山东省济宁市嘉祥县2016-2017学年八年级下学期数学期末考试试卷
2016-2017学年八年级下册数学期末考试试卷(解析版)
2016-2017学年八年级下册数学期末考试试卷〔解析版〕一、选择题1.以下式子没有意义的是〔〕A. B. C. D.2.以下计算中,正确的选项是〔〕A. ÷ =B. 〔4 〕2=8C. =2D. 2 ×2 =23.刻画一组数据波动大小的统计量是〔〕A. 平均数B. 方差C. 众数D. 中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是〔〕A. 方差B. 平均数C. 中位数D. 众数5.关于正比例函数y=﹣2x,以下结论中正确的选项是〔〕A. 函数图象经过点〔﹣2,1〕B. y随x的增大而减小C. 函数图象经过第一、三象限D. 不管x取何值,总有y<06.以以下各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是〔〕A. 2,3,4B. ,,C. 1,,2D. 7,8,97.假设一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为〔〕cm.A. 10B. 11C. 12D. 138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是〔〕A. 24B. 26C. 30D. 489.在以下命题中,是假命题的是〔〕A. 有一个角是直角的平行四边形是矩形B. 一组邻边相等的矩形是正方形C. 一组对边平行且相等的四边形是平行四边形D. 有两组邻边相等的四边形是菱形10.已知平面上四点A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为〔〕A. B. ﹣1 C. 2 D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b〔k≠0〕中,x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y ﹣6 ﹣4 ﹣2 0 2那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2017、2017、2017、2017、2017,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.16.如下图,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于以下结论:①∠GFI=90°;②GH=GI;③GI= 〔BC﹣DE〕;④四边形FGHI 是正方形.其中正确的选项是________〔请写出所有正确结论的序号〕.三、解答题17.计算:〔+ ﹣〕× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .〔1〕求AD的长.〔2〕求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.20.下表是某校八年级〔1〕班43名学生右眼视力的检查结果.视力人数 1 2 5 4 3 5 1 1 5 10 6〔1〕该班学生右眼视力的平均数是________〔结果保留1位小数〕.〔2〕该班学生右眼视力的中位数是________.〔3〕该班小鸣同学右眼视力是,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.〔1〕求OF的长.〔2〕求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A〔﹣30,0〕和点B〔0,15〕,直线y=x+5与直线y=kx+b 相交于点P,与y轴交于点C.〔1〕求直线y=kx+b的解析式.〔2〕求△PBC的面积.年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价元/半小时,骑行单价最低可降至元/半小时〔比方,某用户邀请了3位好友,则骑行单价为元/半小时〕.B品牌共享单车计费方式为:元/半小时,不足半小时按半小时计算.〔1〕某用户准备选择A品牌共享单车使用,设该用户邀请好友x名〔x为整数,x≥0〕,该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.〔2〕假设有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图〔1〕的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图〔2〕,把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图〔3〕中所示的AD处,折痕为AQ.根据以上的操作过程,完成以下问题:〔1〕求CD的长.〔2〕请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点〔P点不与C、D重合〕,过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE 的面积为S2.〔1〕求证:BP⊥DE.〔2〕求S1﹣S2关于x的函数解析式,并写出x的取值范围.〔3〕分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×〔﹣2〕=4,即图象经过点〔﹣2,4〕,不经过点〔﹣2,1〕,故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不管x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、〔〕2+〔〕2≠〔〕2,故不是直角三角形,B不符合题意;C、12+〔〕2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为〔x﹣1〕cm,由勾股定理得,x2=52+〔x﹣1〕2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为〔x-1〕cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S菱形ABCD= ×AC×BD= ×6×8=24.故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;B、一组邻边相等的矩形是正方形,正确,B不符合题意;;C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.故答案为:D.【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是〔6,3〕,∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故答案为:B.【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点〔6,3〕,最后将点〔6,3〕代入直线解析式求解即可.二、<b >填空题</b>11.【答案】1【考点】分母有理化【解析】【解答】解:∵a= +2,b= ﹣2,∴ab=〔+2〕〔﹣2〕=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点〔0,2〕,且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= 〔BC﹣DE〕,故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=〔BC-DE〕.三、<b >解答题</b>17.【答案】解:原式=〔6 + ﹣3 〕×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】〔1〕解:在Rt△ABD中,AD= =3〔2〕解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】〔1〕在Rt△ABD中,依据勾股定理可求得AD的长;〔2〕在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD〔AAS〕,∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS 证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】〔1〕〔2〕〔3〕解:不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:〔1〕该班学生右眼视力的平均数是×〔4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6〕,故答案为:;〔2〕由于共有43个数据,其中位数为第22个数据,即中位数为,〔3〕不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:〔1〕;〔2〕;〔3〕不能.【分析】〔1〕根据加权平均数公式求解即可;〔2〕首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;〔3〕根据小鸣同学右眼视力是,小于中位数,故此可得到问题的答案.21.【答案】〔1〕解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.〔2〕解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】〔1〕由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;〔2〕在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】〔1〕解:将点A〔﹣30,0〕、B〔0,15〕代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.〔2〕解:联立两直线解析式成方程组,,解得:,∴点P的坐标为〔20,25〕.当x=0时,y=x+5=5,∴点C的坐标为〔0,5〕,∴BC=15﹣5=10,∴S△PBC= BC•x P= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】〔1〕将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;〔2〕联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】〔1〕解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣,当x≥10且x为正整数时,,即y关于x的函数解析式是y=〔2〕解:由题意可得,当0≤x≤9时,1﹣>,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣<,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,<,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】〔1〕可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;〔2〕分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】〔1〕解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;〔2〕解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】〔1〕首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;〔2〕根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】〔1〕解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.〔2〕解:由题意S1﹣S2= 〔4+x〕•x﹣•〔4﹣x〕•x=x2〔0<x<4〕.〔3〕解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=〔4 ﹣4〕2=48﹣32 .【考点】正方形的性质【解析】【分析】〔1〕首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;〔2〕根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;〔3〕分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用〔2〕中结论进行计算即可.。
济宁市嘉祥县八年级下册期末数学试卷(有答案)
山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A .12B .14C .16D .189.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么a = . 12.已知y =,则x y 的值为 .13.在菱形ABCD 中,两条对角线AC 与BD 的和是14.菱形的边AB =5,则菱形ABCD 的面积是 . 14.已知点P (1,2)关于x 轴的对称点为P ′,且P ′在直线y =kx +3上,把直线y =kx +3的图象向上平移2个单位,所得的直线解析式为 .15.如图①,在▱ABCD 中,∠B =120°,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为xcm ,△PAB 的面积为ycm 2,y 关于x 的函数的图象如图②所示,则图②中H 点的横坐标为 .三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE .求证:四边形BECF 是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分)7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB 为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C 不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC =2MN =6, ∴AC =AD +CD =14, 故选:B .【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半. 9.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 1【分析】先根据点(1,0)在一次函数y =kx ﹣2的图象上,求出k =2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:∵点(1,0)在一次函数y =kx ﹣2的图象上, ∴k ﹣2=0, ∴k =2>0,∴y 随x 的增大而增大, ∵﹣2<1<3, ∴y 1<0<y 2. 故选:B .【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质. 10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC =b ,BC =a ,分别在直角△ACE 与直角△BCD 中,根据勾股定理得到:,两式相加得:a 2+b 2=36,根据勾股定理得到斜边==6.故选:A .【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a= 5 .【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24 .【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5 .【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为14 .【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分)7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB 为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M 点横坐标为±1分别求出是解题关键.。
【数学】2016学年山东省济宁市嘉祥县八年级下学期数学期末试卷带解析答案PDF
15. (3 分)将 n 个边长为 1 的正方形按照如图所示方式摆放,O1,O2,O3,O4, O5,…是正方形对角线的交点,那么阴影部分面积之和等于 .
三、解答题(共 7 小题,满分 55 分) 16. (5 分) 先化简, 再求值: ( ﹣ ) ÷ , 其中 a=1﹣ , b=1+ .
17. (7 分)某广告公司欲招聘一名职员,对甲,乙,丙三名候选人进行了三项 素质测试,他们各项测试成绩如表: 应试者 公关能力 甲 88 测试成绩 计算机能力 50 创新能力 72
,请利用图②的正方形网格(每个小正方形的边长为 1)画出相应的
△ABC,并求出它的面积.
