大学生方程式赛车悬架系统设计
FSAE赛车悬架的优化设计及分析
2、阻尼:阻尼的大小直接影响赛车的反弹速度和行驶平顺性。阻尼过大, 赛车反弹过快,会影响赛车的操控性和稳定性;阻尼过小,则会导致赛车行驶平 顺性降低。
3、几何形状:悬架的几何形状决定了赛车在不同行驶状态下的性能表现。 例如,多连杆悬架可以提供更好的操控性和稳定性,但需要更高的技术要求和更 复杂的结构设计。
二、大学生方程式赛车悬架的设 计
1、确定悬架类型:大学生方程式赛车通常采用麦弗逊式独立悬架,这种悬 架具有结构简单、重量轻、占用空间小等优点。
2、选择合适的材料:考虑到赛车的轻量化和刚度需求,通常会选择高强度 铝合金作为悬架的主要材料。
3、确定弹簧刚度和阻尼:弹簧刚度需要根据赛车重量和赛道特性进行选择, 而阻尼则需根据驾驶风格和赛道条件进行调整。
1、按照设计图纸进行前期准备
在制造阶段,首先要按照设计图纸进行前期准备,包括加工制造、组装等。 要确保各个零部件的尺寸和性能符合设计要求,同时要对材料和加工工艺进行严 格把关,确保赛车制造的质量。Biblioteka 2、安装动力装置和其他附件
在制造过程中,要安装发动机、变速器等动力装置,并连接相关管路和附件。 在这个过程中,要保证各个零部件之间的连接牢固可靠,同时要确保管路和线路 的布置合理,不会影响赛车的性能和安全性。
二、FSAE赛车悬架设计
FSAE赛车的悬架设计需要充分考虑赛车性能的要求和实际行驶情况。一般来 说,FSAE赛车的悬架设计需要考虑以下几个方面:
1、刚度:悬架的刚度是决定赛车操控性和舒适性的关键因素。刚度过高会 导致赛车过于僵硬,操控性虽然好,但舒适性会降低;刚度过低则会导致赛车过 于软弱,操控性降低,同时也会影响赛车的稳定性。
2、性能测试与评估:在完成悬架设计后,需要进行实际的性能测试和评估。 这包括在实验室进行振动测试、刚度测试等,以及在赛道上进行实际的驾驶测试。 根据测试结果对设计进行相应的调整和优化。
大学生方程式赛车 开题报告
(4)在CATIA建立前悬架的转向节和后悬架立柱的三维模型,导入到ANSYS中建立有限元模型进行强度分析;在ANSYS中分别建立前后悬架下横臂的有限元模型,对其进行静态和动态两方面的分析;分析设计的悬架结果是否满足设计要求,为以后FSAE赛车悬架的设计提供一种依据。
二、研究的主要内容
本设计主要来源于中国大学生方程式汽车(简称FSAE赛车)项目,悬架作为整车重要的一部分,有必要对赛车悬架进行设计和分析。本文主要研究的内容如下:
(1)对悬架的结构形式进行分析,选择符合FSAE赛车的前后悬架的结构类型。
(2)根据整车的设计参数和对参赛悬架的要求,结合悬架的设计理论和设计经验,对FSAE赛车前后悬架的主要参数进行设计,悬架的主要部件进行选择和设计。
6月06日~6月12日
6月13日~6月14日
6月15日~6月17日
毕业设计开始,明确设计任务,查阅、收集相关资料,完成开题报告
完成外文翻译和毕业实习记录,进行设计
按任务书要求进行设计
设计任务完成
撰写毕业设计(论文)
完善毕业论文(论文),做答辩准备
答辩
开题报告(该表格由学生独立完成)
建议填写以下内容:1.简述课题的作用、意义,在国内外的研究现状和发展趋势,尚待研究的问题。2.重点介绍完成任务的可能思路和方案;3.需要的主要仪器和设备等。
[7]李栓成.双横臂扭杆悬架受力分析及刚度计算.军事交通学院学报,2010,No.1
[8]尹伟奇.FSAE赛车悬架设计.清华大学汽车工程系.清华大学物理系
赛车悬挂设计简介
前轮主要部件设计及装配图
导向杆尺寸及角度确定
静力学分析介绍
• 在对重要零部件设计时,通过利用Ansys软件进行静力学分析。在软件中首先将catia三 维模型导入,再添加材料属性,通过查找材料的属性,在软件中将:1.泊松比(材料在单 向受拉或受压时,横向正应变与轴向正应变绝对值比值,也叫横向变形系数。)2.弹性模量 3.张 力强度 4.质量密度 5.屈服强度导入;通过对力的性质(力、压力、螺栓载荷、力矩 、轴承载荷、惯性载荷等等)确定,利用xyz来定义力的方向,force中输入力的大小, 来对结构进行静力学分析,得出其总形变量、应力、应变、安全系数的颜色分布图。
大学生方程式赛车悬挂设计
机汽学院 指导老师:程金铭 车辆1111班 王建 2011138120
概述
悬架是汽车上的减振保稳部件,对汽车的操纵稳定性和行驶平顺性具有 决定性作用, 其结构设计的好坏将直接影响乘坐舒适性。FSAE 赛事规则要 求赛车悬架应该保证汽车具有良好的行驶平顺性;合适的衰减振动能力;良 好的操纵稳定性;赛车制动和加速时能保证车身稳定,减少车身纵倾,转弯 时车身侧倾角合适;结构紧凑,避免发生运动干涉; 能可靠地传递车身和车 轮之间的各种力和力矩,保证有足够的强度和使用寿命;便于布置、维修
前轮芯受力分析
应变分析
应力分析图
安全系数分析图
前立柱应力分析图
前立柱安全系数
悬架运动学分析的意义
• 汽车悬架运动学及弹性运动学特性的设计成为汽车开发中的一项重要 任务。悬架运动学分析的主要内容是研究车轮定位参数与车轮跳动量 的关系。从中可以得到基本的车轮定位及变化特性信息。以悬架操纵 稳定性、平顺性、等为主要评价目标,受到车身造型的制约及总布置 的协调,在不同底盘调教风格下,悬架在与之关系密切、性能日新月 异的相关功能子系统,如转向、轮胎、动力、制动相互作用下,可以 优化出不同侧重点的最优解。车轮垂直跳动分析是悬架性能分析中一 个很重要的方法,在本次分析中,考虑到比赛时,车辆长期处于转弯 工况,所以本次设计主要做两侧车轮反向跳动分析。首先在标准模式 下,定义悬架系统的相关参数:轮胎空载时的半径为260.35mm,轮 胎径向刚度为100N/mm,簧载质量为260kg,质心高度为300mm,轴距为 1600mm
车辆工程专业精品毕业设计大学生方程式赛车设计(前后悬架设计)(有cad图+三维图)--中英文翻译
车道变换测试的灵敏度作为衡量车载系统需求的一种方式绪论司机在驾驶的时候被分散注意力是国际公认的一个重要的道路安全问题,特别的,那些潜在的分散和降低司机的驾驶注意力的车内部方便的技术如信息,通信,娱乐和先进的辅助驾驶技术等,已经成为世界性的研究课题和倡议政策. 设计这些系统的一个重要目的是确保驾驶时不过多的妨碍司机的驾驶任务和驾驶安全.在一个以商业利益为目的的技术引进而非出于安全考虑的领域中,这将是一个巨大的挑战. 这个目标的实现有赖于在车辆设计和安全评估中有广泛被接受的科学方法,包括视觉闭塞技术和外围检测等方法.以其目前的发展达到ISO标准,另一个方法,是移线试验(以下简称LTC).想把LTC 作为一种有用的评价工具,LCT必须是有效和可靠的,并且具有高灵敏度. 本文的重点就是介绍LCT方法的灵敏性。
即其分辨不同类型的能分散驾驶员注意力的技术的能力。
§1.1司机分心司机分心通常被描述为包含有不同的范围,而不是相互排斥的;例如,视觉,听觉和认知,生物力学(物理)等。
这些类型,特别是视觉和认知分心,已经证明损害驾驶性能的不同方面,横向控制和事故检测度量对不同形式的驾驶干扰尤为敏感.例如,已被证明用增加车道变化来视觉负荷。
