2017最新函数解析式求法和值域求法总结及练习题
函数定义域、值域、解析式习题及答案
函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。
因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。
⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。
然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。
常见函数解析式定义域值域的求法总结完整版
常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。
函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。
定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。
常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。
下面将逐个介绍这些函数解析式的定义域和值域的求法。
1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。
线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。
2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。
对于一般的二次函数,定义域是实数集,即(-∞, +∞)。
值域则取决于二次函数的开口方向和开口点的位置。
-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。
-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。
3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。
指数函数的定义域是实数集,即(-∞,+∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,指数函数的值域为(0,+∞)。
-当a>1时,指数函数的值域为(0,+∞)。
-当a=1时,指数函数的值域为{1}。
4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。
对数函数的定义域是正实数集,即(0, +∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,对数函数的值域为(-∞,+∞)。
-当a>1时,对数函数的值域为(-∞,+∞)。
5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的定义域是实数集,即(-∞,+∞)。
值域则取决于具体的三角函数类型。
-正弦函数的值域为[-1,1]。
-余弦函数的值域为[-1,1]。
3.1 函数定义域、值域和解析式求法小总结
函数定义域、值域和解析式求法小专题考点一:函数定义域的求法复合函数求定义域的题型:注意1:不管括号中的形式多复杂,定义域只是自变量x 的取值集合。
注意2:在同一函数f 作用下,括号内整体的取值范围相同。
题型1:已知)(x f 的定义域,求)]([x g f 的定义域;例1:已知)(x f 的定义域是]2,0[,求)12(-x f 的定义域。
1.解: )12(-x f 是由)(u f y =,12-=x u 复合而成,∴20≤≤u ,即2120≤-≤x ,∴2321≤≤x题型2:已知)]([x g f 的定义域,求)(x f 的定义域;例2:已知)12(-x f 的定义域是)(3,1-,求)(x f 的定义域。
2.解: )12(-x f 是由)(u f y =,12-=x u 复合而成,31<<-x ,∴5123<-<-x ,即53<<-u 。
题型3:已知)]([x g f 的定义域,求)]([x h f 的定义域;例3:已知)32(-x f 的定义域是]5,1[-,求)1(+x f 的定义域。
3.解: )32(-x f 是由)(u f y =,32-=x u 复合而成,51≤≤-x ,即7325≤-≤-x ,即75≤≤-u ,)1(+x f 是由)(v f y =,1+=x v 复合而成,∴75≤≤-v ,即715≤+≤-x ,即66≤≤-x 。
巩固练习:1.(1)已知函数f(x)的定义域为[1,4],则f (x +2)的定义域为______________。
(2)已知函数f(2x +1)的定义域为(-1,0),则f(x)的定义域为____________。
1:【解析】(1)∵1≤x +2≤4,∵-1≤x≤2 (2)∵-1<x <0,∵-2<2x <0,∵-1<2x +1<12.(1)已知函数f(x)的定义域为[-5,5],则f (3-2x)的定义域为_______。
求函数解析式的方法和例题
求函数解析式的方法和例题一、常见的函数解析式的求法。
1. 一次函数,一次函数的一般形式为y=ax+b,其中a和b为常数,通过两点法、斜率法、解方程法等可以求得一次函数的解析式。
2. 二次函数,二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
通过配方法、求顶点法、根的性质等方法可以求得二次函数的解析式。
3. 指数函数,指数函数的一般形式为y=a^x,其中a为常数且a>0且a≠1。
通过观察法、对数法、取对数法等方法可以求得指数函数的解析式。