20. (9 分)现从 A、B 向甲、乙两地运送蔬菜,A,B 两个蔬菜市场各有蔬菜 14 吨,其中甲地需要蔬菜 15 吨,乙地需要蔬菜 13 吨,从 A 到甲地运费 50 元/吨,
5
到乙地 30 元/吨;从 B 地到甲运费 60 元/吨,到乙地 45 元/吨. (1)设 A 地到甲地运送蔬菜 x 吨,请完成下表: 运往甲地(单位: 吨) A B (2)设总运费为 W 元,请写出 W 与 x 的函数关系式; (3)怎样调运蔬菜才能使运费最少?并求出最少的运费值. 21. (9 分)如图,菱形 ABCD 的对角线 AC,BD 相交于点 O,点 E,F 分别是 AD, DC 的中点, (1)如果 OE= ,EF=3,求菱形 ABCD 的周长和面积; (2)连接 OF,猜想:四边形 OEDF 是什么特殊四边形?并证明你的猜想. x 运往乙地(单位: 吨)
A.①③
Байду номын сангаас
B.①②③ C.②④
D.②③④
10. (3 分)如图,在平面直角坐标系中,已知 A(1,1) 、B(3,5) ,要在 y 轴 上找一点 P,使得△PAB 的周长最小,则点 P 的坐标为( )
山东省济宁市嘉祥县2016-2017学年八年级(下)期末数学试卷试题及答案(解析版)
2016-2017学年山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.一组数据2,0,﹣2,1,3的平均数是()A.0.8 B.1 C.1.5 D.22.下列各式是最简二次根式的是()A. B.C.D.3.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A. B.6、8、10 C.5、12、13 D.4.下列函数中,y是x的一次函数的是()①y=x﹣6;②y=;③y=;④y=7﹣x.A.①②③B.①③④C.①②③④D.②③④5.有一直角三角形的两边长分别为3和4,则第三边长是()A.5 B.5或C.D.6.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm7.如图,挂在弹簧秤上的长方体铁块浸没在水中,提着弹簧匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧秤的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.8.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.9.对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,2)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大10.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC 于点E.若AC=3,AB=5,则DE等于()A.2 B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.若代数式有意义,则x的取值范围是.12.若y=(m﹣1)x|m|是正比例函数,则m的值为.13.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是.14.如图是一段楼梯,高BC是3米,斜边AC是5米,若在楼梯上铺地毯,则至少需要地毯米.15.如图,在△ABC中,AB=6cm,AC=8cm,BC=10cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.三、解答题(本大题共7小题,共55分)16.计算:(1)(﹣)(2)(﹣4)﹣(3﹣2)17.在由6个大小相同的小正方形组成的方格中;如图,A、B、C是三个格点(即小正方形的顶点).判断AB与BC的关系,并说明理由.18.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.19.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.(1)求证:四边形ADCE是矩形.(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.20.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.21.阅读下列解题过程,并解答后面的问题:如图1,在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C为线段AB的中点,求C点的坐标.解:分布过A、C做x轴的平行线,过B、C做y轴的平行线,两组平行线的交点如图1所示.设C(x0,y0),则D(x0,y1),E(x2,y1),F(x2,y0)由图1可知:x0==y0==∴(,)问题:(1)已知A(﹣1,4),B(3,﹣2),则线段AB的中点坐标为.(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,﹣4),(0,2),(5,6),求点D的坐标.(3)如图2,B(6,4)在函数y=x+1的图象上,A(5,2),C在x轴上,D在函数y=x+1的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.22.A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.(2)若总运费不超过9000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.2016-2017学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.一组数据2,0,﹣2,1,3的平均数是()A.0.8 B.1 C.1.5 D.2【考点】W1:算术平均数.【分析】求得各个数的和后除以数据的个数即可.【解答】解:这组数据平均数是=0.8,故选:A.2.下列各式是最简二次根式的是()A. B.C.D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:B.3.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A. B.6、8、10 C.5、12、13 D.【考点】KS:勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=()2,能够成三角形,故此选项错误;B、62+82=102,能构成直角三角形,故此选项错误;C、52+122=132,能构成直角三角形,故此选项错误;D、()2+22≠()2,不能构成直角三角形,故此选项正确.故选D.4.下列函数中,y是x的一次函数的是()①y=x﹣6;②y=;③y=;④y=7﹣x.A.①②③B.①③④C.①②③④D.②③④【考点】F1:一次函数的定义.【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:①y=x﹣6符合一次函数的定义,故本选项正确;②y=是反比例函数;故本选项错误;③y=,属于正比例函数,是一次函数的特殊形式,故本选项正确;④y=7﹣x符合一次函数的定义,故本选项正确;综上所述,符合题意的是①③④;故选B.5.有一直角三角形的两边长分别为3和4,则第三边长是()A.5 B.5或C.D.【考点】KQ:勾股定理.【分析】分4为斜边,以及4不为斜边,利用勾股定理求出第三边长即可.【解答】解:当4为斜边时,第三边为=;当4不是斜边时,第三边长为=5,则第三边长是5或.故选:B.6.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm【考点】LA:菱形的判定与性质.【分析】可定四边形ABCD为菱形,连接AC、BD相交于点O,则可求得BD的长,在Rt△AOB中,利用勾股定理可求得AB的长,从而可求得四边形ABCD的周长.【解答】解:如图,连接AC、BD相交于点O,∵四边形ABCD的四边相等,∴四边形ABCD为菱形,=AC•BD,∴AC⊥BD,S四边形ABCD∴×24BD=120,解得BD=10cm,∴OA=12cm,OB=5cm,在Rt△AOB中,由勾股定理可得AB==13(cm),∴四边形ABCD的周长=4×13=52(cm),故选A.7.如图,挂在弹簧秤上的长方体铁块浸没在水中,提着弹簧匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧秤的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.【考点】E6:函数的图象.【分析】分析整个铁块上升的过程,由此即可得出结论.【解答】解:当铁块上面的面还在水中时,弹簧秤的度数不变;当铁块上面的面浮出水面,下面的面还在水下时,随着铁块上浮,弹簧秤的度数逐渐变大;当铁块下面的面浮出水面时,弹簧秤的度数不变.故选C.8.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【考点】F3:一次函数的图象.【分析】由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选A.9.对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,2)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大【考点】F5:一次函数的性质.【分析】根据一次函数的系数结合一次函数的性质,即可得知B、D选项不正确,再分别代入x=﹣1,x=1求出与之对应的y值,即可得出A不正确,C正确,此题得解.【解答】解:A、令y=﹣2x+1中x=﹣1,则y=3,∴一次函数的图象不过点(﹣1,2),即A不正确;B、∵k=﹣2<0,b=1>0,∴一次函数的图象经过第一、二、四象限,即B不正确;C、∵k=﹣2<0,∴一次函数中y随x的增大而减小.∵令y=﹣2x+1中x=1,则y=﹣1,∴当x>1时,y<0成立,即C正确;D、∵k=﹣2<0,∴一次函数中y随x的增大而减小,D不正确.故选C.10.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC 于点E.若AC=3,AB=5,则DE等于()A.2 B.C.D.【考点】KQ:勾股定理;KG:线段垂直平分线的性质;N2:作图—基本作图.【分析】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.【解答】解:在Rt△ACB中,由勾股定理得:BC==4,连接AE,从作法可知:DE是AB的垂直平分线,根据性质得出AE=BE,在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,即32+(4﹣AE)2=AE2,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE2+()2=()2,解得:DE=.故选C.二、填空题(本大题共5小题,每小题3分,共15分)11.若代数式有意义,则x的取值范围是x≥0且x≠2.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】令被开方数大于或等于0和分母不为0即可求出x的范围【解答】解:∵解得:x≥0且x≠2故答案为:x≥0且x≠212.若y=(m﹣1)x|m|是正比例函数,则m的值为﹣1.【考点】F2:正比例函数的定义.【分析】根据正比例函数的定义,令m﹣1≠0,|m|=1即可.【解答】解:由题意得:m﹣1≠0,|m|=1,解得:m=﹣1.故答案为:﹣1.13.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是k>3.【考点】F7:一次函数图象与系数的关系.【分析】根据一次函数y=kx+b(k≠0)的图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,知3﹣k<0,且﹣k<0,解得k>3.故答案为k>3.14.如图是一段楼梯,高BC是3米,斜边AC是5米,若在楼梯上铺地毯,则至少需要地毯7米.【考点】KU:勾股定理的应用;Q1:生活中的平移现象.【分析】先根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB===4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故答案为:7.15.如图,在△ABC中,AB=6cm,AC=8cm,BC=10cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是 4.8cm.【考点】LD:矩形的判定与性质;J4:垂线段最短;KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME 是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.【解答】解:∵在△ABC中,AB=6cm,AC=8cm,BC=10cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB×AC=BC×AM,∴6×8=10AM,AM=4.8(cm),即DE的最小值是4.8cm.故答案为:4.8.三、解答题(本大题共7小题,共55分)16.计算:(1)(﹣)(2)(﹣4)﹣(3﹣2)【考点】79:二次根式的混合运算.【分析】(1)原式变形后,利用平方差公式计算即可得到结果;(2)原式各项化简后,去括号合并即可得到结果.【解答】解:(1)原式=2017(+)(﹣)=2017;(2)原式=4﹣﹣+=3.17.在由6个大小相同的小正方形组成的方格中;如图,A、B、C是三个格点(即小正方形的顶点).判断AB与BC的关系,并说明理由.【考点】KS:勾股定理的逆定理;KQ:勾股定理.【分析】由勾股定理得出AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,即可知AB=BC,再根据勾股定理得逆定理知AB⊥BC.【解答】解:相等且垂直.理由:如图,连接AC,由勾股定理可得:AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是以∠B为直角的直角三角形即AB⊥BC.∴AB和BC的关系是:相等且垂直.18.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.