相反,中等水平的认知负荷已被证明在车道保持性能的影响不大,甚至可以导致更精确的横向控制。
此外,认知和视觉任务可以损害事故的检测,但认知的分心也可以影响驾驶员更快更充分地应对事故的能力。
鉴于其目前的发展进入了ISO标准和其在驾驶分心的研究越来越多地被使用,LTC能够测量和区分不同的驾驶分心的影响,这是很重要的. 因此本研究的目的是评估LCT区分视觉与不同层次的需求认知的灵敏性。
§1.2 变道测试LCT(变道测试)是一个基于PC的驾驶模拟,目的是定量测量由于同时进行中的次要任务的表现而引起的驾驶性能的退化程度,它已被广泛用来评估驾驶性能。
同时该实验使用了一系列的车载信息系统(IVIS)为主驾驶任务提供信息支持(如导航)。
大学生方程式赛车悬架系统设计
大学生方程式赛车悬架系统设计大学生方程式赛车悬架系统设计中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。
本课题的重点和难点1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。
2、对前后悬架的主要参数和导向机构进行初步的设计。
3、用Catia或Proe建立悬架三维实体模型。
4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。
5、悬架设计方案确定后的优化改良。
优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。
优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。
1、查阅FSAE悬架的设计。
2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。
3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。
4、用ADAMS/Insight进行优化,改善操纵稳定性。
5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。
悬架设计流程如下:首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。
确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。
确定赛车的偏频和赛车前后偏频比。
估计簧上质量和簧下质量的四个车轮独立负重。
根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。
推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。
计算没安装防侧倾杆时赛车的横向负载转移分布。
根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和LLTD。
最后确定减振器阻尼率。
大学生方程式赛车悬架系统的设计研究
大学生方程式赛车悬架系统的设计研究摘要:悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力装置的总称。
一般由弹性元件、减震器和导向机构组成,在多数的轿车和客车上还设有横向稳定杆。
悬架的功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩都传递到车架(或承载式车身)上,保证汽车的正常行驶。
关键词:悬架系统;刚度;横向稳定杆;计算1.悬架的设计要求具有合适的衰减震动的能力;保证汽车具有良好的操纵稳定性;汽车制动或加速时,要保证车身稳定,减少车身纵倾,转弯时车身侧倾角要合适;结构紧凑、占用空间尺寸要小;安装方便并易于调整;尽可能的传递车身与车轮之间的各种力和力矩,保证强度同时做到轻量化。
2.整车参数整车质量m(包含车手60):300kg,前后轴距L:1550mm,前轮距B1:1250mm,后轮距B2:1200mm,质心高度h:300mm,前悬静态侧倾中心高度Z RF:15m,后悬静态侧倾中心高度Z RR:25mm,前后载荷比:45:55。
3.设计计算3.1 偏频选定汽车偏频是指汽车前、后部分车身的固有频率(用和表示)。
不同范围的偏频适用于不同类型、不同用途的汽车,一般的取值范围:普通轿车0.5~1.5,适中负升力赛车1.5~2.0,高负升力赛车3.0~5.0以上。
FSAE赛车的前后悬架偏频范围在2.4~3.5,且偏频的大小决定了悬架刚度的大小,影响赛车的舒适性和操纵性能。
综上考虑,前后悬架偏频定为:,。
3.2 悬架刚度计算(1)质心到侧倾轴线的距离计算:图1 横向载荷转移几何如图1所示,,,。
(2)悬架乘适刚度计算:(赛车簧下质量为60kg)赛车簧上质量,前轴左右单侧车轮的簧上质量,后轴左右单侧车轮的簧上质量,前轴左右单侧悬架的乘适刚度,后轴左右单侧悬架的乘适刚度。
(3)前后悬架传动比计算:(轮胎刚度)前后悬架的车轮中心刚度,,前悬架弹簧刚度为,后悬架弹簧刚度为,前悬架传动比,后悬架传动比。
F1赛车前悬架设计任务书及开题报告
系统建模,计算并进行前悬架优化设计;
修改并完善设计方案,撰写毕业设计说明书,ቤተ መጻሕፍቲ ባይዱ制总成图;
整理毕业设计论文,准备答辩。
开题报告(该表格由学生独立完成)
一、课题意义及国内外研究现状综述
1设计的背景及意义
FASE(Formula SAE)比赛是一项学生方程式赛车赛事,一般情况下由各个国家的汽车工程协会举办,各参赛队伍由在校大学本科生和研究生组成。其概念源于一家虚拟制作工厂,向所有大学生设计团队征集设计制造一辆小型的类似于标准方程式的赛车,要求在12个月的时间内,按照赛事规则进行设计、加工、制造,并使其赛车在加速、制动、操控性方面都有优异的表现并且足够稳定耐久。该车必须成本低廉、易于维修、可靠性好。此外,考虑到市场销售的因素,该车需美观、舒适,零部件也需要有通用性。赛事自创办以来,已经发展37年,到2015年已经举办大学生方程式大赛的国家有:美国、加拿大、德国、英国、奥地利、意大利、西班牙、匈牙利、捷克共和国、巴西、澳大利亚、日本、印度、中国及泰国。越来越多的国家重视这项赛事,同时越来越多的大学生参与到这项赛事并从中有所收获。随着汽车工业驱动技术的不断革新,以混合动力、纯电动汽车为主的大学生方程式赛事同样发展迅猛,势必成为今后的发展趋势。
因此,在FSAE赛车悬架设计方面也积累了很多经验。我们可以查询到很多有关方面的论文材料。尤其是在悬架的几何分析、悬架的空间优化、以及利用各种分析软件对悬架的强度和刚度进行分析。在FSAE不断的发展过程中,双横臂独立悬架的好处越来越受到各个车队的认可,同时在能够充分保证赛车的可靠性和经济性的基础上,碳纤维材质的悬架也应用到赛事中来,有效的达到了轻量化的目的。
[2]王望予.汽车设计(第四版)[M].北京:机械工业出版社,2005.
大学生方程式赛车悬架系统参数优化设计