4. 对数函数,对数函数的一般形式为y=loga(x),其中a为常数且a>0且a≠1。
通过观察法、指数法、换底公式等方法可以求得对数函数的解析式。
5. 三角函数,三角函数包括正弦函数、余弦函数、正切函数等,它们的解析式可以通过周期性、对称性、变换公式等方法求得。
二、函数解析式的例题。
1. 求一次函数y=2x+3的解析式。
解,由于一次函数的一般形式为y=ax+b,所以y=2x+3的解析式为y=2x+3。
2. 求二次函数y=x^2+3x-2的解析式。
解,通过配方法或求顶点法可以求得y=x^2+3x-2的解析式为y=(x+2)(x-1)。
3. 求指数函数y=2^x的解析式。
解,观察法可得y=2^x的解析式为y=2^x。
4. 求对数函数y=log2(x)的解析式。
解,换底公式可得y=log2(x)的解析式为y=log(x)/log(2)。
5. 求正弦函数y=sin(x)的解析式。
解,通过周期性和对称性可得y=sin(x)的解析式为y=sin(x)。
以上就是关于求函数解析式的方法和例题的介绍,希望对大家有所帮助。
在学习过程中,要灵活运用各种方法,多加练习,提高解析式求解的能力。
函数值域的求法及例题
函数值域的求法及例题
函数值域是一个重要的概念。
它指函数的定义域中的所有可能函数值的集合。
了解函数值域的求法,可以帮助我们更有效地使用函数,对解决实际问题也很有帮助。
函数值域的求法有两种:直接和间接。
直接求法:如果可以确定函数的解析式,则可以直接求出函数值域。
具体步骤如下:
(1) 求函数定义域:即可以使用此函数的所有自变量x的取值范围
(2)求函数值域:即当自变量x在定义域内任意取值时,函数的值的取值范围。
例子:若函数:y=3x+2,
它的定义域为x∈R
那么,函数值域就是y∈R
间接求法:当不能确定函数的解析式时,可以采用间接的求法,即分情况求解。
即将函数定义域上的所有取值情况分类讨论,将其分解为一些能求出函数值域的子问题。
例子:若函数:y=x²,
它的定义域为x∈R
这里分情况讨论:
当x ≥ 0 时,y ≥ 0;
当 x<0 时,y<0;
即函数值域为y∈[0,+∞) ∪ (-∞,0],
总之,了解函数值域的求法是有必要的,有助于我们理解函数的概念,也有助于解决各种函数问题。
求函数解析式的方法和例题
求函数解析式的方法和例题在数学中,我们经常会遇到需要求解函数解析式的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。
那么,如何求函数的解析式呢?接下来,我们将介绍一些常见的方法和例题,希望能帮助你更好地理解和掌握这一内容。
一、根据函数图像求解析式。
对于一些简单的函数,我们可以通过观察其图像来推导出函数的解析式。
例如,对于一次函数y=kx+b,我们可以根据函数图像上的两个点来确定k和b的值,进而得到函数的解析式。
同样地,对于二次函数、指数函数等,也可以通过观察函数图像来求解析式。
例题1,已知一次函数的图像经过点(1,3)和(2,5),求函数的解析式。
解:设函数为y=kx+b,代入已知的两个点得到方程组:3=k1+b。
5=k2+b。
解方程组得到k=2,b=1,因此函数的解析式为y=2x+1。
二、根据函数性质求解析式。
有些函数具有特定的性质,我们可以利用这些性质来求解析式。
例如,对于指数函数y=a^x,我们知道指数函数经过点(0,1),因此可以利用这一性质求解析式。
又如,对于对数函数y=loga(x),我们知道对数函数的定义域为正实数,可以利用这一性质来确定函数的解析式。
例题2,已知指数函数经过点(1,2),求函数的解析式。
解,设函数为y=a^x,代入已知的点(1,2)得到方程a^1=2,解得a=2,因此函数的解析式为y=2^x。
三、根据函数的变化规律求解析式。
有些函数的变化规律是已知的,我们可以根据这一规律来求解析式。
例如,对于等差数列an=a1+(n-1)d,我们知道等差数列的通项公式是已知的,可以直接利用这一公式求解析式。
同样地,对于等比数列、等差数列等,也可以根据其变化规律来求解析式。
例题3,已知等差数列的首项为3,公差为4,求第n项的表达式。
解,根据等差数列的通项公式an=a1+(n-1)d,代入已知的首项和公差得到an=3+(n-1)4,化简得到an=4n-1,因此第n项的表达式为4n-1。
常见函数解析式定义域值域的求法总结
常见函数解析式定义域值域的求法总结
一、常见函数解析式
1、二次函数
解析式:y=ax2+bx+c
定义域:全实数集
值域:ax2+bx+c的值
2、三角函数
解析式:y=sinx,y=cosx,y=tanx,y=cotx,y=secx,y=cscx
定义域:全实数集
值域:[-1,1]
3、反三角函数
解析式:y=arcsinx,y=arccosx,y=arctanx,y=arccotx,
y=arcsecx,y=arccscx
定义域:-[1,1],(-∞,+∞)
值域:[-π/2,π/2]
4、双曲函数
解析式:y=sinhx,y=coshx,y=tanhx,y=cothx,y=sechx,y=cschx 定义域:全实数集
值域:[-1,1]
5、对数函数
解析式:y=lgx,y=lnx
定义域:x>0
值域:(-∞,+∞)
6、指数函数
解析式:y=ex
定义域:全实数集
值域:(0,+∞)
二、定义域和值域的求法
1、函数的定义域
定义域的求法:一般取出函数的变量,求出它所在的域,如果有多个变量,一般要满足多个变量的取值范围,才能满足函数的定义域,比如:函数f(x,y)=x2+y2,则它的定义域就是x,y取得所有实数
2、函数的值域
