体积、密度、组成、热力学能(U)、
焓(H)、熵(S)、吉布斯函数(G)等,当这些性质都有确定值 时,体系就处于一定的状态。
返回主目录 返回主目录 返回次目录 返回次目录
ξ =[n2(N2)-n1(N2)]/v(N2) =(2.0-3.0)/(-1) = 1(mol)
或ξ =[n2(H2)-n1(H2)]/v(H2)=(7.0-10.0)/(-3) = 1(mol)
或ξ=[n2(NH3)-n1(NH3)]/v(NH3)=(2.0-0)/(2)=1(mol) 可见,对于同一反应式,不论选用哪种物质表示反应进度均是 相同的。
热和功与过程紧密联系,没有过程就没有能量的传
递。热和功不是体系的状态函数.
热力学中功的分类 体积功 : 体系因体积变化抵抗外压所作的功。用-pΔV表示
非体积功:
除体积功外的所有功。如电功、机械功、表面功等.
返回主目录 返回主目录 返回次目录 返回次目录
2.2.2 内能与热力学第一定律 内能U :
2.3.1 化学反应热效应
封闭体系在不作非体积功(Wf = 0)的条件下, 热力学第一定律表示为: △U = Q + W = Q – P△V

化学热力学基础

化学热力学基础

△U = QV-W = QV
QV :等容热
第二章 化学热力学
⑵ 封闭体系只做膨胀功的等温等压过程,即体系的始 态、终态的压力和环境的压力等于一个恒值(P始=P终= P外)的过程。
△U= QP +P外△V= QP +P外 (V2-V1) 即 QP= △U+P外△V 可见,恒压反应热来自于两方面,一方面是体系内能 的变化,另一方面是体系所作的膨胀功。

反应
rHm/kJ·mol-1
2Cu2O(s)+O2(g) → 4CuO(s) CuO(s)+Cu(s) → Cu2O(s)
计算fHm ⊖(CuO,s)。
-292 -11.3
解: (2)式×2=3式 ,2CuO(s)+2Cu(s)→2Cu2O(s) (rHm ⊖)3=2(rHm ⊖)2= -22.6 kJ·mol-1
环境对体系作功为正 (W>0),体系对环境作功为负 (W<0)。
功不是状态函数,其大小与路径有关,所以不能说一个 物质包含多少功。
注意:功和热都不是状态函数,是过程量。
第二章 化学热力学
1.4 热力学能(内能)(thermodynamic energy)
热力学能(U): 体系内所有微观粒子的全部能量之和,旧称 内能。换句话讲,内能即体系作功的总能力(total Capacity)。内能是以动能和势能的形式储存在体系中的能
第一节 热力学第一定律及其应用 第二节 化学反应的方向 第三节 化学反应的限度——化学平衡
第二章 化学热力学
本章学习要求
1 正确理解和掌握系统、环境、状态函数、功、热、 热力学能、焓、焓变、标准摩尔生成焓、自发过程、 熵、熵变、吉布斯自由能、自由能变、标准摩尔生成 自由能等概念。 2 能熟练掌握和运用热力学第一定律解决热力学有关 计算。 3 正确书写热化学方程式,熟练地运用盖斯定律计算 有关化学反应的热效应。 4 能熟练地计算有关过程的Gibbs自由能变,并能运用 热力学有关数据判断过程自发性的方向。

第二章 化学热力学基础

第二章  化学热力学基础

普通化学第二章化学热力学基础⏹§1.1 热力学基本概念⏹§1.2 热力学第一定律⏹§1.3 焓热力学⏹§1.4 自发过程和熵⏹§1.5 吉布斯自由能与化学反应的方向⏹总结化学热力学研究与解决的主要问题?热力学-------研究各种形式的能量相互转变过程中所遵循规律的科学。

热力学的基础:热力学第一定律和热力学第二定律化学热力学-------将热力学的原理应用于化学变化过程,就称为化学热力学。

化学热力学研究与解决的主要问题:一是在指定的条件下,某一化学反应进行时,与外界交换多少能量?即计算化学反应热。

二是在指定的条件下,某一化学反应能否自发进行,即判断化学反应进行的方向。

三若可能自发进行,反应进行的温度如何?热力学方法的特点:大量质点组成的宏观体系1、热、功、状态函数△U、△H、△G和△S2、热力学第一、二、三定律3、盖斯定律4、自发过程的判定5、吉布斯—亥姆霍兹公式1、功、热、内能、焓、自由能、熵的计算2、自发过程判定AgNO 3与NaCl 的水溶液:如果只研究在水溶液中所进行的反应,则含有这两种物质的水溶液就是体系。