大学生方程式赛车悬架系统参数优化设计刘寅童,邢立轩,卢泳陵*同济大学【摘要】大学生方程式赛车当前已经风靡全球。
其设计形式可谓五花八门。
作为一款赛车,悬架系统对于其整车性能的影响不可忽视。
为了能够使赛车的操控性能最优化,对于不同的赛车,即使采用相同的悬架结构形式,也应该具有不同的设计参数。
本文将以自行设计的赛车为基础,针对赛道路况,设计及优化悬架系统参数,以使赛车能够达到较好的操控性和平顺性。
【关键词】大学生方程式赛车,悬架系统,侧倾中心,前轮外倾角,悬架刚度Optimization for the Suspension Parameters of Formula SAE CarLiu Yintong, Xing Lixuan, Lu YonglingTongji UniversityAbstract: Formula SAE has been already very popular among the young people globaly. The design has also been diversified. As a racing car, suspension system has a great effect on the performance of the car. As a result, a similar suspension structure on different car must has differenet parameters, to optimize the performance. In this article, the design was based on a self-built car and the parameters was optimized for circuit condition to improve the controlling and riding performance.Key words: Formula SAE, Suspension system, Roll center, Camber, Suspension stiffness 1 研究背景大学生方程式赛车系列赛事(Formula SAE)由美国汽车工程师协会(SAE International)创办于1979年。
FSC大学生方程式汽车悬架设计与研究
FSC大学生方程式赛车悬架设计与研究FSC大学生方程式汽车悬架设计与研究摘要悬架的系统设计与优化,是汽车总体设计中极其重要的一个环节。
本设计以北京理工大学珠海学院FSC车队2020年赛车悬架系统的结构设计为研究目标,主要进行了几个方面的研究工作。
本设计结合赛事规则要求,先确定设计思路,对轮距、轴距、前后悬架立柱等相关部件进行计算与设计,分析车轮定位参数对赛车性能的影响,在确定采用不等长双横臂式悬架结构后,选择弹性元件、减振器、导向机构与其他元件的类型,确保其符合赛车悬架设计的相关原则,并利用CATIA软件对其中重要元件进行三维建模设计,最后,基于ADAMS仿真平台,建立赛车悬架的运动学仿真模型,对其进行仿真分析,得到悬架参数模型后,对初选参数进行结果分析,并利用ADAMS对悬架参数进行优化。
关键词:大学生方程式赛车;悬架系统;结构设计;仿真优化Design and Study of Suspension for a FSC CarAbstractThe design and optimization of suspension system is an essential part of the overall design for a race car. This design takes the suspension system of FSC race car designed by the race team ,which is from Beijing institute of technology, Zhuhai, as the research objective. The the design mainly work in several aspects. This design was based on the competition rules of FSC. The calculation of the wheel track and spread of axles as well as the design of some related components including the front and rear suspension column have been conducted after a clear idea of the design had been made. The next step is the analysis of wheel alignment parameters in order to make out whether it affects the performance of the car. When unequal-length wishbone suspension is selected, the paper chose the type of flexible components, absorder, guide mechanism and other parts, and make sure it in the line with some basic principles. After that, we established 3D model with the help of the software of CATIA. Finally, based on the simulation platform of ADAMS, the kinematics simulation model of racing car suspension was established, and the simulation analysis was carried out. After the suspension parameter model was obtained, the results of primary parameters were used to analyze, and the suspension parameters were optimized by ADAMS.Keywords: FSC Race Car; Suspension system; Design of Structure;Simulate and Optimize目录1绪论 (1)1.1本设计的目的与意义 (1)1.2FSC大赛概况 (1)1.3国内外方程式赛车悬架的研究现状 (2)1.3.1国外研究现状 (2)1.3.2国内研究现状 (3)1.4设计研究的主要内容 (3)1.5本章小结 (4)2悬架系统设计 (5)2.1设计原理与思路 (5)2.2悬架形式的确定 (7)2.3相关部件的设计与选型 (8)2.3.1轮辋与轮胎的选型 (8)2.3.2车轮定位参数 (8)2.3.3 轴荷比、轴距与轮距的设计 (9)2.3.4 悬架导向机构的设计 (10)2.3.5 性能参数的计算 (11)2.3.6 前后悬架立柱的设计 (13)2.3.7 减震器的选型 (13)2.3.8悬架基本参数 (15)2.4章节小结 (16)3 悬架三维建模与装配 (17)3.1悬架零部件的三维建模 (17)3.2悬架的装配 (18)3.3章节小结 (19)4 ADAMS悬架建模与仿真 (20)4.1悬架动力学建模 (20)4.2悬架仿真 (21)4.3仿真结果分析 (23)4.4章节小结 (25)5硬点坐标的优化 (26)5.1仿真结果优化 (26)5.2优化前后结果分析 (28)5.3章节小结 (31)6 结论 (32)参考文献 (33)致谢 (34)附录 (35)附录1英文文献原文 (35)附录2中文翻译 (43)附录3前悬架左耳片CAD二维图 (49)附录4前悬架左立柱CAD二维图 (50)1绪论1.1本设计的目的与意义悬架,作为汽车连接车架与车桥的传力装置,是现代汽车上的重要总成之一。
YX-5 FSC赛车悬架设计与制作毕业设计
YX-5 FSC赛车悬架设计与制作毕业设计第1章绪论1.1 课题背景1.1.1 大学生方程式赛车的总体概述大学生方程式汽车大赛,首次举办与1981年,在此之后在各国汽车工程协会的帮助下使其蓬勃发展,使得更多的大学生参与其中,通过这个平台锻炼自己的能力,提高自己的专业技能,对汽车专业有了更深的了解。
同时,赛事也要求参加比赛的大学生对整辆赛车的设计于制作要在一年之内完成,并且要严格满足大赛的规则,还要具有一定的操控性能。
我国首次于2010年进行FSC比赛,这项赛事在中国大学生中广受欢迎,取得了较大的成功。
第一届比赛共有20支车队参赛,以后规模逐渐扩大,到第六届已有超过60支车队报名参赛。
大赛包括主要包括静态项目与动态项目,而静态项目又包括技术答辩、市场营销、成本答辩。
在技术答辩与成本答辩当中,不仅仅要考验队员对专业知识的掌握,对整辆赛车的了解,还要求队员要有足够优异的表达能力,从而使技术裁判对赛车有了感官的认知。
动态赛包括耐久赛、直线加速、高速避障等,同学们制作的赛车的性能通过这样的动态赛才能展现出来。
裁判通过各个车队在各个赛事中的综合表现进行评分,从而评判各校赛车队的性能,得出各个车队的成绩。
通过这项赛事,同学们可以更多的了解到赛车运动、市场营销等方面的知识,同时激发更多同学的兴趣,使其参与其中。
在制作赛车的过程当中,学生可以将书本上学到的知识与实践相结合,综合提高自己的专业知识。
1.1.2大学生方程式赛车的研究意义当前,中国的汽车工业已经蓬勃发展,但是还不是真正的汽车技术强国。
而中国从汽车制造大国向技术强国迈进,已成为国人迫切的目标,而人才的培养至关重要。
1燕山大学本科生毕业设计22 中国大学生方程式赛车活动组织举办的目的就是对汽车专业人才的培养。
在整车的设计阶段,培养了学生的设计能力提高了他们的专业素养。
只有当学生对专业知识有了一定的积累,对整车系统有了一定的把握才能够独立的去完成对某一个系统的设计,包括这个系统的零部件;在赛车零件的加工阶段又使学生对加工工艺有了更深的了解。
大学生方程式赛车设计(模具及卡具设计)(有cad图三维图)
大学生方程式赛车设计(模具及卡具设计)(有cad图三维图)毕业设计(论文)题目大学生方程式赛车设计(模具及卡具设计)2013年5月30日方程式赛车模具及卡具设计摘要本文依据大学生方程式汽车大赛FSAE赛事技术规则对大学生方程式赛车整体车架、悬架进行了模具及卡具设计。
在卡具设计当中不仅需要考虑赛车车架各杆件是否定位完全以及夹紧可靠,同时必须考虑支撑杆件的强度和刚度能否满足要求,最终还必须考虑焊接空间是否与支撑杆干涉。
在模具设计当中不仅要考虑凸、凹模的加工精度以及冲压机的选择,同时还必须考虑凸、凹模的强度和刚度。
本文在完全满足上述要求的前提下对模具及卡具进行了设计。
在模具及卡具设计之初,将方程式汽车大赛的有关规定和评分标准,作为后续模具及卡具设计的技术规范要求;为了达到卡具设计合理性的目的,本设计参考了湖南大学、天津大学以及部分国外大学的赛车模具及卡具。
进入设计阶段,本设计通过分析比较几种模具及卡具的结构形式,决定选择定位与夹紧一体化的卡具设计,采用压弯模制得对强度要求较高的主环。
然后依据技术规范、车架的最终尺寸确定了卡具及模具的结构形式和具体尺寸,并在UG7.0中建立车架卡具的模型。
再对模具及卡具进行受力分析,使各杆件能合理的定位、夹紧,使主环能满足强度和精度的要求,直至模具及卡具结构满足各个方面的要求。
关键词:FSAE,模具,卡具,建模,工艺分析FORMULE SAE—A MOLD AND FIXTURE DESIGNABSTRACTBased on equation FSAE car competition event technical regulations of university students for the college studentsformula overall frame, suspension for the mould and fixture design. In fixture design not only need to consider whether or not the car frame each bar of positioning and clamping completely reliable, at the same time must consider the strength of the support bar and stiffness can meet the requirements, the final must also consider whether the welding space interference with the support bar. During mold design should not only consider the machining precision of the convex, concave die and punch, also must consider the intensity of the convex, concave die and stiffness. In this paper, on the premise of fully meet the above requirements on the mould and fixture design.At the beginning of the mould and fixture design, the formula car contest regulations and criteria, as the follow-up mold and fixture design of the technical specification