值域的求法:一般取定义域,将变量取不同的值,将函数求出不同的值并且收集,得到函数的值域,比如:函数f(x)=x2+x+2,值域就是1,3,5,7……。
求函数解析式的方法和例题
求函数解析式的方法和例题一、常见的求函数解析式的方法。
1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。
例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。
2. 图像法,通过观察函数的图像特征,推导出函数的解析式。
例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。
3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。
例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。
4. 反函数法,有些函数的解析式可以通过求解其反函数得到。
例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。
二、求函数解析式的例题。
1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。
解:根据已知条件,我们可以列出方程组:a1+b=3。
a2+b=5。
通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。
2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。
解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。
a(-1)^2+b(-1)+c=3。
通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。
3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。
解:根据已知条件,我们可以列出方程组:a^2=16。
a^3=64。
通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。
以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。
通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。
函数解析式,定义域,值域的求法
函 数1:设,A B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记做2:对于函数(),y f x x A =∈,其中x 叫做自变量,x 的取值范围A 叫做 ;与x 的值相对应的y 值叫做 ,函数值的集合{}()|f x x A ∈叫做函数的 3:函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。
4:函数的表示法有 、 、 .5:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数通常叫 ,它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。
函数解析式的四种求法:(1):换元法 (2):配凑法(3):待定系数法 (4):构造方程组法1:确定下列函数的解析式(1) 已知1)(2+=x x f ,求)1(+x f(2) 已知11)1(2++=+)(x x f ,求)(x f(3)(换元法,配凑法)已知23)1(2++=+x x x f ,求()f x(4)(配凑法):已知2211()f x x x x+=+,求()f x (5) (待定系数法)设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f(6)(构造方程组法)已知12()()f f x x x+=,求()f x2:求下列函数的定义域1:21()3f x x =- 2:y = 3:y = 4:()f x =5:()01()x f x x x +=- 6:2(0)()2(01)(14)x x f x x x x ⎧-<⎪=≤<⎨⎪-≤≤⎩ 7: 1122---=x x y1.函数值域的求法:①直接法:利用常见函数的值域来求.②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想⑤利用某些函数的有界性:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如)0(>+=k x k x y ,利用均值不等式公式或单调性来求值域;⑦数形结合:根据函数的几何图形,利用数型结合的方法来求值域. 2.确定函数的值域的原则:定义域优先原则3:求下列函数的值域:1: )322R x x x y ∈-+=( 2:]2,1[,322∈-+=x x x y 3 113+-=x x y 4:1222+-=x x y 5: 5212+-=x x y 6: 542++-=x x y7: x x y 21--= 8:()212log 45y x x =-+9:2sin 3sin 4y x x =-+ 10: 1sin 21sin 2-+=x x y11: sin 1cos 2x y x +=+ 12:1y x x =+(0)x >两个函数相等的条件:定义域和对应法则相同4:判断下列各组中的两个函数是否是同一函数1.3)5)(3(1+-+=x x x y 52-=x y 2。
函数定义域、值域,解析式求法总结