【考点】W7:方差;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)利用条形统计图,结合众数、方差、中位数的定义分别求出答案;(2)利用平均数、众数、方差、中位数的定义分析得出答案.【解答】解:(1)甲的众数为:8.5,方差为: [(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7,乙的中位数是:8;故答案为:8.5,0.7,8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.19.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.(1)求证:四边形ADCE是矩形.(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.【考点】LD:矩形的判定与性质;KH:等腰三角形的性质;L5:平行四边形的性质.【分析】(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)解:∵四边形ADCE是矩形,∴AO=EO,∴△AOE为等边三角形,∴AO=4,故AC=8.20.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【考点】FA:待定系数法求一次函数解析式;FD:一次函数与一元一次不等式;FF:两条直线相交或平行问题.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.21.阅读下列解题过程,并解答后面的问题:如图1,在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C为线段AB的中点,求C点的坐标.解:分布过A、C做x轴的平行线,过B、C做y轴的平行线,两组平行线的交点如图1所示.设C(x0,y0),则D(x0,y1),E(x2,y1),F(x2,y0)由图1可知:x0==y0==∴(,)问题:(1)已知A(﹣1,4),B(3,﹣2),则线段AB的中点坐标为(1,1).(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,﹣4),(0,2),(5,6),求点D的坐标.(3)如图2,B(6,4)在函数y=x+1的图象上,A(5,2),C在x轴上,D在函数y=x+1的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.【考点】FI:一次函数综合题.【分析】(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出=,=,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【解答】解:(1)AB中点坐标为(,)=(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:=,=,代入数据,得:=,=,解得:x D=6,y D=0,所以点D的坐标为(6,0).(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:=,=或=,=,故可得y C﹣y D=y A﹣y B=2或y D﹣y C=y A﹣y B=﹣2∵y C=0,∴y D=2或﹣2,代入到y=x+1中,可得D(2,2)或D (﹣6,﹣2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,y C+y D=y A+y B=2+4,∵y C=0,∴y D=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(﹣6,﹣2)、D(10,6).22.A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.(2)若总运费不超过9000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.【考点】FH:一次函数的应用.【分析】(1)根据题意求出各个运费之和即可,利用不等式组确定自变量的取值范围即可.(2)列出不等式即可解决问题.(3)利用一次函数的增减性即可解决问题.【解答】解:(1)由题意可得,w=400(10﹣x)+800(2+x)+300x+500(6﹣x)=200x+8600.由解得0≤x≤6.(2)由题意200x+8600≤9000,解得x≤2,∴x=0或1或2,∴有三种调运方案:①B市运往C市的联合收割机为0台,B市运往D市的联合收割机为6台,A市运往C市的联合收割机为10台,A市运往D市的联合收割机为2台;②B市运往C市的联合收割机为1台,B市运往D市的联合收割机为5台,A市运往C市的联合收割机为9台,A市运往D市的联合收割机为3台;③B市运往C市的联合收割机为2台,B市运往D市的联合收割机为4台,A市运往C市的联合收割机为8台,A市运往D市的联合收割机为4台;(3)∵w=200x+8600,∵200>0,∴w随x的增大而增大,∵0≤x≤6,∴x=0时,w最小,最小值为8600元.。
2016至2017学年度八年级数学下学期期末测试卷
2016~2017学年度下学期期末测试卷八年级数学(考试时间:120分钟满分:120分)一、选择题(12小题,每小题3分,共36分,在每题给出的四个选项中,只有一项是符合题目要求的,将你的结果填在括号()内)1.9的值是()A. 9B. 3C. -3D. 32.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对3.对于函数y=﹣3x是怎样平移得到y=﹣3x+3()A.向上平移3个单位长度而得到B.向下平移3个单位长度而得到C.向左平移3个单位长度而得到D.向右平移3个单位长度而得到4.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是( )A. 10B. 5C. 8.5D. 5.55.函数y=3x﹣4与函数y=2x+3的交点的坐标是( )A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)2016~2017学年度下学期期末测试卷(八年级数学)第1页(共8页)2016~2017学年度下学期期末测试卷(八年级数学)第2页(共8页)6.下列二次根式中,最简二次根式是( )A.a8 B.a5 C. D.b a a 22+7.如图,有两颗树,一颗高7米,另一颗高4米,两树 相距4米,一只鸟从一棵树的树梢飞到另一颗树的树梢, 问小鸟至少飞行了( )米A. 4B. 5C. 6D. 78.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A . y 1>y 2B . y 1>y 2>0C . y 1<y 2D . y 1=y 2 9.不能判断四边形ABCD 是平行四边形的是( ) A . AB=CD ,AD=BC B . AB=CD ,AB ∥CD C . AB=CD ,AD ∥BC D . AB ∥CD ,AD ∥BC10.一个样本的方差为S ²= ,那么这个样本的平均数为( )A . 6B .C . 5D .11.下列图形中,表示一次函数y=kx+t 与正比例函数y=ktx (k 、t 为常数,且kt ≠0)的图象的是( )xyxyxyxyooooA BCD613a 65()()()⎥⎦⎤⎢⎣⎡-++-+-25625225161x x x 第7题图2016~2017学年度下学期期末测试卷(八年级数学)第3页(共8页)12.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,平行四边形ABED 的面积是36㎝², 则四边形ABCD 的周长为( ) A. 49 cm B . 43 cm C . 41 cm D . 46 cm二 、填空题(本大题共6小题,每小题3分,共18分)13. 函数y=kx 的图象经过点P(3,-1),则k 的值为 . 14. 一组数据-1,0,1,2的平均值是 .15. 已知直线y =2x +8与两条坐标轴围成的三角形的面积是__________. 16. 已知菱形的两条对角线分别是6和8,则这个菱形的边长是_________. 17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点, 若BC=18,则DE= .第17题图 第18题图18.如图,在正方形纸片ABCD 中,一边长为12,将顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为 .ADB FG第12题图ABCD E三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.(6分)计算(1)(2)20.(6分)按列表、描点、连线的要求,在同一坐标系中画出y=2x和y=2x+1的图象,请你观察两个函数的解析式及其图象,问有什么共同点和不同点?22+3()2-2+(3)(3)2016~2017学年度下学期期末测试卷(八年级数学)第4页(共8页)21.(8分)如图,长为4米的梯子搭在墙上与地面成450角,作业时调整为600角,请求出梯子的顶端沿墙面升高了多少米?第21题图22.(8分)为了了解某校1500名学生的视力情况,从中抽取一部分学生进行抽样调查,利用所得视力数据为:4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3并绘制了如下的统计图。
2016-2017学年度山东省八年级第二学期期末考试数学试题
则关于甲、乙两人的作法,下列判断正确的为()
A.仅甲正确B.仅乙正确
C.甲、乙均正确D.甲、乙均错误
二、填空题(每小题2分,共20分)
7.下列调查中,须用普查的为.(填序号)
①了解某市中学生的视力情况;②了解某市百岁以上老人的健康情况;
2016-2017学年度山东省八年级第二学期期末考试
数学试卷
一、选择题(每题2分,共12分.请把正确答案的字母代号填在下面的表格中)
1.2.下列各组数中互为相反数的是
A. B.
C. D.
2.下图中的图形属于是轴对称图形的有
A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)
3.在一个直角三角形中,若斜边的长是 ,一条直角边的长为 ,那么这个直角三角形的面积是
13.若A(-1,y1)、B(-2,y2)是反比例函数y=(m为常数,m≠)图象上的两点,且y1>y2,则m的取值范围是.
14.如图,在□ABCD中,∠A=70°,将□ABCD绕顶点B顺时针旋转到□A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=°.
15.如图,在△ABC中,AB=AC=13,DE是△ABC的中位线,F是DE的中点.已知B(-1,0),C(9,0),则点F的坐标为.
24.(7分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E.已知C点的坐标是(4,-1),DE=2.
(1)求反比例函数与一次函数的关系式;
(2)根据图象直接回答:当x为何值时, 一次函数的值小于反比例函数的值?
25.(7分)已知:如图,在△ABC中,点E、F分别在边AB、AC上,EF∥BC,且EF=BC.
济宁市嘉祥县八年级下期末数学试卷(有答案)【精】
山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A .12B .14C .16D .189.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么a = .12.已知y =,则x y 的值为 .13.在菱形ABCD 中,两条对角线AC 与BD 的和是14.菱形的边AB =5,则菱形ABCD 的面积是 . 14.已知点P (1,2)关于x 轴的对称点为P ′,且P ′在直线y =kx +3上,把直线y =kx +3的图象向上平移2个单位,所得的直线解析式为 .15.如图①,在▱ABCD 中,∠B =120°,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为xcm ,△PAB 的面积为ycm 2,y 关于x 的函数的图象如图②所示,则图②中H 点的横坐标为 .三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE .求证:四边形BECF 是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半. 9.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 1【分析】先根据点(1,0)在一次函数y =kx ﹣2的图象上,求出k =2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:∵点(1,0)在一次函数y =kx ﹣2的图象上, ∴k ﹣2=0, ∴k =2>0,∴y 随x 的增大而增大, ∵﹣2<1<3, ∴y 1<0<y 2. 故选:B .【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC =b ,BC =a ,分别在直角△ACE 与直角△BCD 中,根据勾股定理得到:,两式相加得:a 2+b 2=36,根据勾股定理得到斜边==6.故选:A .【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a= 5 .【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24 .【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5 .【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为14 .【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S=×6×4=12;△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y =x ,∵当△OMC 的面积是△OAC 的面积的时,∴当M 的横坐标是×4=1,在y =x 中,当x =1时,y =,则M 的坐标是(1,);在y =﹣x +6中,x =1则y =5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,)或M 2(1,5).当M 的横坐标是:﹣1,在y =﹣x +6中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7);综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M 点横坐标为±1分别求出是解题关键.。