requirements; In order to achieve the purpose of fixture design rationality, the design reference of Hunan university, Tianjin university and some of the foreign car mold and fixture. Entered the stage of design, this design through the comparative analysis several kinds of mould and the structure of fixture, decided to choose integration of positioning and clamping fixture design, USES the bending molding of strength to demand higher main ring. Then according to specification, to obtain the final size of the frame the structure of the mould and fixture and the specific size, and set up in the UG7.0 frame models of the fixture. Stress analysis was carried out on the mold and fixture, make each bar can reasonable positioning, clamping, the main ring can meet the accuracy requirement of the strength and, until the mold and fixture structure meet the requirements of all aspects.Key words: FSAE, mould, fixture, modeling, process analysis 目录第一章绪论 (1)§1.1 赛事简介 (1)§1.2 大赛性质 (2)§1.3 大赛理念 (2)§1.4 愿景与使命 (2)§1.5 组织结构 (3)第二章焊接卡具的设计 (4)§2.1 焊接的主要类型 (4)§2.1.1 点焊 (4)§2.1.2 凸焊 (4)§2.1.3 钎焊 (5)§2.1.4 二氧化碳焊 (5)§2.2 车用焊接卡具分析 (5)§2.3 焊接夹具的分类 (6)§2.3.1 无驱动夹具 (6)§2.3.2 气动夹具和手动夹具 (6)§2.4 焊接夹具的结构设计 (7)§2.5 六点定位原则在车身焊装夹具上的应用 (7) §2.6 焊装夹具设计原则 (8)§2.7 焊装夹具的基本要求 (8)§2.8 工艺分析 (9)§2.8.1 车架的分析 (9)§2.8.2 基准的选择 (9)§2.8.3 制定工艺路线 (10)§2.9 定位、夹紧元件的选择 (11)§2.9.1 定位元件及定位方式的选择 (11)§2.9.2 工件的夹紧及对夹紧装置的要求 (13)§2.9.3 定位误差的分析与计算 (13)§2.10 工件的夹紧 (14)§2.10.1 夹紧装置的设计原则 (15)§2.10.2 夹紧力确定的基本原则 (16) §2.10.3 减小夹紧变形的措施 (18)第三章模具的设计 (20)§3.1 模具的发展与现状 (20)§3.1.1 国内模具的发展与现状 (20)§3.1.2 模具CAD/CAE/CAM技术 (22) §3.2 零件工艺性分析 (23)§3.2.1 材料选择 (23)§3.2.2 结构分析 (23)§3.2.3 工艺分析 (24)§3.3 U形件弯曲模结构设计 (25)§3.3.1 模具的整体结构 (25)§3.3.2 凸、凹模的结构和固定形式 (25) §3.4 模具零件的设计与计算 (26)§3.4.1 凸、凹模的间隙 (26)§3.4.2 弯曲力计算 (27)§3.4.3 凸模长度的确定 (28)§3.4.4 凹模尺寸的确定 (28)§3.5 冲压设备的选用 (29)§3.5.1 冲压设备主要技术参数 (29)§3.5.2 冲压力的计算 (31)§3.5.3 选择压力机 (31)§3.6 模具强度和刚度的计算 (32)第四章结论 (35)参考文献 (36)致谢 (38)第一章绪论§1.1 赛事简介Formula SAE 赛事由美国汽车工程师协会(the Society of Automotive Engineers 简称SAE)主办。
大学生方程式赛车(总体设计)毕业设计(论文)
河南科技大学毕业设计(论文)题目大学生方程式赛车设计(总体设计)大学生方程式赛车设计(总体设计)摘要本次毕业设计为期二个多月,进行了方程式赛车的总体设计。
在设计中,主要运用了对比分析的方法,各项参数通过优化设计和UG、MATLAB等进行优化。
初期阶段,我们根据2011年大学生方程式汽车大赛规则确定了赛车整体布置方案,并进行论证与分析,初步确定赛车主要参数。
通过计算与对比,确定发动机型号,初选传动系最大传动比、最小传动比。
中期阶段,我们设计中使用UG6.0三维软件对各个零部件总成进行建模和整体装配,并进行悬架、转向的运动干涉分析。
利用发动机动力特性曲线特点,用MATLAB软件绘制出赛车驱动力-行驶阻力平衡图、加速度曲线图等,并详细计算赛车燃油经济性。
最后阶段,利用UG7.5进行导出赛车总体布置二维工程图,并制成总体参数表,并将第一代赛车与第二代赛车进行对比分析。
对于考虑到的实际生产中可能发生变化的悬架、车架和转向部件,预留方案。
通过本次毕业设计,了解和掌握了对汽车进行总体设计的步骤和方法,巩固了本专业的所学的专业知识,增强了搜集资料、整合资料的能力,这些将为我毕业以后从事汽车设计工作打下良好的基础。
关键词:FSAE,总体参数,参数确定,总布置、赛车动力性、燃油经济性ABSTRACTFor two months, My graduation design is the overall design of the formula racing. we used the contrast analysis method mainly in the design, through optimizing the parameters optimization design and optimization of UG MATLAB, etc.Initial stage, we according to 2011 auto contest rules determine college equation overall layout of the car, and the demonstration and analysis, the main parameter is determined primarily racing. Through