函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数解析式求法例题及练习
函数解析式求法例题及练习函数解析式的求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例如,设f(x)是一次函数,且f[f(x)] = 4x + 3,求f(x)。
解:设f(x) = ax + b(a ≠ 0),则f[f(x)] = af(x) + b = a(ax + b) + b= a^2x + ab + b。
根据题意,有a^2 = 4,即a = 2或a = -2.当a= 2时,b = 1;当a = -2时,b = 3.因此,f(x) = 2x + 1或f(x) = -2x + 3.二、配凑法:已知复合函数f[g(x)]的表达式,求f(x)的解析式,常用配凑法。
但要注意所求函数f(x)的定义域不是原复合函数的定义域,而是g(x)的值域。
例如,已知f(x + 1) = x^2 + 2(x ≥ -1),求f(x)的解析式。
解:由题意可得f(x + 1) = (x + 1)^2 - 2,即f(x) = x^2 - 2(x ≥ -2)。
三、换元法:已知复合函数f[g(x)]的表达式时,还可以用换元法求f(x)的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例如,已知f(x + 1) = x + 2x,求f(x + 1)。
解:令t= x + 1,则t ≥ 1,x = (t - 1)^2.由题意可得f(x + 1) = x + 2x,即f(t) = (t - 1)^2 + 2(t - 1) = t^2 - 1,因此f(x) = x^2 - 1(x ≥ 1)。
四、函数性质法:已知函数奇偶性及部分解析式,求f(x)解析式。
本类问题的解题思路是“一变”、“二写”、“三转化”。
例如,已知定义在R上的偶函数f(x),当x ≥ 2时,f(x) = x -2x^2,求f(x)解析式。
解:当x。
0,依题有f(-x) = (-x) + 2x^2 = x + 2x^2.又因为f(x)是定义在R上的偶函数,故f(-x) = f(x)。
求函数值域的方法和例题
求函数值域的方法和例题方法一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
基准1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
求解:由算术平方根的性质,言√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的值域为{y∣y≥3}.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过轻易观测算术平方根的性质而获解,这种方法对于一类函数的值域的带发修行,简便清了,算是一种巧法。
练:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})方法二.反函数法当函数的反函数存有时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
指点:先求出来原函数的反函数,再算出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈r}。
评测:利用反函数法求原函数的定义域的前提条件就是原函数存有反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y1})方法三.分体式方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域基准3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
求解:由-x2+x+2≥0,所述函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域就是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
分体式方法就是数学的一种关键的思想方法。
练:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})方法四.判别式法若可以化成关于某变量的二次方程的分式函数或无理函数,需用判别式法求函数的值域。
(完整版)求函数定义域及值域方法及典型题归纳
<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
则称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。
由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。
(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。
4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。
(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。
(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。
二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
求函数值域的8种方法带例题
求函数值域的8种方法带例题嘿,伙计们!今天我们来聊聊一个很有趣的话题——求函数值域的8种方法。