【精品】济宁市嘉祥县八年级下期末数学试卷(有答案)
山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC 的长是()A .12B .14C .16D .189.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么a = .12.已知y =,则x y 的值为 .13.在菱形ABCD 中,两条对角线AC 与BD 的和是14.菱形的边AB =5,则菱形ABCD 的面积是 . 14.已知点P (1,2)关于x 轴的对称点为P ′,且P ′在直线y =kx +3上,把直线y =kx +3的图象向上平移2个单位,所得的直线解析式为 .15.如图①,在▱ABCD 中,∠B =120°,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为xcm ,△PAB 的面积为ycm 2,y 关于x 的函数的图象如图②所示,则图②中H 点的横坐标为 .三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE .求证:四边形BECF 是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE 平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC 的长是()A.12 B.14 C.16 D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC =AD +CD =14, 故选:B .【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半. 9.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 1【分析】先根据点(1,0)在一次函数y =kx ﹣2的图象上,求出k =2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:∵点(1,0)在一次函数y =kx ﹣2的图象上, ∴k ﹣2=0, ∴k =2>0,∴y 随x 的增大而增大, ∵﹣2<1<3, ∴y 1<0<y 2. 故选:B .【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC =b ,BC =a ,分别在直角△ACE 与直角△BCD 中,根据勾股定理得到:,两式相加得:a 2+b 2=36,根据勾股定理得到斜边==6.故选:A .【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a= 5 .【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24 .【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5 .【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为14 .11【分析】根据图象点P 到达C 时,△PAB 的面积为6,由BC =4,∠B =120°可求得AB =6,H 横坐标表示点P 从B 开始运动到A 的总路程,则问题可解.【解答】解:由图象可知,当x =4时,点P 到达C 点,此时△PAB 的面积为6∵∠B =120°,BC =4∴解得AB =6H 点表示点P 到达A 时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE .求证:四边形BECF 是正方形.12【分析】先由BF ∥CE ,CF ∥BE 得出四边形BECF 是平行四边形,又因为∠BEC =90°得出四边形BECF 是矩形,BE =CE 邻边相等的矩形是正方形. 【解答】证明:∵BF ∥CE ,CF ∥BE ∴四边形BECF 是平行四边形,又∵在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ∴∠EBC =∠ECB =45° ∴∠BEC =90°,BE =CE ∴四边形BECF 是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S 甲2=0.8、S 乙2=0.4、S 丙2=0.8) 【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分; (2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7; 甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)1314【分析】直接利用已知得出CF ,CG 的长,再利用勾股定理得出CF 的长进而得出答案. 【解答】解:不能通过.如图,在AB 之间找一点F ,使BF =2.5m ,过点F 作GF ⊥AB 交CD 于点G , ∵AB =3.3m ,CA =0.7m ,BF =2.5m , ∴CF =AB ﹣BF +CA =1.5m , ∵∠ECA =60°,∠CGF =30° ∴CG =2CF =3m , ∴GF ===≈2.55(m ),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG 的长是解题关键.21.(9分)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =∠ADC =90°,对角线AC ,BD 交于点O ,DE 平分∠ADC 交BC 于点E ,连接OE . (1)求证:四边形ABCD 是矩形; (2)若AB =2,求△OEC 的面积.【分析】(1)想办法证明∠BAD =∠ABC =∠ADC =90°即可解决问题; (2)作OF ⊥BC 于F .求出EC 、OF 即可解决问题; 【解答】(1)证明:∵AD ∥BC ,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.1516【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OMC 的面积是△OAC的面积的时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解答】解:(1)设直线AB 的解析式是y =kx +b ,根据题意得:,解得:,则直线的解析式是:y =﹣x +6;(2)在y =﹣x +6中,令x =0,解得:y =6,S △OAC=×6×4=12;(3)设OA 的解析式是y =mx ,则4m =2, 解得:m=,则直线的解析式是:y=x ,∵当△OMC 的面积是△OAC的面积的时, ∴当M 的横坐标是×4=1,在y=x 中,当x =1时,y=,则M 的坐标是(1,); 在y =﹣x +6中,x =1则y =5,则M 的坐标是(1,5). 则M 的坐标是:M 1(1,)或M 2(1,5). 当M 的横坐标是:﹣1,在y =﹣x +6中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7); 综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.1718。
20162017学年济宁市八年级数学下期末试卷.docx
2016-2017学年济宁市八年级数学下期末试卷2016-2017学年山东省济宁市八年级(下)期末数学试卷一、选择题(共12 小题,每小题 3 分,满分36 分)1.( 3 分)下列各组数据中能作为直角三角形的三边长的是()A . 3,4, 5B.1, 1, c.4, 5, 6D. 1, 2,32.( 3分)下列计算正确的是()A . =2B.() 2=4c.× =D.÷ =33.( 3分)估计的值()A.在 6 和 7 之间 B.在 5 和 6 之间 c.在 3 和 4 之间 D.在2和3之间4.( 3 分)如图, ?ABcD的对角线 Ac 和 BD相交于点 o, E为 cD 边中点, Bc=8c,则 oE 的长为()A . 3cB. 4cc . 5cD. 2c5.(3 分)如图是一次函数 y=kx+b 的图象,则一次函数的解析式是()A . y=﹣ 4x+3B.y=4x+3c . y=x+3D.y=﹣ x+36 .( 3 分)正比例函数y=﹣ 2x 的大致图象是()A. B.c. D.7 .( 3 分)在平面中,下列说法正确的是()A .四个角相等的四边形是矩形B.对角线垂直的四边形是菱形c .对角线相等的四边形是矩形D.四边相等的四边形是正方形8.(3 分)移动公司客户经理要了解哪种“套餐”最畅销,在相关数据的统计量中,对移动公司客户经理来说,最有意义的数据是()A .方差 B.平均数c.中位数 D.众数9 .( 3 分)下列各曲线表示的y 与 x 的关系中, y 不是 x 的函数的是()A. B.c. D.10.(3 分)如图,在Rt △ABc 中,∠c=90°,边AB的垂直平分线交 Bc 于点 D,交 AB于点 E,AD平分∠ BAc,则下列结论不正确的是()A .∠B 的度数等于30°B. Ac=AE=BE=ADc .∠ ADB 的度数等于 120° D.Rt △ ADE≌Rt △ BDE≌ Rt △ ADc11.(3 分)如图,一次函数 y=﹣ x﹣ 4 与正比例函数 y=kx 的图象交于第三象限内的点A,与 y 轴交于点B,且 Ao=AB,则正比例函数的解析式为()A . y=xB. y=xc .y=xD.y=x12 .(3 分)如图,在矩形ABcD中,动点P 从点A 开始沿A→ B→ c→ D 的路径匀速运动到点 D 为止,在这个过程中,下列图象可以大致表示△ APD的面积 S 随点 P 的运动时间 t 的变化关系的是()A. B.c. D.二、填空题(共 6 小题,每小题 3 分,满分18 分)13 .(3 分)将直线y=2x 向下平移 2 个单位,所得直线的函数表达式是.14 .(3 分)若二次根式有意义,则x 的取值范围是.15.(3 分)如图,在 Rt △ABc 中,∠ AcB=90°, D、 E、 F 分别是 AB、 Bc、 cA 的中点,若 cD=6c,则 EF= c .16.( 3 分)甲乙两人 8 次射击的成绩如图所示(单位:环)根据图中的信息判断,这8 次射击中成绩比较稳定的是(填“甲”或“乙” )17 .(3 分)端午期,王老一家自游去了离家170k 的某地,如是他离家的距离y( k)与汽行x( h)之的函数象,当他离目的地有20k ,汽一共行的是.18 .( 3 分)接正方形四中点所构成的正方形,我称原正方形的中点正方形,如,已知正方形ABcD 的中点正方形A1B1c1D1,再作正方形A1B1c1D1的中点正方形A2B2c2D2,⋯不断地作下去,第n 次所做的中点正方形AnBncnDn,若正方形ABcD的1,第10 次所作的中点正方形的.三、解答(共8 小,分66 分)19.(15 分)( 1)算:÷ +× ;(2)算:( +)() +|1 | ;(3)已知,一次函数 y=kx+3 的象点 A( 1,4).确定个一次函数的解析式,并判断点B( 1, 5), c( 0,3), D(2, 1)是否在个一次函数的象上.20.(6 分)如,在△ ABc 中, AB=10,Bc=12,Bc 上的中线 AD=8.求证:△ ABc 是等腰三角形.21.(6 分)已知,如图, Rt △ABc 中,∠ ABc=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹):作线段 Ac 的垂直平分线,交Ac 于点;连接B,在 B 的延长线上取一点D,使 D=B,连接 AD, cD.( 2)试判断( 1)中四边形ABcD的形状,并说明理由.22 .(7分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示( 1)本次共抽查学生人,并将条形图补充完整;( 2)捐款金额的众数是,平均数是;20( 3)在八年级700 名学生中,捐款20 元及以上(含元)的学生估计有多少人?23.(7 分)长方形 ABcD沿 BD对折,使 c 点落在 c′的位置时, Bc′与 AD 交于 E,若 AB=6c, Bc=8c,求重叠部分△BED的面积.24.( 8 分)有这样一类题目:将化简,如果你能找到两个数, n,使 2+n2=a,且 n=,则 a± 2,变成 2+n2+2n=(± n)2开方,从而使得化简.例如:化简因为 3± 2=1+2± 2=12+() 2+2=( 1+)2,所以 =2=|1 ± |= ±1.仿照上例化简下列各式:(1);(2).25.(8 分)如图,在?ABcD中,对角线Ac,BD交于点o,点 E,点 F 在 BD上,且 BE=DF连接 AE并延长,交 Bc 于点 G,连接 cF 并延长,交 AD于点 H.(1)求证:△ AoE≌△ coF;( 2)若 Ac 平分∠ HAG,求证:四边形AGcH是菱形.26.( 9 分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发 1 小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成 2 小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5 倍,如图表示自行车队、邮政车离甲地的路程 y( k )与自行车队离开甲地时间x( h)的函数关系图象,请根据图象提供的信息解答下列各题:( 1)自行车队行驶的速度是k/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?2016-2017学年山东省济宁市八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12 小题,每小题 3 分,满分36 分)1.( 3 分)下列各组数据中能作为直角三角形的三边长的是()A . 3,4, 5B.1, 1, c.4, 5, 6D. 1, 2,3【解答】解:A、32+42=52 ,可以构成直角三角形,故A 选项正确;B 、 12+12≠() 2,不可以构成直角三角形,故 B 选项错误;c 、 42+52≠ 62,不可以构成直角三角形,故 c 选项错误;D 、 12+22≠ 32,不可以构成直角三角形,故 D 选项错误.故选:A.★精品文档★2 .(3分)下列计算正确的是()A . =2B.()2=4c.×=D.÷=3【解答】解: A、 =4,故此选项错误;B、() 2=2,故此选项错误;c、× =,此选项正确,D、÷=,故此选项错误;故选: c.3 .