溶液以外的烧杯、溶液上方的空气都是环境。

如果还要研究反应时的能量变化,则水溶液和烧杯为体系,空气为环境。

例如:NaCl+AgNO 3溶液-体系分类敞开体系:体系与环境之间既有能量交换,又有物质交换。

封闭体系:体系与环境之间只有能量交换,没有物质交换。

孤立体系:体系与环境之间既没有能量交换,也没有物质交换。

敞开体系封闭体系绝热箱孤立体系NaOH+H2ONaOH+H2ONaOH+H2O热物质热二、体系的性质1、体系的性质:确定体系状态的各种宏观物理量。

如温度、压力、体积、质量、密度、浓度等2、体系的性质分为广度性质和强度性质两类:广度性质:在数值上与体系中物质的量成正比,即具有加和性。

如体积、质量、内能、焓、熵等。

强度性质:在数值上与体系中物质的量无关,即不具有加和性。

2-第二章 化学热力学基础及化学平衡

2-第二章    化学热力学基础及化学平衡

② Pi = P总 XB
XB:混合气体B的物质的量分数 XB= —nnB— =—PP—VBV/R—/RT—T =—PP—B
14
2. 标准状态 状态函数中热力学能U及焓H 和吉布斯自由能G 等热 力学函数的绝对值是无法确定的。为了便于比较不同 状态时它们的相对值,需要规定一个状态作为比较的 标准。 符号:在状态函数右上角 “ ”. 如:H 、p 标准状态:是在指定温度T 和标准压力p(100kPa) 下该物质的状态,简称标准态。具体规定如下:
V2 l
10
P外 L1
P外
△L
L2
Fex:外界环境作 用在活塞上的 功
Pex:作用在活塞 上的压力
活塞从L1→L2
(膨胀功) 室温下 系统对环境作功
Pex=P外力 W=-Fex ·△L= -Pex(AL2-AL1)
= -Pex(△V2- △V1)= -Pex △V 膨胀功:△V>0 等容过程体积功 压缩功:△V <0 等于零.
C2H4(g)+H2(g)→C2H6(g)
解: Q = -68.49kJ 2 = -136.98kJ
Δn=n(C2H6)-[n(C2H4)+n(H2)]=-1mol
W=-PΔV=-ΔnRT= -(-1) 298 8.314 = 2477.6J =2.48kJ
ΔU = Q + W = -136.98 + 2.48 = -134.50kJ
对于1mol反应, ΔUm= -134.50kJ·mol-1
23
练习
1 .某一过程中,放热85kJ,环境做功18kJ,则 系统热力学能变化量为( B )kJ。 (A)67 (B) –67 (C) 103 (D) – 103
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题第二章 化学热力学基础课次第一讲(2学时)教学目的(1)理解状态函数的概念及其特点(2)理解过程和途径的区别(3)理解热和功的概念及其符号规定.重点难点状态函数的基本特点热和功的符号规定及计算教学过程2-1 热力学的一些基本概念教学方法讲授课的类型基础课内蒙古农业大学理学院普通化学教案第二章 化学热力学基础(8学时)§2.1 热力学的一些基本概念一.系统和环境系统是被人为地划定的作为研究对象的物质(又叫体系或物系)。

除系统外的物质世界就是环境。

体系分类:孤立系统:与环境既无物质交换又无能量交换。

开放系统:与环境既有物质交换又有能量交换。

封闭系统: 与环境无物质交换而有能量交换。

二.状态和状态函数在热力学中,为了描述一个系统,必须确定它的一系列性质,即物理性质和化学性质,如温度、压力、体积、密度、组成等。

当系统的所有物理性质和化学性质都有确定的值,则称这个系统处于一定的状态。

所以系统的状态是由一系列表征系统性质的物理量所确定下来的系统的存在形式,是其物理性质和化学性质的综合表现。

系统的状态是由许多宏观的物理量来描述和确定的。

例如,气体的温度、压力、体积以及物质的量等宏观物理量确定了,则该气体系统的状态也就确定了。

只要其中一个物理量改变,则体系的状态就会发生变化,变化前的状态叫始态,变化后的状态叫终态。

系统的每一状态都具有许多物理和化学性质,状态一定,系统的性质也就一定,状态改变,系统的性质也随之变化。

在热力学中把用来说明、确定系统所处状态的系统性质叫做状态函数。

例如p、V、T及后面要介绍的非常重要的热力学能U、焓H、熵S和吉布斯自由能G等均是状态函数。

状态函数的特点:一是当系统的状态确定后,系统的宏观性质即状态函数就有确定的数值,亦即系统的宏观性质是状态的单值函数;二是状态函数的变化值只决定于系统的始态和终态,而与状态发生变化时所经历的具体途径无关。