你们知道吗,学习数学的时候,我们经常会遇到一些让我们头疼的问题,比如求一个函数的值域。
别着急,我今天就来教你们8种简单易懂的方法,让你轻松搞定这个难题。
我们来看第一种方法:观察法。
这种方法很简单,就是直接观察函数在哪些区间内取值。
比如,我们来看一个例子:求函数f(x) = x^2在区间[-1, 2]内的值域。
我们可以看到,当x = 0时,f(x) = 0;当x = 1时,f(x) = 1;当x = 2时,f(x) = 4。
所以,这个函数在这个区间内的值域是[0, 4]。
接下来,我们来看第二种方法:图像法。
这种方法需要用到一些图形工具,比如Excel或者Python的matplotlib库。
我们可以通过绘制函数的图像来直观地看到函数在哪些区间内取值。
比如,我们还是以f(x) = x^2为例。
我们可以在Excel中输入x和f(x)的值,然后通过“插入”->“散点图”功能绘制出函数图像。
从图像中,我们可以看出函数在[-1, 0]和[2, +\infty)内都单调递增,所以这两个区间都是函数的值域。
而在[0, 2]内,函数是先单调递减再单调递增的,所以这个区间也是函数的值域。
因此,这个函数的值域是[0, 4]。
第三种方法:分段法。
这种方法适用于那些在某个区间内单调递增或单调递减的函数。
比如,我们还是以f(x) = x^2为例。
我们可以发现,当x在[-1, 0]和[2, +\infty)内时,函数都是单调递增的;而当x在[0, 2]内时,函数是先单调递减再单调递增的。
所以,我们可以将这个问题分成两个子问题:求f(x)在区间[-1, 0]和[2, +\infty)内的值域;以及求f(x)在区间[0, 2]内的值域。
通过分段法,我们可以分别求出这两个子问题的解,然后将它们合并起来得到原问题的解。
因此,这个函数的值域是[0, 4]。
求函数解析式的方法和例题
求函数解析式的方法和例题在数学学习中,我们经常会遇到需要求解函数解析式的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。
那么,如何求函数解析式呢?接下来,我将介绍一些常见的方法和例题,希望能帮助大家更好地掌握这一内容。
一、常见的求函数解析式的方法。
1. 根据函数图像求解析式,当已知函数的图像时,我们可以通过观察图像的性质来推导函数解析式。
例如,对于一元一次函数y=kx+b,我们可以根据函数的斜率k和截距b来确定函数解析式。
同样地,对于二次函数、指数函数、对数函数等,也可以通过观察图像的特点来求解析式。
2. 根据函数性质求解析式,有些函数具有特定的性质,我们可以利用这些性质来求解析式。
例如,对于奇偶函数、周期函数、对数函数等,我们可以根据其性质来确定函数解析式。
3. 根据已知条件求解析式,有时候,我们会遇到一些特定的条件,例如函数的零点、极值点、导数等,我们可以利用这些已知条件来求解析式。
通过建立方程组,我们可以求解未知的函数解析式。
二、求函数解析式的例题。
1. 已知一元一次函数的图像经过点(2,3),斜率为4,求函数解析式。
解,根据一元一次函数的一般形式y=kx+b,我们可以利用已知的斜率和点的坐标来求解析式。
首先,斜率为4,即k=4;其次,函数经过点(2,3),代入x=2,y=3,得到3=4×2+b,解得b=-5。
因此,函数解析式为y=4x-5。
2. 已知函数f(x)满足f(1)=2,f'(x)=3x^2,求函数f(x)的解析式。
解,根据已知条件f(1)=2,我们可以利用这一条件来求解析式。
由导数的定义可知,f'(x)=3x^2,对f(x)进行积分得到f(x)=x^3+C,其中C为积分常数。
代入f(1)=2,得到2=1+C,解得C=1。
因此,函数f(x)的解析式为f(x)=x^3+1。
通过以上例题,我们可以看到,求解函数解析式的关键在于利用已知条件和函数的性质来建立方程,进而求得未知的函数解析式。
求函数解析式的方法和例题
求函数解析式的方法和例题一、常见的求函数解析式的方法:1. 图像法,通过观察函数的图像特点,可以推测出函数的解析式。
例如,对于一次函数y=kx+b,可以通过观察函数的图像特点来确定k和b的值。
2. 常数法,对于一些特殊的函数,可以通过代入不同的自变量值,利用函数的性质和已知条件来求解函数的解析式。
例如,对于指数函数y=a^x,可以通过代入x=0、x=1等值来求解a的值。
3. 反函数法,对于已知函数的反函数,可以通过求解反函数来得到原函数的解析式。
例如,对于对数函数y=loga(x),可以通过求解反函数来得到对数函数的解析式。
4. 组合函数法,对于复杂的函数,可以通过将函数进行分解,然后分别求解各个部分函数的解析式,最后组合得到原函数的解析式。
例如,对于复合函数y=f(g(x)),可以先求解g(x)和f(x),然后将其组合得到y的解析式。
二、求函数解析式的例题:例题1,已知一次函数y=2x+3,求函数的解析式。
解,根据一次函数的一般形式y=kx+b,可以得到k=2,b=3,因此函数的解析式为y=2x+3。
例题2,已知指数函数y=2^x,且y(1)=4,求函数的解析式。
解,代入x=1,得到2^1=2,因此a=2,所以函数的解析式为y=2^x。
例题3,已知对数函数y=log2(x),求函数的解析式。
解,对数函数的底数为2,因此函数的解析式为y=log2(x)。
例题4,已知复合函数y=(x+1)^2,求函数的解析式。
解,将函数进行分解,得到g(x)=x+1,f(x)=x^2,因此函数的解析式为y=(x+1)^2。
以上就是关于求函数解析式的方法和例题的介绍。
希望对大家有所帮助,也希望大家在学习数学的过程中能够灵活运用这些方法,提高数学解题能力。