( 3 分)估计的值()A.在 6 和 7 之间 B.在 5 和 6 之间 c.在 3 和 4 之间 D.在2和3之间【解答】解:∵25< 31<36,∴5<6,故选: B.4.( 3 分)如图, ?ABcD的对角线 Ac 和 BD相交于点 o, E 为 cD 边中点, Bc=8c,则 oE 的长为()A . 3cB. 4cc . 5cD. 2c【解答】解:∵?ABcD的对角线Ac、 BD相交于点o,∴oB=oD,∵点 E 是 cD 的中点,∴cE=DE,∴oE 是△BcD的中位线,∵ Bc=8c,∴oE=Bc=4c.故选: B.5.(3 分)如图是一次函数 y=kx+b 的图象,则一次函数的解析式是()A . y=﹣ 4x+3B.y=4x+3c . y=x+3D.y=﹣ x+3【解答】解:设一次函数解析式为:y=kx+b ,根据题意,将点A(﹣ 4, 0)和点 B( 0, 3)代入得:,解得:,∴一次函数解析式为:y=x+3.故选: c.6 .( 3 分)正比例函数y=﹣ 2x 的大致图象是()A. B.c. D.【解答】解:∵ k=﹣ 2<0,∴正比例函数 y=﹣ 2x 的图象经过二、四象限.故选: c.7 .( 3 分)在平面中,下列说法正确的是()A .四个角相等的四边形是矩形B.对角线垂直的四边形是菱形c .对角线相等的四边形是矩形D.四边相等的四边形是正方形【解答】解: A.四个角相等的四边形是矩形,正确;B.对角线垂直的平行四边形是菱形,故错误;c.对角线相等的平行四边形是矩形,故错误;D.四边相等的四边形应是菱形,故错误;故选: A.8.(3 分)移动公司客户经理要了解哪种“套餐”最畅销,在相关数据的统计量中,对移动公司客户经理来说,最有意义的数据是()A .方差 B.平均数c.中位数 D.众数【解答】解:移动公司客户经理要了解哪种“套餐”最畅销,在相关数据的统计量中,对移动公司客户经理来说,最有意义的数据是众数,故选: D.9 .( 3 分)下列各曲线表示的y 与 x 的关系中, y 不是 x 的函数的是()A . B.c. D.【解答】解:根据函数的意义可知:对于自变量值, y 都有唯一的值与之相对应,所以只有选项件.故选: c.x 的任何c 不满足条10.(3 分)如图,在Rt △ABc 中,∠c=90°,边AB的垂直平分线交 Bc 于点 D,交 AB于点 E,AD平分∠ BAc,则下列结论不正确的是()A .∠B 的度数等于30°B. Ac=AE=BE=ADc .∠ ADB 的度数等于120° D.Rt △ ADE≌Rt △ BDE≌ Rt △ADc【解答】解:∵DE是 AB的垂直平分线,∴AE=BE, AD=BD,∴∠ BAE=∠ B,∵ AE平分∠ BAc,∴∠ cAE=∠ BAE,∵∠ c=90°,∴∠ cAE=∠ BAE=∠ B=30°,∠ ADE=∠ BDE=60°,∴∠ ADB=120°,故 A, c 正确;易得 Rt △ ADE≌ Rt △BDE≌ Rt △ ADc,故 D 正确;由全等三角形的性质易得 Ac=AE=BE,但不等于 AD,故 B 错误,符合题意,故选: B.11.(3 分)如图,一次函数 y=﹣ x﹣ 4 与正比例函数 y=kx 的图象交于第三象限内的点A,与 y 轴交于点B,且 Ao=AB,则正比例函数的解析式为()A . y=xB. y=xc .y=xD.y=x【解答】解:设正比例函数解析式y=kx .∵y=﹣x﹣ 4,∴B(0,﹣ 4), c(﹣ 6,0).∴oc=6, oB=4.如图,过点 A 作 AD⊥y 轴于点 D.又∵ Ao=AB,∴oD=BD=2.∴tan ∠cBo==,即=,解得 AD=3.∴A(﹣ 3,﹣ 2).把点 A 的坐标代入y=kx ,得﹣2=﹣3k,解得 k=.故该函数解析式为: y=x.故选: B.12 .(3 分)如图,在矩形ABcD中,动点P 从点A 开始沿A→ B→ c→ D 的路径匀速运动到点 D 为止,在这个过程中,下列图象可以大致表示△ APD的面积 S 随点 P 的运动时间 t 的变化关系的是()A. B.c. D.【解答】解:设点P 的运动速度为v,点 P 在 AB上时, S=AD?AP=vt ,点 P 在 Bc 上时, S=AD?AB, S 是定值,点 P 在 cD 上时, S=( AB+Bc+cD﹣ vt )=( AB+Bc+cD)﹣ vt ,所以,随着时间的增大, S 先匀速变大至矩形的面积的一半,然后一段时间保持不变,再匀速变小至0,纵观各选项,只有 D 选项图象符合.故选: D.二、填空题(共 6 小题,每小题 3 分,满分18 分)13 .(3 分)将直线y=2x 向下平移 2 个单位,所得直线的函数表达式是y=2x ﹣ 2.【解答】解:由题意得:平移后的解析式为:y=2x﹣ 2=2x ﹣2,即.所得直线的表达式是 y=2x﹣ 2.故答案为: y=2x ﹣ 2.14 .(3 分)若二次根式有意义,则x 的取值范围是x≥2.【解答】解:根据题意,使二次根式有意义,即 x﹣ 2≥ 0,解得 x≥ 2;故答案为: x≥2.15.(3 分)如图,在 Rt △ABc 中,∠ AcB=90°, D、 E、 F 分别是 AB、 Bc、 cA 的中点,若 cD=6c,则 EF= 6 c.【解答】解:∵∠AcB=90°, D 为 AB中点,∴AB=2cD,∵ cD=6c,∴AB=12c,∵ E、F 分别是 Bc、 cA 的中点,∴EF=AB=6c,故答案为: 6.16.( 3 分)甲乙两人 8 次射击的成绩如图所示(单位:环)根据图中的信息判断,这 8 次射击中成绩比较稳定的是甲(填“甲”或“乙” )【解答】解:由图表明乙这8 次成绩偏离平均数大,即波动大,而甲这8 次成绩,分布比较集中,各数据偏离平均小,方差小,则 S 甲 2<S 乙 2,即两人的成绩更加稳定的是甲.故答案为:甲.17 .(3分)端午期间,王老师一家自驾游去了离家170k 的某地,如图是他们离家的距离 y( k)与汽车行驶时间 x( h)之间的函数图象,当他们离目的地还有 20k 时,汽车一共行驶的时间是 2.25h .【解答】解:设AB段的函数解析式是y=kx+b ,y=kx+b的图象过A( 1.5 , 90), B(2.5 , 170),,解得,2016 全新精品资料 - 全新公文范文 -全程指导写作–独家原创∴AB段函数的解析式是 y=80x 30,离目的地有 20 千米,即 y=170 20=150k,当y=150 , 80x 30=150解得: x=2.25h ,故答案: 2.25h18 .( 3 分)接正方形四中点所构成的正方形,我称原正方形的中点正方形,如,已知正方形ABcD 的中点正方形A1B1c1D1,再作正方形A1B1c1D1的中点正方形A2B2c2D2,⋯不断地作下去,第n 次所做的中点正方形AnBncnDn,若正方形ABcD的1,第 10 次所作的中点正方形的.【解答】解:察,律: AB=1,A1B1=AB=,A2B2=A1B1=,A3B3=A2B2=,⋯,∴AnBn=() n.当 n=10 , A10B10=() 10=.故答案:.三、解答(共8 小,分66 分)19.(15 分)( 1)算:÷ +× ;(2)算:( +)() +|1 | ;★精品文档★( 3)已知,一次函数y=kx+3 的图象经过点确定这个一次函数的解析式,并判断点B(﹣A( 1,4).试1, 5), c( 0,3), D(2, 1)是否在这个一次函数的图象上.【解答】解:(1)÷ +×﹣ =4+﹣ 2=4﹣(2)( +)(﹣) +|1 ﹣ |=3 ﹣2+﹣ 1=(3)由题意,得 k+3=4,解得, k=1,所以,该一次函数的解析式是:y=x+3 ;当 x=﹣ 1 时, y=2,即点 B(﹣ 1,5)不在该一次函数图象上;当 x=0 时, y=3,即点 c( 0,3)在该一次函数图象上;当x=2 时, y=5,即点 D(2,1)是不在该一次函数的图象上.20.(6 分)如图,在△ ABc 中, AB=10,Bc=12,Bc 边上的中线 AD=8.求证:△ ABc 是等腰三角形.【解答】证明:∵AD是中线, AB=10,Bc=12, AD=8,∴BD=Bc=6.∵62+82=102,即 BD2+AD2=AB2,∴△ ABD是直角三角形,则 AD⊥ Bc,★精品文档★又∵ BD=cD,∴Ac=AB,∴△ ABc 是等腰三角形.21.(6 分)已知,如图, Rt △ABc 中,∠ ABc=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹):作线段 Ac 的垂直平分线,交 Ac 于点;连接 B,在 B 的延长线上取一点 D,使 D=B,连接 AD, cD.(2)试判断( 1)中四边形 ABcD的形状,并说明理由.【解答】解:(1)如图所示:点, D 点即为所求;(2)矩形,理由:∵Rt △ABc 中,∠ ABc=90°, B 是 Ac 边上的中线,∴ B=Ac,∵B=D, A=c∴A=c=B=D,∴四边形ABcD是矩形.22 .( 7 分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示( 1)本次共抽查学生50人,并将条形图补充完整;★精品文档★( 2)捐款金额的众数是 10 ,平均数是 13.1 ;( 3)在八年级 700 名学生中,捐款 20 元及以上(含20元)的学生估计有多少人?【解答】解:(1)本次抽查的学生有: 14÷ 28%=50(人),则捐款 10 元的有 50﹣ 9﹣ 14﹣7﹣ 4=16(人),补全条形统计图图形如下:故答案为: 50;( 2)由条形图可知,捐款10 元人数最多,故众数是 10;这组数据的平均数为:=13.1 ;故答案为: 10, 13.1 .( 3)捐款 20 元及以上(含 20 元)的学生有:×700=154(人);23.(7 分)长方形 ABcD沿 BD对折,使 c 点落在 c′的位置时, Bc′与 AD 交于 E,若 AB=6c, Bc=8c,求重叠部分△BED的面积.【解答】解:∵长方形ABcD沿 BD对折,使 c 点落在 c′的位置,★精品文档★∴cD=c′ D,∠ c=∠ c′ =90°,∵四边形 ABcD是矩形,∴AB=cD,∠ A=∠c=90°,∴AB=cD,∠ AEB=∠ cED,∠ A=∠c′=90°,在△ ABE和△ c ′ DE中.,∴△ ABE≌△ c′ DE.∴BE=DE,设 AE=x,则 BE=DE=8﹣ x.由勾股定理: 62+x2=( 8﹣ x) 2解得 x=1.75 ,∴DE=8﹣ x=6.25 .∴S△DBE=× 6.25 × 6=18.75c2 .答:重叠部分面积为 18.75c2 .24.( 8 分)有这样一类题目:将化简,如果你能找到两个数, n,使 2+n2=a,且 n=,则 a± 2,变成 2+n2+2n=(± n)2开方,从而使得化简.例如:化简因为 3± 2=1+2± 2=12+() 2+2=( 1+)2,所以 =2=|1 ± |= ±1.仿照上例化简下列各式:( 1);( 2).【解答】解:(1)原式 ===+1(2)原式 ===﹣25.(8 分)如图,在?ABcD中,对角线Ac,BD交于点o,点 E,点 F 在 BD上,且 BE=DF连接 AE并延长,交 Bc 于点 G,连接 cF 并延长,交AD于点 H.( 1)求证:△ AoE≌△ coF;( 2)若 Ac 平分∠ HAG,求证:四边形AGcH是菱形.【解答】证明:( 1)∵四边形ABcD是平行四边形,∴oA=oc, oB=oD,∵ BE=DF,∴oE=oF,在△ AoE与△ coF 中,,∴△ AoE≌△ coF( SAS);(2)由( 1)得△ AoE≌△ coF,∴∠ oAE=∠ ocF,∴AE∥cF,∵AH∥cG,∴四边形AGcH是平行四边形;∵Ac 平分∠ HAG,∴∠ HAc=∠ GAc,∵AH∥cG,∴∠HAc=∠ GcA,∴∠GAc=∠GcA,∴ cG=AG;∴ ?AGcH是菱形.26.( 9 分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发 1 小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成 2 小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5 倍,如图表示自行车队、邮政车离甲地的路程 y( k )与自行车队离开甲地时间x( h)的函数关系图象,请根据图象提供的信息解答下列各题:( 1)自行车队行驶的速度是24 k/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?【解答】解:(1)由题意得自行车队行驶的速度是:72÷ 3=24k/h .故答案为: 24;(2)由题意得邮政车的速度为: 24× 2.5=60k/h .设邮政车出发 a 小时两车相遇,由题意得24( a+1) =60a,解得: a=.答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为: 135÷60=,∴邮政车从丙地出发的时间为:,∴B(, 135),c ( 7.5 ,0).自行车队到达丙地的时间为: 135÷ 24+0.5=+0.5= ,∴D(, 135).设 Bc 的解析式为 y1=k1x+b1 ,由题意得,∴,∴y1=﹣ 60x+450,设 ED的解析式为 y2=k2x+b2 ,由题意得,解得:,∴y2=24x﹣12.当y1=y2 时,﹣60x+450=24x ﹣12,解得: x=5.5 .y1= ﹣60× 5.5+450=120 .答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地 120k.。
山东省2016-2017学年八年级下学期期末考试数学试卷1
山东省2016-2017学年八年级下学期期末考试数学试卷(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.1 5.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2第4题图第10题图 B D计算选手的最终演讲成绩。
济宁市嘉祥县八年级下期末数学试卷(有答案)