calculation and comparison, sure engine type, primaries drivetrain maximum transmission ratio, minimum transmission.The intermediate stage, we design UG6.0 3d software used in various parts of assembly for modeling and whole assembly, and suspension, steering movement interference analysis. Use of engine power characteristic curve characteristic, MATLAB software mapped drive car driving forces - resistance balance figure, acceleration curve, and etc, and detailed calculation racing fuel economy.The final stages UG7.5 are derived by car, general layout, and two-dimensional engineering graphics overall parameter table, and made the first generation and the second generation racing cars are compared and analyzed. For considering the actual production of may change suspension, frame and steering parts, obligate scheme.Through the graduation design, I understand and master the overall design of car of the steps and method, the professional knowledge of professional knowledge, enhance the data collection and integration of information, these ability after my graduation will be engaged in car design lay a good foundation for the job.KEY WORDS:FSAE, general parameters, parameter identification, general arrangement,the car power, fuel economy特殊符号m a 汽车总质量kgV 最高车速km/hL 轴距 mmB1 前轮距 mmB2 后轮距 mmR 最小转弯半径mmhg 满载时质心高度mmhgˊ空载时质心高度mmD 轮胎直径mmB 轮胎宽度mmP 轮胎气压MPA 汽车迎风面积F 滚动阻力系数C空气阻力系数Do i驱动桥主减速比g i变速器传动比F汽车行驶使的空气阻力w1g i变速器Ⅰ挡传动比F车轮与路面的附着力ϕm汽车总质量au汽车行驶速度aP发动机最大功率emaxT发动机转矩eP为克服滚动阻力所消耗的功率fϕ轮胎与路面的附着系数η传动系效率tQ是百公里油耗s目录第一章FSAE赛车总体概况 (1)§1.1 FSAE赛车起源 (1)§1.2 FSAE赛车现状 (2)§1.2.1国际赛车概况 (2)§1.2.2国内赛车概况 (2)§1.2.3我校赛车概况 (2)§1.3 FSAE赛车总体设计概述 (3)§1.3.1汽车设计的规律、决策与设计过程 (3)§1.3.2 FSAE赛车主要技术要求 (3)§1.3.3 第二代赛车设计目标 (4)§1.3.4 FSAE赛车项目意义 (5)第二章FSAE赛车总体设计 (7)§2.1 总体设计目标 (7)§2.2 赛车目标参数的初步确定 (8)§2.2.1 发动机选择 (9)§2.2.2 轮胎的选择 (10)§2.2.3 传动系最小传动比的确定 (11)§2.2.4 传动系最大传动比的确定 (11)§2.3 赛车发动机选型 (12)§2.4 赛车主要设计参数的确定 (13)§2.4.1 尺寸参数 (13)§2.4.2 质量参数 (14)§2.4.3 性能参数 (15)§2.5 赛车各系统设计 (17)§2.5.1 悬架系统设计 (18)§2.5.2 转向系统设计 (19)§2.5.3 制动系统设计 (19)§2.5.4 电器系统设计 (21)§2.5.5 车身设计 (23)§2.5.6 车架设计 (23)第三章赛车动力性与燃油经济性 (25)§3.1 汽车的动力性 (25)§3.1.1 动力性的评价指标 (25)§3.1.2驱动力—行驶阻力图 (25)§3.1.3 汽车的加速能力 (28)§3.1.4 动力特性图 (29)§3.1.5 功率平衡 (31)§3.2 燃油经济性 (32)第四章赛车总体布置 (34)§4.1整车布置的基准线(面)-零线的确定 (34)§4.2各部件的布置 (34)§4.3总体设计参数表 (37)第五章结论 (39)参考文献 (40)致谢 (42)第一章FSAE赛车总体概况Formula SAE 赛事1980年在美国举办第一次比赛以来,现在已经成为汽车工程学会的学生成员举办的一项国际赛事,其目的是设计、制造一辆小型的高性能方程式赛车,并使用这辆自行设计和制造的赛车参加比赛。
FSAE赛车悬架系统设计
04
考虑轻量化设计,以降 低车辆能耗和提升动力 性能。
03
FSAE赛车悬架系统设计
设计要求与目标
轻量化
为了提高赛车的加速性能和操 确保赛车在高速行驶和快速转 弯时具有足够的稳定性,避免 侧翻和失控。
舒适性
在保证稳定性的同时,悬架系 统应尽可能提高乘坐舒适性, 减少振动和冲击。
探索更加智能的悬挂系统控 制策略,以适应更加复杂的 赛道和驾驶环境。
鼓励更多的学生参与FSAE赛 车设计和制造,培养更多的 专业人才。
THANKS
感谢观看
悬架几何参数设计
01
几何参数包括主销内倾角、主销外倾角、前束角和后倾角等,对车辆 操控性能和行驶稳定性有直接影响。
02
根据赛车性能需求和赛道特点,调整这些参数以优化车辆操控性能。
03
参数调整需考虑车辆在不同驾驶模式下的表现,如赛道模式、雨天模 式等。
04
通过仿真分析和实际测试验证参数设计的有效性,并进行必要的优化 和改进。
FSAE赛车悬架系统应用现状
赛车运动中,悬架系统是至关重要的部分,它直接影响到车辆的操控性能和行驶 稳定性。FSAE赛车悬架系统在设计上需要充分考虑赛车的性能要求和比赛环境 。
目前,FSAE赛车悬架系统主要采用独立悬挂形式,这种形式可以更好地适应赛 道变化,提高车辆操控性能。同时,为了减轻车身重量和提高响应速度,FSAE 赛车悬架系统通常采用轻量化材料和高性能减震器。