求函数解析式、定义域与值域的常用方法
求函数解析式、定义域与值域的常用方法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
例1. 已知2211()x x x f x x +++=,试求()f x 。
解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。
故得:2()1,1f x x x x =-+≠。
说明:要注意转换后变量范围的变化,必须确保等价变形。
2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫⎪⎝⎭,则得:()222845333x f x x x x =+--+。
(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例3. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。
【思路分析】【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2[()]()()f f x af x b a ax b b a x ab b=+=++=++函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .解:设b ax x f +=)()0(≠a ,则 ∴⎩⎨⎧=+=342b ab a , ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 .二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式.解:2)1()1(2-+=+x x x x f Θ, 21≥+xx , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配凑法一样,要注意所换元的定义域的变化.例3 已知x x x f 2)1(+=+,求)1(+x f .解:令1+=x t ,则1≥t ,2)1(-=t x . Q x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x .四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上 , x x y '+'='∴2.把⎩⎨⎧-='--='yy x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g .五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式.例5 设,)1(2)()(x x f x f x f =-满足求)(x f .解 Θx xf x f =-)1(2)( ① 显然,0≠x 将x 换成x 1,得:xx f x f 1)(2)1(=- ② 解① ②联立的方程组,得:x x x f 323)(--=. 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式.例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .解Q 对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f .再令 x y =- 得函数解析式为:1)(2++=x x x f .七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式.例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f .解Θ +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,又1)()1(,1)1(+=-+=x x f x f f 故 ①令①式中的x =1,2,…,n -1得:(2)(1)2(3)(2)3()(1)f f f f f n f n n -=-=--=L L ,,, 将上述各式相加得:n f n f Λ++=-32)1()(,2)1(321)(+=+++=∴n n n n f Λ , +∈+=∴N x x x x f ,2121)(2. 函 数 值 域 求 法 小 结1.重难点归纳.(1)求函数的值域.此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域.(2)函数的综合性题目.此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.(3)运用函数的值域解决实际问题.此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力.2.值域的概念和常见函数的值域.函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见函数的值域:一次函数()0y kx b k =+≠的值域为R .二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦. 反比例函数()0k y k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >.对数函数()log 01a y x a a =>≠且的值域为R .正,余弦函数的值域为[]1,1-,正,余切函数的值域为R .3.求函数值域(最值)的常用方法.