山东省济宁市嘉祥县八年级下册期末考试数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC 的长是()A.12B.14C.16D.189.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6B.7C.2D.2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=.12.已知y=,则x y的值为.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P 运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S 甲2=0.8、S 乙2=0.4、S 丙2=0.8) 19.(8分)已知:一次函数y =(3﹣m )x +m ﹣5. (1)若一次函数的图象过原点,求实数m 的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m 的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB 为3.3m ,在入口的一侧安装了停止杆CD ,其中AE 为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C 恰好与地面接触.此时CA 为0.7m .在此状态下,若一辆货车高3m ,宽2.5m ,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =∠ADC =90°,对角线AC ,BD 交于点O ,DE 平分∠ADC 交BC 于点E ,连接OE . (1)求证:四边形ABCD 是矩形; (2)若AB =2,求△OEC 的面积.测试序号 1 2 3 4 5 6 7 8 9 10 成绩(分)76877 5878722.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C 不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC 的长是()A.12B.14C.16D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【分析】先根据点(1,0)在一次函数y=kx﹣2的图象上,求出k=2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【解答】解:∵点(1,0)在一次函数y=kx﹣2的图象上,∴k﹣2=0,∴k=2>0,∴y随x的增大而增大,∵﹣2<1<3,∴y1<0<y2.故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6B.7C.2D.2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=36,根据勾股定理得到斜边==6.故选:A.【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=5.【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5.【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P 运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为14.【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF 是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB 为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE 平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S=×6×4=12;△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。
山东省2016-2017学年八年级下学期期末考试数学试卷4
山东省2016-2017学年八年级下学期期末考试数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.2.(3分)(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在▱ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8 B.x>2 C.x≥2 D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD的周长为()A.22 B.26 C.38 D.3010.(3分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较13.(3分)雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40 B.44 C.66 D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________.16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________.17.(3分)(2008•广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________.18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y 轴交点交于点D,则点C的坐标为_________,点D的坐标为_________.19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC 的长为_________cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10 10 6 10 7乙班10 8 8 9 8丙班9 10 9 6 9根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10乙班8.6 8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9 5 7.510 9 27(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是_________km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、6.817、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴▱AGCH是菱形.22、解:(1)丙班的平均数为=8.6(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10 10乙班8.6 8 8丙班8.6 9 9(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=8.9(分),补全条形统计图,如图所示:∵8.5<8.7<8.9,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=7.5,解得a=1.5;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=1.5x;当x≥6时,y=6×1.5+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P,∴PA=PC,AD=CD,则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4),∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P的坐标是(,),由勾股定理得BC=、AB=,∴△PAB的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF=×AE×(﹣1)=.。
2016-2017学年山东省济宁市八年级下期末数学试卷含答案解析
2016-2017学年山东省济宁市八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列各组数据中能作为直角三角形的三边长的是()A.3,4,5 B.1,1,C.4,5,6 D.1,2,32.(3分)下列计算正确的是()A.=2 B.()2=4 C.×=D.÷=33.(3分)估计的值()A.在6和7之间B.在5和6之间C.在3和4之间D.在2和3之间4.(3分)如图,▱ABCD的对角线AC和BD相交于点O,E为CD边中点,BC=8cm,则OE的长为()A.3cm B.4cm C.5cm D.2cm5.(3分)如图是一次函数y=kx+b的图象,则一次函数的解析式是()A.y=﹣4x+3 B.y=4x+3 C.y=x+3 D.y=﹣x+36.(3分)正比例函数y=﹣2x的大致图象是()A.B.C.D.7.(3分)在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形8.(3分)移动公司客户经理要了解哪种“套餐”最畅销,在相关数据的统计量中,对移动公司客户经理来说,最有意义的数据是()A.方差B.平均数C.中位数D.众数9.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC于点D,交AB于点E,AD平分∠BAC,则下列结论不正确的是()A.∠B的度数等于30°B.AC=AE=BE=ADC.∠ADB的度数等于120°D.Rt△ADE≌Rt△BDE≌Rt△ADC11.(3分)如图,一次函数y=﹣x﹣4与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于点B,且AO=AB,则正比例函数的解析式为()A.y=x B.y=x C.y=x D.y=x12.(3分)如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是.14.(3分)若二次根式有意义,则x的取值范围是.15.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm.16.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)17.(3分)端午期间,王老师一家自驾游去了离家170km的某地,如图是他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象,当他们离目的地还有20km时,汽车一共行驶的时间是.18.(3分)连接正方形四边中点所构成的正方形,我们称为原正方形的中点正方形,如图,已知正方形ABCD的中点正方形A1B1C1D1,再作正方形A1B1C1D1的中点正方形A2B2C2D2,…这样不断地作下去,第n次所做的中点正方形A n B n C n D n,若正方形ABCD的边长为1,则第10次所作的中点正方形的边长为.三、解答题(共8小题,满分66分)19.(15分)(1)计算:÷+×﹣;(2)计算:(+)(﹣)+|1﹣|;(3)已知,一次函数y=kx+3的图象经过点A(1,4).试确定这个一次函数的解析式,并判断点B(﹣1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(6分)如图,在△ABC中,AB=10,BC=12,BC边上的中线AD=8.求证:△ABC是等腰三角形.21.(6分)已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹):作线段AC的垂直平分线,交AC于点M;连接BM,在BM的延长线上取一点D,使MD=MB,连接AD,CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.22.(7分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?23.(7分)长方形ABCD沿BD对折,使C点落在C′的位置时,BC′与AD交于E,若AB=6cm,BC=8cm,求重叠部分△BED的面积.24.(8分)有这样一类题目:将化简,如果你能找到两个数m,n,使m2+n2=a,且mn=,则a±2,变成m2+n2+2mn=(m±n)2开方,从而使得化简.例如:化简因为3±2=1+2±2=12+()2+2=(1+)2,所以=2=|1±|=±1.仿照上例化简下列各式:(1);(2).25.(8分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.26.(9分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?2016-2017学年山东省济宁市八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列各组数据中能作为直角三角形的三边长的是()A.3,4, 5 B.1,1,C.4,5,6 D.1,2,3【解答】解:A、32+42=52,可以构成直角三角形,故A选项正确;B、12+12≠()2,不可以构成直角三角形,故B选项错误;C、42+52≠62,不可以构成直角三角形,故C选项错误;D、12+22≠32,不可以构成直角三角形,故D选项错误.故选:A.2.(3分)下列计算正确的是()A.=2 B.()2=4 C.×=D.÷=3【解答】解:A、=4,故此选项错误;B、()2=2,故此选项错误;C、×=,此选项正确,D、÷=,故此选项错误;故选:C.3.(3分)估计的值()A.在6和7之间B.在5和6之间C.在3和4之间D.在2和3之间【解答】解:∵25<31<36,∴5<6,故选:B.4.(3分)如图,▱ABCD的对角线AC和BD相交于点O,E为CD边中点,BC=8cm,则OE的长为()A.3cm B.4cm C.5cm D.2cm【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=8cm,∴OE=BC=4cm.故选:B.5.(3分)如图是一次函数y=kx+b的图象,则一次函数的解析式是()A.y=﹣4x+3 B.y=4x+3 C.y=x+3 D.y=﹣x+3【解答】解:设一次函数解析式为:y=kx+b,根据题意,将点A(﹣4,0)和点B(0,3)代入得:,解得:,∴一次函数解析式为:y=x+3.故选:C.6.(3分)正比例函数y=﹣2x的大致图象是()A.B.C.D.【解答】解:∵k=﹣2<0,∴正比例函数y=﹣2x的图象经过二、四象限.故选:C.7.(3分)在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形【解答】解:A.四个角相等的四边形是矩形,正确;B.对角线垂直的平行四边形是菱形,故错误;C.对角线相等的平行四边形是矩形,故错误;D.四边相等的四边形应是菱形,故错误;故选:A.8.(3分)移动公司客户经理要了解哪种“套餐”最畅销,在相关数据的统计量中,对移动公司客户经理来说,最有意义的数据是()A.方差B.平均数C.