减震器与弹簧设计
减震器用于吸收地面传给 车轮的冲击,提高乘坐舒 适性和车辆稳定性。
根据赛车的重量分布、驾 驶风格以及赛道特性,选 择合适的减震器和弹簧类 型及规格。
ABCD
弹簧用于支撑车身重量, 并缓冲来自路面的振动。
大学生方程式赛车后悬架系统设计
从图中可以看出悬架从110mm移 动到180mm满足规则要求,轮距 变化为
(6810.3-676.5)2mm=9.06mm。 轮距变化很小
整车装配图
如有购买意向,请联系281266983
大学生方程式赛车 后悬架系统设计
1.悬架参数计算
1.1 悬架选型:双横臂式独立悬架
高速赛车对操纵稳定性要求较高,同时基于结构、成本费用、空间尺寸等的考虑,赛 车一般都采用双横臂式独立悬架。 双横臂悬架又可分为: 1.推杆不等长双横臂悬架 2.拉杆不等长双横臂悬架 3.无推拉杆不等长双横臂
悬架。
推杆不等长双横臂悬架
Von-Mises
应力 (mN/mm^2(kPa))
Min Principal
Max Principal
1.056e+00 4
3.158e+00 3
1.113e+00 4
Max Shear
5.821e+0 03
-7.371e-
-6.833e-
-5.581e-
0.000e+0
1.126e+00
-
-
5.963e+0
2. 刚度:国内外 FSAE 赛车的前后偏频一般在 2.4~3.0Hz 范围,且前高后低, 后悬架选择2.6Hz。
3. 相对阻尼系数 4. 减震器阻尼系数 5. 最大卸荷力F0
2.悬架建模
a) 后轴设计 b) 控制臂设计 c) 摇臂设计 d) 半轴设计 e) 轮毂设计 f) 支耳设计 g) 减震器设计
后悬架装配图
划分网格 应力分布
位移 安全系数
支耳应力分析报告
Subcase - Static Loads : Number of Iterations = 1 位移 (mm)
大学生方程式赛车悬架设计
在比赛过程中,参赛队员能充分将所学的理论知识运用于实践中。同时,还学习到组织管理、市场营销、物流运输、汽车运动等多方面知识,培养了良好的人际沟通能力和团队合作精神,成为符合社会需求的全面人才。
在天马行空的幻想大脑一片空白的开始兴奋的初步设计激烈的争执毫无方向的采购和加工无可奈何的妥协令人抓狂的一次次返工绞尽脑汁的解决难题之后参与者能获得的不仅仅是catiaugansys以及焊接定位机加工技能更有汽车工程师的基本素养和丰富实践经验
前言
1.1目的与意义
悬架通过吸收车辆振动来改善乘坐舒适度[1]。悬架运动学特性是一些悬架结构参数随车轮跳动的变化规律,与悬架的导向机构有关.。这些参数的变化会使车轮的地面附着情况及滚动趋向发生变化,进而影响车辆的动力性、制动性和操纵稳定性等性能[2][3][4]。双横臂悬架系统常用在后轮驱动的汽车中,双横臂独立悬架是现代汽车常用的结构形式,特别是在赛车上得到了广泛的应用,其设计好坏对操纵稳定性、平顺性和安全性有着重要的影响[5]。操纵稳定性不仅影响到汽车驾驶的操纵方便程度,而且也是决定汽车高速安全行驶的一个主要性能。
1.2.2赛事意义
目前,中国汽车工业已处于大国地位,但还不是强国。从制造业大国迈向产业强国已成为中国汽车人的首要目标,而人才的培养是实现产业强国目标的基础保障之一。
大学生方程式赛车活动将以院校为单位组织学生参与,赛事组织的目的主要有:
一是重点培养学生的设计、制造能力、成本控制能力和团队沟通协作能力,使学生能够尽快适应企业需求,为企业挑选优秀适用人才提供平台;
FSE方程式赛车悬架和车架的设计介绍
FSE方程式赛车悬架和车架的设计介绍(只翻译悬架部分)Edmund F. Gaffney lll and Anthony R. SalinasUniversity of Missouri-Rolla 概要这是一篇基于UM-Rolla队设计经验的有关SAE方程式赛车悬架和车架的设计介绍性文章。
在这里呈现的是一些基础理论和方法,所以一些刚起步的队伍可以遵循这里面的一些基础来设计他们的赛车。
所列举的例子是参照于UM-Rolla队的1996年的参赛数据。
1.悬架几何学悬架几何方面关注于悬架设计的一些基础性知识并着重于UM-Rolla队1996年的设计。
FSAE的悬架由于受过弯速度的限制只能在汽车动力学很狭隘的一个领域内运作,正如你所知道的,过弯速度又是受到跑道尺寸的限制。
因此,FSAE悬架的设计应该严格遵守比赛的要求。
例如,汽车的轮距和轴距是影响操作稳定性至关重要的因素。
这两个方面不仅影响着载荷转移,同时还影响着过弯半径。
此外,我们不仅只能关注于悬架的几何学方面,还得考虑元件的价格还有市场上是否能买得到。
例如,inboard suspension很容易在市场上买到而outboard suspension可能比较便宜些而且制作起来也更加容易些。
UM-Rolla队使用推杆驱动的螺旋弹簧独立悬架系统。
做出这样的决定主要是因为受到安装技术的限制。
此外,不管是对裁判还是对供应商来说,inboard suspension更为适合如今的赛车。
尽管我们所讨论的是上下臂不等长的悬架系统,但你要知道的是这其中的大部分概念对于其他的悬架系统也同样适合。
轮距如图1所示,轮距是汽车左右两侧车轮中心线之间的距离。
对于过弯来说,这是非常重要的一个概念,因为它可以抵制重力作用于质心的惯性力(CG)和作用于轮胎的侧向力所共同产生的倾覆力矩。
对于赛车设计者来说,轮距是影响赛车横向负荷转移的一个至关重要的因素。
这也就是说,在悬架的运动分析之前,设计者一定要对轮距有个深刻的了解。
方程式赛车悬架系统设计分析中期报告
河北工业大学本科毕业设计(论文)中期报告毕业设计(论文)题目:方程式赛车悬架系统设计分析专业:车辆工程学生信息:学号:082886;姓名:樊广阔;班级:车辆083指导教师信息:教师号:86024;姓名:武一民;职称:教授报告提交日期:2012.04.17一、前期具体工作及取得进展1.查阅FSAE赛车及相似汽车悬架结构,确定所设计赛车悬架结构。
根据文献及FSAE赛车实车相关图片初步确定采用不等长双横臂拉杆弹簧独立悬架,制动器形式采用盘式制动。
上下两横臂采用A型结构,且由杆件代替,上下A臂不平行且不等长,为了保证运动时轮距变化不大采用上横臂短、下横臂长的结构形式。
悬架杆件采用SAE4130钢管,尺寸为12x1.5以及10.3x1.73。
上下横臂与车架的链接以及拉杆与上横臂的链接均采用轴销式配合,并采用SA型外螺纹杆端关节轴承,型号为:SA8E。
横臂与转向节的链接采用GE型向心关节轴承,型号为:GE8C。
减震器及弹簧选取螺旋弹簧套在减震器外侧的结构,减震器的一端通过摇臂与拉杆连接,另一端连接在车架上。
横向稳定杆与摇臂的连接同样采用外螺纹杆端关节轴承,型号为:SA6E。
摇臂的旋转中心采用的是自润滑轴承,型号为10x14x20。
整体结构的布置形式大概如下图所示:2.初步确定悬架相关参数。
根据赛事规定6.3.1 赛车轮辋直径必须至少为203.2mm(8.0 英寸),因此结合查阅相关资料及简单计算轮辋采用13X8尺寸,即轮辋直径为330mm。