无论经历多么复杂的变化,只要系统恢复原状,则状态函数也恢复原状。

状态函数按其性质可分为两大类:(1)广度性质:又称容量性质,当将系统分割成若干部分时,系统的某性质等于各部分该性质之和,即广度性质的值与系统中物质的量成正比,具有加和性。

体积、质量、热力学能、熵、焓、吉布斯自由能等均是广度性质。

(2)强度性质:此类性质不具有加和性,其值与系统中物质的量多少无关,仅决定于系统本身的特性。

例如,两杯298K的水混合,水温仍是298K,而不是596K。

温度、压力、密度、粘度等均是强度性质。

应当指出,两个广度性质的比值,是一个新的强度性质。

如摩尔体积、摩尔质量、密度、浓度等就是强度性质。

强度性质不必指定物质的量就可以确定。

三.过程和途径当系统与环境之间发生物质交换和能量交换时,系统的状态就会发生变化,人们把状态变化的经过称为过程,而把完成变化的具体步骤称为途径。

一个过程可以由多种不同的途径来实现,而每一途径常由几个步骤组成。

例如,在101.325kPa下,将25℃水加热到75℃的过程,可以通过多种途径达到。

如途径Ⅰ,直接加热升温到75℃;途径Ⅱ,先把水加热到90℃,然后再冷却到75℃。

热力学常见的过程有:(1)定温过程:系统的状态变化是在系统的始态温度、终态温度及环境温度均相等的条件下发生的过程。

即T始=T终=T环=T。

(2)定压过程:系统的状态变化是在系统的始态压力、终态压力及环境压力均相等的条件下发生的过程。

即p始=p终=p环=p。

(3)定容过程:系统的状态变化时系统的体积不发生变化的过程。

即V始=V终。

(4)绝热过程:在状态变化时,系统与环境之间无热量交换的过程。

(5)循环过程:系统从一状态出发经过一系列的变化又回到原始状态的过程。

热(Q):是体系与环境间温度差而引起的能量交换形式。

功(W):除热之外,系统与环境间其他形式传递的能量。

它们具有相同的量纲—采用相同的单位: J, kJ1.热和功的符号:热力学中规定:体系从环境吸热:Q为“+” 体系从环境放热:Q为“—”体系对环境做功:W为“—” 环境对体系做功:W为“+”功的种类有很多种,如体积功、电功、表面功、机械功等等。

在热力学中将功分为体积功和非体积功两大类。

体积功是系统体积变化时所做的功。

除体积功外其它各种形式的功统称为非体积功,也称有用功,常用符号W′表示。

由于W与过程和途径有关,所以不同的过程必然不同:(1)定容过程:(2)定压过程:(3)定温定压过程:(对于理想气体)作业、讨论题、思考题:P65 2.1(1) (2) (4)课后小结:本节要求掌握1、热和功的符号规定及计算2、状态函数的基本特点课 题第二章 化学热力学基础课次第二讲(2学时)教学目的(1)理解热力学第一定律和热力学能的概念(2)掌握化学反应的定容热,定压热及其相互关系,以及与反应的摩尔热力学能变,摩尔焓变的关系.重点难点热力学第一定律及定容热、定压热的含义及计算教学过程2-2 热力学第一定律及焓教学方法讲授课的类型基础课参考资料:[1] 阿娟、普通化学、北京、中国农业大学出版社、2005[2]浙江大学普通化学教研室、普通化学(第五版)、北京、高等教育出版社、2003[3]杨桂梧、普通化学、大连、辽宁民族出版社、1996[4]大连理工大学无机教研室、无机化学、北京、高等教育出版社、2002[5] 赵士铎、普通化学、北京、中国农业大学出版社、2005§2.2 热力学第一定律及焓一.热力学内能U定义:体系内部能量的总和。

因为U 是容量性质,所以其具有加合性。

二.热力学第一定律:封闭体系中,体系内部能量的变化等于体系从环境中吸收的热加上环境对体系所做的功:三.焓H1.根据热力学第一定律有: 移项整理得到:于是热力学定义一个新的状态函数称为焓,用符号H 表示: 说明:H 是容量性质,且是状态函数。

定容热: 在定容过程中体系吸收或放出的热. 定义: 在定压过程中体系吸收或放出的热.上式常用于想变中的有关计算.注: (1) 只有熔沸点想变才是定温定压过程(2) 是气体的物质的量变化,与固体和液体无关.四.热力学标准态:指温度为T,压力为=100kPa,浓度为1mol•L-1时的状态.五. 热化学研究化学反应过程中能量变化的科学.而化学反应过程中能量的变化正是反应热,因化学反应通常在定压下进行,故其反应热指的是定压热。