中位数D.众数【解答】解:移动公司客户经理要了解哪种“套餐”最畅销,在相关数据的统计量中,对移动公司客户经理来说,最有意义的数据是众数,故选:D.9.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.10.(3分)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC于点D,交AB于点E,AD平分∠BAC,则下列结论不正确的是()A.∠B的度数等于30°B.AC=AE=BE=ADC.∠ADB的度数等于120°D.Rt△ADE≌Rt△BDE≌Rt△ADC【解答】解:∵DE是AB的垂直平分线,∴AE=BE,AD=BD,∴∠BAE=∠B,∵AE平分∠B AC,∴∠CAE=∠BAE,∵∠C=90°,∴∠CAE=∠BAE=∠B=30°,∠ADE=∠BDE=60°,∴∠ADB=120°,故A,C正确;易得Rt△ADE≌Rt△BDE≌Rt△ADC,故D正确;由全等三角形的性质易得AC=AE=BE,但不等于AD,故B错误,符合题意,故选:B.11.(3分)如图,一次函数y=﹣x﹣4与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于点B,且AO=AB,则正比例函数的解析式为()A.y=x B.y=x C.y=x D.y=x【解答】解:设正比例函数解析式y=kx.∵y=﹣x﹣4,∴B(0,﹣4),C(﹣6,0).∴OC=6,OB=4.如图,过点A作AD⊥y轴于点D.又∵AO=AB,∴OD=BD=2.∴tan∠CBO==,即=,解得AD=3.∴A(﹣3,﹣2).把点A的坐标代入y=kx,得﹣2=﹣3k,解得k=.故该函数解析式为:y=x.故选:B.12.(3分)如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是()A.B.C.D.【解答】解:设点P的运动速度为v,点P在AB上时,S=AD•AP=vt,点P在BC上时,S=AD•AB,S是定值,点P在CD上时,S=(AB+BC+CD﹣vt)=(AB+BC+CD)﹣vt,所以,随着时间的增大,S先匀速变大至矩形的面积的一半,然后一段时间保持不变,再匀速变小至0,纵观各选项,只有D选项图象符合.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是y=2x﹣2.【解答】解:由题意得:平移后的解析式为:y=2x﹣2=2x﹣2,即.所得直线的表达式是y=2x﹣2.故答案为:y=2x﹣2.14.(3分)若二次根式有意义,则x的取值范围是x≥2.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.15.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=6cm.【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD,∵CD=6cm,∴AB=12cm,∵E、F分别是BC、CA的中点,∴EF=AB=6cm,故答案为:6.16.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)【解答】解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S甲2<S乙2,即两人的成绩更加稳定的是甲.故答案为:甲.17.(3分)端午期间,王老师一家自驾游去了离家170km的某地,如图是他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象,当他们离目的地还有20km时,汽车一共行驶的时间是 2.25h.【解答】解:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得,∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150解得:x=2.25h,故答案为:2.25h18.(3分)连接正方形四边中点所构成的正方形,我们称为原正方形的中点正方形,如图,已知正方形ABCD的中点正方形A1B1C1D1,再作正方形A1B1C1D1的中点正方形A2B2C2D2,…这样不断地作下去,第n次所做的中点正方形A n B n C n D n,若正方形ABCD的边长为1,则第10次所作的中点正方形的边长为.【解答】解:观察,发现规律:AB=1,A1B1=AB=,A2B2=A1B1=,A3B3=A2B2=,…,∴A n B n=()n.当n=10时,A10B10=()10=.故答案为:.三、解答题(共8小题,满分66分)19.(15分)(1)计算:÷+×﹣;(2)计算:(+)(﹣)+|1﹣|;(3)已知,一次函数y=kx+3的图象经过点A(1,4).试确定这个一次函数的解析式,并判断点B(﹣1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.【解答】解:(1)÷+×﹣=4+﹣2=4﹣(2)(+)(﹣)+|1﹣|=3﹣2+﹣1=(3)由题意,得k +3=4, 解得,k=1,所以,该一次函数的解析式是:y=x +3;当x=﹣1时,y=2,即点B (﹣1,5)不在该一次函数图象上; 当x=0时,y=3,即点C (0,3)在该一次函数图象上; 当x=2时,y=5,即点D (2,1)是不在该一次函数的图象上.20.(6分)如图,在△ABC 中,AB=10,BC=12,BC 边上的中线AD=8.求证:△ABC 是等腰三角形.【解答】证明:∵AD 是中线,AB=10,BC=12,AD=8,∴BD=BC=6.∵62+82=102,即BD 2+AD 2=AB 2, ∴△ABD 是直角三角形,则AD ⊥BC , 又∵BD=CD , ∴AC=AB ,∴△ABC 是等腰三角形.21.(6分)已知,如图,Rt △ABC 中,∠ABC=90°. (1)利用直尺和圆规按要求完成作图(保留作图痕迹):作线段AC 的垂直平分线,交AC 于点M ;连接BM ,在BM 的延长线上取一点D ,使MD=MB ,连接AD ,CD .(2)试判断(1)中四边形ABCD的形状,并说明理由.【解答】解:(1)如图所示:M点,D点即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.22.(7分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示(1)本次共抽查学生50人,并将条形图补充完整;(2)捐款金额的众数是10,平均数是13.1;(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:故答案为:50;(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;故答案为:10,13.1.(3)捐款20元及以上(含20元)的学生有:×700=154(人);23.(7分)长方形ABCD沿BD对折,使C点落在C′的位置时,BC′与AD交于E,若AB=6cm,BC=8cm,求重叠部分△BED的面积.【解答】解:∵长方形ABCD沿BD对折,使C点落在C′的位置,∴CD=C′D,∠C=∠C′=90°,∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∴AB=CD,∠AEB=∠CED,∠A=∠C′=90°,在△ABE和△C′DE中.,∴△ABE≌△C′DE.∴BE=DE,设AE=x,则BE=DE=8﹣x.由勾股定理:62+x2=(8﹣x)2解得x=1.75,∴DE=8﹣x=6.25.=×6.25×6=18.75cm2.∴S△DBE答:重叠部分面积为18.75cm2.24.(8分)有这样一类题目:将化简,如果你能找到两个数m,n,使m2+n2=a,且mn=,则a±2,变成m2+n2+2mn=(m±n)2开方,从而使得化简.例如:化简因为3±2=1+2±2=12+()2+2=(1+)2,所以=2=|1±|=±1.仿照上例化简下列各式:(1);(2).【解答】解:(1)原式===+1(2)原式===﹣25.(8分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴▱AGCH是菱形.26.(9分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?【解答】解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得:a=.答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为:135÷60=,∴邮政车从丙地出发的时间为:,∴B(,135),C(7.5,0).自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).设BC的解析式为y1=k1x+b1,由题意得,∴,∴y1=﹣60x+450,设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.。
2016----2017学年第二学期八年级数学期末试卷
2016----2017学年第二学期八年级数学期末试卷 试卷分值:100 分 考试时间: 120分钟一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3 D.2(4)-=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( ) A .100B .110C .115D .1200PCA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.各个内角都相等多边形中,一个外角等于一个内角的12,这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:(每小题3分,共24分,把答案直接填在答题卷的横线上.) 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│3y -则x=_______,y=_______.三、解答题:(本大题共7个小题,共46分)19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.县学校姓名考号班级…………………………………………………..密……………………………………….封……………………………………………….线………………………………………………….CBAD火车站李庄C 1A 1ABB 1 CD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
济宁市嘉祥县八年级下期末数学试卷(有答案)
山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A .12B .14C .16D .189.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么a = .12.已知y =,则x y 的值为 .13.在菱形ABCD 中,两条对角线AC 与BD 的和是14.菱形的边AB =5,则菱形ABCD 的面积是 . 14.已知点P (1,2)关于x 轴的对称点为P ′,且P ′在直线y =kx +3上,把直线y =kx +3的图象向上平移2个单位,所得的直线解析式为 .15.如图①,在▱ABCD 中,∠B =120°,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为xcm ,△PAB 的面积为ycm 2,y 关于x 的函数的图象如图②所示,则图②中H 点的横坐标为 .三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE .求证:四边形BECF 是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽 2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D 、对角线相等的平行四边形是矩形,正确;故选:D .【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y =kx +b 经过一、二、四象限,则直线y =bx ﹣k 的图象只能是图中的( )A .B .C .D .【分析】由直线经过的象限结合四个选项中的图象,即可得出结论. 【解答】解:∵直线y =kx +b 经过一、二、四象限, ∴k <0,b >0, ∴﹣k >0,∴选项B 中图象符合题意. 故选:B .【点评】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.8.如图所示,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB =8,MN =3,则AC 的长是( )A .12B .14C .16D .18【分析】延长BN 交AC 于D ,证明△ANB ≌△AND ,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN 交AC 于D , 在△ANB 和△AND 中,,∴△ANB ≌△AND , ∴AD =AB =8,BN =ND , ∵M 是△ABC 的边BC 的中点, ∴DC =2MN =6, ∴AC =AD +CD =14,故选:B .【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 1【分析】先根据点(1,0)在一次函数y =kx ﹣2的图象上,求出k =2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:∵点(1,0)在一次函数y =kx ﹣2的图象上, ∴k ﹣2=0, ∴k =2>0,∴y 随x 的增大而增大, ∵﹣2<1<3, ∴y 1<0<y 2. 故选:B .【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC =b ,BC =a ,分别在直角△ACE 与直角△BCD 中,根据勾股定理得到:,两式相加得:a 2+b 2=36,根据勾股定理得到斜边==6.故选:A .【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a= 5 .【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24 .【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5 .【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H 点的横坐标为14 .【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H 横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m 的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽 2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OMC 的面积是△OAC 的面积的时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解答】解:(1)设直线AB 的解析式是y =kx +b ,根据题意得:,解得:,则直线的解析式是:y =﹣x +6;(2)在y =﹣x +6中,令x =0,解得:y =6,S △OAC =×6×4=12;(3)设OA 的解析式是y =mx ,则4m =2,解得:m =,则直线的解析式是:y =x ,∵当△OMC 的面积是△OAC 的面积的时,∴当M 的横坐标是×4=1,在y =x 中,当x =1时,y =,则M 的坐标是(1,); 在y =﹣x +6中,x =1则y =5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,)或M 2(1,5). 当M 的横坐标是:﹣1,在y =﹣x +6中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7);综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。