一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数)1、求242-+-=x y 的值域. 解:由绝对值函数知识及二次函数值域的求法易得:)[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以.2、求函数y =的值域.≥0≥1,然后在求其倒数即得答案.解:Q ≥0∴≥1,∴0≤1,∴函数的值域为(0,1]. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域)1、求函数][)4,0(422∈+--=x x x y 的值域.解:设)0)((4)(2≥+-=x f x x x f ,配方得:][)4,0(4)2()(2∈+--=x x x f . 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:][2,2-∈y .说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f .2、若,42=+y x 0,0>>y x ,试求xy 的最大值。
解:本题可看成一象限动点),(y x p 在直线42=+y x 上滑动时函数的最大值.易得:2(0,4)(0,2),=(42)2(1)2x y xy y y y ∈∈-=--+,而,y =1时,xy 取最大值2.三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型)对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。
1、求函数12+=x x y 的值域. 解:因本题中分子、分母均只含有自变量的一次型,易反解出x ,从而便于求出反函数。
12+=x x y 反解得y y x -=2即xx y -=2. 故函数的值域为:),2()2,(+∞-∞∈Y y 。
(反函数的定义域即是原函数的值域)2、求函数2241x y x +=-的值域. 解答:241y x y +=-,因为20x ≥,所以401y y +≥-,算出值域为(,4](1,)y ∈-∞-+∞U . 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断)1、求函数3274222++-+=x x x x y 的值域. 解:由于本题的分子、分母均为关于x 的二次形式,因此可以考虑使用判别式法,将原 函数变形为:7423222-+=++x x y xy y x 整理得:073)2(2)2(2=++-+-y x y x y 当2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足032)(2≠++=x x x f ,即R x ∈此时方程有实根即△0≥,△[292(2)]4(2)(37)0[,2]2y y y y =---+≥⇒∈-. 注意:判别式法解出值域后一定要将端点值(本题是29,2-==y y )代回方程检验. 将29,2-==y y 分别代入检验得2=y 不符合方程,所以)2,29[-∈y . 2、求函数2122x y x x +=++的值域. 解答:先将此函数化成隐函数的形式得:012)12(2=-+-+y x y yx ,(1)这是一个关于x 的一元二次方程,原函数有定义,等价于此方程有解,即方程(1)的判别式0)12(4)12(2≥---=∆y y y ,解得:1122y -≤≤. 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用三角代换)等)1、求函数x x y 41332-+-=的值域. 解:由于题中含有x 413-不便于计算,但如果令:x t 413-=注意0≥t 从而得:)0(321341322≥+--=∴-=t t t y t x 变形得)0(8)1(22≥++-=t t y 即:]4,(-∞∈y . 注意:在使用换元法换元时一定要注意新变量的范围,否则将会发生错误.六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域)1、求函数13y x x =-+-的值域。
分析:此题首先是如何去掉绝对值,将其做成一个分段函数.24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞⎧⎪=∈⎨⎪-∈+∞⎩在对应的区间内,画出此函数的图像,如图1所示,易得出函数的值域为),2[+∞.七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+),利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.)1、求函数1(0)y x x x =+>的值域.解答:12y x x =+≥=,当且仅当1,1x x x==时取等号. 注意:在使用此法时一定要注意a b +≥的前提条件是a >0,b >0,且能取到a =b .八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式)1、求函数122+--=x x x x y 的值域. 解答:观察分子、分母中均含有x x -2项,可利用部分分式法;则有43)21(11111122222+--=+--+-=+--=x x x x x x x x x y . 不妨令:)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f 从而)∞+⎢⎣⎡∈,43)(x f . 注意:在本题中应排除0)(=x f ,因为)(x f 作为分母。