化学反应的标准摩尔热力学能变。

r: reaction, 表示反应的热力学能变。

m:表示反应进度变化为1mol表示化学反应与其热效应关系的化学方程式。

例如: =-285.84KJ•mol作业、讨论题、思考题:P66 2.2(1)课后小结:本节要求掌握1、热力学第一定律及定容热、定压热的含义及计算参考资料:[1] 阿娟、普通化学、北京、中国农业大学出版社、2005[2]浙江大学普通化学教研室、普通化学(第五版)、北京、高等教育出版社、2003[3]杨桂梧、普通化学、大连、辽宁民族出版社、1996[4]大连理工大学无机教研室、无机化学、北京、高等教育出版社、2002[5] 赵士铎、普通化学、北京、中国农业大学出版社、2005课题第二章化学热力学基础课次第三讲(2学时)教学目的(1)理解并熟练应用盖斯定律;(2)掌握标准摩尔生成焓的概念并熟练应用它计算反应的标准摩尔焓变;(3)了解自发过程的两个趋势.重点难点(1)重点掌握并熟练应用盖斯定律。

(2)掌握化学反应自发性的特点及熵的概念。

教学过程 2.3盖斯定律及反应热的计算;2.4化学反应的自发性及熵教学方法讲授课的类型基础课§2.3盖斯定律及反应热的计算一.盖斯定律内容:在定容或定压条件下,一个化学反应, 不管是一步完成或分几步完成,总反应的热效应等于各步反应的热效应之和。

借助盖斯定律可以计算难于测定和不能直接测定的一些化学反应热效应。

通过某些已知准确测定的反应热数据,就可以得到实际上难以测定的反应热.例如:已知(1)C(s) +O2(g)→ CO2(g) =-393.5 kJ·mol-1(2) =-283 kJ·mol-1求:(3) C(s) + ½ O2(g) == CO(g) =?由盖斯定律:反应(3)=反应(1)—反应(2)所以=—=-393.5 kJ·mol-1-(-283 kJ·mol-1)=676.5 kJ·mol-1二. 标准摩尔生成焓定义: 在标准状态下,由最稳定的单质生成1mol纯物质B时的焓变.= ΣνB(B,相态)§2.4 化学反应的自发性及熵一.自发过程的趋势3.自发反应的特点:)有一定方向;2)有对外作的能力;3)有一定限度;4)是不可逆的.G=H-TS1. G是体系的状态函数ΔG < 0, 正向反应自发ΔG=0, 处于平衡状态ΔG > 0, 正向反应非自发在等温定压下,任何自发反应的自由能G总是在减少.三.熵及熵变1.熵的定义: 熵是反映体系内部质点运动的混乱程度的物理量.用S表示.1)有序无序 ,其2)在等温定压下,一个导致气体分数增加的过程是熵增加的过程。

热力学第三定律在绝对零度时,任何纯物质的完美晶体的熵等于0,即作业、讨论题、思考题:P65 2.2(2),2.6,课后小结:本节要求掌握(1)重点掌握并熟练应用盖斯定律。

(2)掌握化学反应自发性的特点及熵的概念。

参考资料:[1] 阿娟、普通化学、北京、中国农业大学出版社、2005[2]浙江大学普通化学教研室、普通化学(第五版)、北京、高等教育出版社、2003[3]杨桂梧、普通化学、大连、辽宁民族出版社、1996课 题第二章 化学热力学基础课次第四讲(2学时)教学目的(1)会用标准摩尔生成吉布斯自由能计算反应的标准摩尔吉布斯自由能变;(2)掌握吉布斯–亥姆霍兹(Gibb s -HelmholTz )方程及简单应用;(3)会判断化学反应的自发方向.重点难点(1)重点掌握并熟练应用吉布斯–亥姆霍兹(Gibb s -HelmholTz )方程(2)会判断化学反应的自发方向.教学过程 2.5吉布斯自由能及反应方向的判据教学方法讲授课的类型基础课[4]大连理工大学无机教研室、无机化学、北京、高等教育出版社、2002[5] 赵士铎、普通化学、北京、中国农业大学出版社、2005§2.5 吉布斯自由能及反应方向的判据1.标准摩尔吉布斯自由能判据(等温等压)吉布斯自由能的重要作用是作为反应自发性的判据,判断反应进行的方向和限度。

可用于判断标准态时反应的方向。

<0 反应能自发进行; <0 =0 反应处于平衡状态; =0>0 反应不能自发进行。

>0注:标准态时的判据;是任意态时的判据二.标准摩尔生成吉布斯自由能与焓相似,物质的吉布斯自由能的绝对值难以确定。

相关文档
最新文档