济宁市嘉祥县八年级下期末数学试卷(有答案)
山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.189.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2D.2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=.12.已知y=,则x y的值为.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.15.如图①,在?ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H 点的横坐标为.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分)7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽 2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0?y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】先根据点(1,0)在一次函数y=kx﹣2的图象上,求出k=2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【解答】解:∵点(1,0)在一次函数y=kx﹣2的图象上,∴k﹣2=0,∴k=2>0,∴y随x的增大而增大,∵﹣2<1<3,∴y1<0<y2.故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2D.2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=36,根据勾股定理得到斜边==6.故选:A.【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a= 5 .【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24 .【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC?BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC?BD=AB2,×142﹣AC?BD=52,AC?BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5 .【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在?ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H 点的横坐标为14 .【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H 横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分)7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m 的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0?y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽 2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=?EC?OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。
济宁市嘉祥县八年级下期末数学试卷(有答案)-精编
山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.的倒数是( )A .B .C .﹣3D .2.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是( ) A .2B .3C .5D .73.下列各组数作为三角形的边长,其中不能构成直角三角形的是( ) A .6,8,10B .5,12,13C .9,40,41D .7,9,124.下列函数关系式:①y =2x ;②y =2x +11;③y =3﹣x ;④y =.其中一次函数的个数是( ) A .1个B .2个C .3个D .4个5.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A .B .C .D .6.下列说法中,正确的是( )A .对角线互相垂直且相等的四边形是正方形B .对角线互相平分的四边形是菱形C .对角线互相垂直的四边形是平行四边形D .对角线相等的平行四边形是矩形7.若直线y =kx +b 经过一、二、四象限,则直线y =bx ﹣k 的图象只能是图中的( )A .B .C .D .8.如图所示,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB =8,MN =3,则AC 的长是( )A.12 B.14 C.16 D.189.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2D.2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=.12.已知y=,则x y的值为.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3 D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】先根据点(1,0)在一次函数y=kx﹣2的图象上,求出k=2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【解答】解:∵点(1,0)在一次函数y=kx﹣2的图象上,∴k﹣2=0,∴k=2>0,∴y随x的增大而增大,∵﹣2<1<3,∴y1<0<y2.故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2D.2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=36,根据勾股定理得到斜边==6.故选:A.【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a= 5 .【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24 .【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5 .【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为14 .【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S=×6×4=12;△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁市嘉祥县2016-
2017学年八年级下学期数学期末考试试卷
一、选择题
1.一组数据2,0,﹣2,1,3的平均数是
()
A、0.8
B、1
C、1.5
D、2
+
2.下列各式是最简二次根式的是(??)
A、B、C、D、
+
3.
下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(??)
A、B、6、8、10 C、5、12、13 D、
+
4.下列函数中,y是x的一次函数的是()
①y=x﹣6;②y=;③y=;④y=7﹣x.
A、①②③
B、①③④
C、①②③④
D、②③④
+
5.有一直角三角形的两边长分别为3和4,则第三边长是(??)
A、5
B、5或
C、
D、
+
6.如图,四边形ABCD的四边相等,且面积为120cm2,
对角线AC=24cm,则四边形ABCD的周长为(??)
A、52cm
B、40cm
C、39cm
D、26cm
+
7.
如图,挂在弹簧秤上的长方体铁块浸没在水中,提着弹簧匀速上移,直至铁块
浮出水面停留在空中(不计空气阻力),弹簧秤的读数F(kg)与时间t(s)的函数图象大致是(??)
A、B、C、D、
+
8.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能(??)
A、B、C、D、
+
9.对于函数y=﹣2x+1,下列结论正确的是(??)
A、它的图象必经过点(﹣1,2)
B、它的图象经过第一、二、三象限
C、当x>1时,y<0
D、y的值随x值的增大而增大
+
10.
如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于
AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点
E.若AC=3,AB=5,则DE等于()
A、2
B、
C、
D、
+
二、填空题
11.若代数式有意义,则x的取值范围是
+
12.若y=(m﹣1)x|m|是正比例函数,则m的值为
+
13.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是
.
+
14.
如图是一段楼梯,高BC是3米,斜边AC是5米,若在楼梯上铺地毯,则至少需
要地毯米.
+
15.
如图,在△ABC 中,AB=6cm ,AC=8cm ,BC=10cm ,M 是BC 边上的动点,MD ⊥ AB ,ME ⊥AC ,垂足分别是D 、E ,线段DE 的最小值是 ?cm .
+
三、解答题
16.计算:
(1)、(2017 (2)、(
+ +2017
)( ﹣ ) ﹣4 )﹣(3 ﹣2 )
17.
在由6个大小相同的小正方形组成的方格中;如图,A 、B 、C 是三个格点(即小 正方形的顶点).判断AB 与BC 的关系,并说明理由. +
18.
中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、 萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹
夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加 “国防知识”比赛,其预赛成绩如图所示:
(1)、根据上图填写下表:
平均数
8.5 中位数 众数 方差 甲班
乙班 8.5 8.5
10 1.6 (2)、根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的 成绩较好. +
19.
如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形,AC 、D E 相交于点O .
(1)、求证:四边形ADCE 是矩形.
(2)、若∠AOE=60°,AE=4,求矩形ADCE 对角线的长. +
20.已知直线y=kx+b 经过点A (5,0),B (1,4).
(1)、求直线AB的解析式;
(2)、若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)、根据图象,写出关于x的不等式2x﹣4>kx+b的解集.
+
21.阅读下列解题过程,并解答后面的问题:
如图1,在平面直角坐标系xOy中,A(x1,y1),B(x2,
y2),C为线段AB的中点,求C点的坐标.
解:分布过A、C做x轴的平行线,过B、C做y轴的平行线,两组平行线的交点如图1所示.
设C(x0,y0),则D(x0,y1),E(x2,y1),F(x2,
y0)
由图1可知:x0= =
y0= =
∴(,)
问题:
(1)、已知A(﹣1,4),B(3,﹣2),则线段AB的中点坐标
为
(2)、平行四边形ABCD中,点A、B、C的坐标分别为(1,﹣4),(0,2),(5,6),求点D的坐标.
(3)、如图2,B(6,4)在函数y=
x+1的图象上,A(5,2),C在x轴上,D在函数y=
x+1的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有
满足条件的D点的坐标.
+
22.
A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市
8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开
往C市和D市的油料费分别为每台300元和500元.
(1)、设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.
(2)、若总运费不超过9000元,问有几种调运方案?
(3)、求出总运费最低的调运方案,并求出最低运费.
+。