轮胎选取Continental轮胎,型号为195/45R13,轮胎外径为510mm。
根据赛事规定6.2 离地间隙:在比赛中,在有车手乘坐时,赛车的静态离地间隙必需至少25.4mm(1 英寸),因此,初步设计赛车最小离地间隙为30mm。
根据赛事规定2.3 轴距赛车的轴距必须至少为1525mm(60 英寸)。
轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。
因此,初步设计赛车轴距为1535mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学生方程式赛车悬架系统设计
中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。
本课题的重点和难点
1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。
2、对前后悬架的主要参数和导向机构进行初步的设计。
3、用Catia或Proe建立悬架三维实体模型。
4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。
5、悬架设计方案确定后的优化改良。
优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。
优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。
1、查阅FSAE悬架的设计。
2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。
3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。
4、用ADAMS/Insight进行优化,改善操纵稳定性。
5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。
悬架设计流程如下:
首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。
确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。
确定赛车的偏频和赛车前后偏频比。
估计簧上质量和簧下质量的四个车轮独立负重。
根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。
推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。
计算没安装防侧倾杆时赛车的横向负载转移分布。
根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和 LLTD。
最后确定减振器阻尼率。
上面计算和选型完成后,再重新对初值进行校核。
运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。
在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能,并用ADAMS/Insight进行优化分析。
使用Ansys软件进行模拟悬架工作状况,进行受力分析,
优化个部件结构及轻量化。
摘要
第一章绪论
FSAE赛事简介FSAE悬架研究现状
论文主要研究内容及意义第二章 FSAE前后悬架设计
悬架概述及设计流程悬架选型
悬架分类及优劣分析确定悬架类型悬架参数设计车轮定位参数悬架几何刚度计算阻尼计算
基本参数的确定零部件设计
第三章FSAE前后悬架运动学建模仿真分析及优化 /car 及Adams/Insight概述前后悬架运动学建模
前后悬架仿真分析前后悬架优化
第四章FSAE前后悬架有限元分析及优化
赛车悬架关键部件静力学分析
FSAE赛车悬架关键部件结构强度仿真分析
轻量化方法
. 吴健瑜, 大学生方程式赛车悬架设计及优化研究.华南理工大学, XX(05). . 李金三, 大学生方程式赛车总布置设计及优化. 华南理工大学, XX(05). . 李嫚, FSAE赛车悬架的优化设计及分析. 哈尔滨工业大学, XX(06). . 张武, FSAE赛车操纵稳定性的仿真研究. 湖南大学, XX(05).
. 刘美燕, FSAE赛车悬架仿真分析及操纵稳定性虚拟试
验. 湖南大学, XX(04). . 柴天, FSAE赛车整车性能分析与研究. 湖南大学, XX(10).
. 蔡章林, 动力学仿真技术在悬架和整车开发中的应用研究. 吉林学,XX(05). . 于海峰, 基于ADAMS/Car的悬架系统对操纵稳定性影响的仿真试验研究. 大连理工大学, XX(06).
. 饶剑, 基于ADMAs的悬架系统动力学仿真分析与优化设计. 武汉理工大学, XX(10).
. 王晓莲, 基于ADAMS和MATLAB的汽车主动悬架联合仿真研究. 吉林大学, XX(04).
. 王淑芳, 基于CATIA的汽车悬架动态仿真. 重庆交通大学, XX(06). . 刘伟忠, 基于虚拟样机技术的某车悬架K&C特性仿真分析及硬点优化.吉林大学, XX(04).
.牛礼民等, FSAE赛车悬架系统结构设计. 汽车工程师, XX (09).
. 王会超,龚国庆,王国权, FSAE 赛车双叉臂悬架的优化设计. 北京信息科技大学学报, XX(12).
. 蒋永深, FSAE赛车双横臂前悬架强度校核. 汽车与配件, XX(01). . 倪俊,徐彬, FSAE赛车双横臂前悬架运动学仿真及优化. 车辆与动力技术, XX(06).
. 吴健瑜,罗玉涛,黄向东, FSAE赛车双横臂悬架优化设计. 机械设计与制造, XX(10).
. 倪俊,徐彬, ADAMS的FSAE赛车建模与操纵稳定性仿真. 工程设计,XX(15).
. 陈思忠,倪俊,吴志成, 基于转向轻便性与回正性的方程式赛车主销内倾角优化. 工程设计学报, XX(02).
. 徐彬,倪俊,朱丽君, 面向FSAE赛车侧风稳定性的悬架结构优化. 北京理工大学学报, XX(07).
.诸葛晓宇, 基于CATIA/ADAMS的麦弗逊悬架运动分析. 研究与开发,XX(09). . 邵昭晖, 汽车麦弗逊悬架三维设计与运动分析. 武汉理工大学, XX(05). . 王南,王晶,平恩, 基于ADAMS/Car的双横臂悬架的运动学建模与仿真. 河北工程大学学报, XX(12).
. 王南,郝莉红,张莉婷,张俊, 基于ADAMS/View的双横臂独立悬架的运动学仿真分析. 河北工业科技, XX(07).
. 罗卫平等, 基于ADAMS/VIEW汽车前悬架的建模及仿真. 金陵科技学院学报,XX(06).
. 何丽华, 基于 ADAMS 的双叉臂式独立前悬架仿真分析. 现代机械,XX(05). . 郑超,吴晓君,路超, 基于ADAMS 的双横臂式前悬架的仿真分析与优化. 机械研究与应用, XX(09).
. 罗鑫源,杨世文,杨军,王拖连, 基于ADAMS的双横臂悬架的仿真及优化. 公路与汽运, XX(09).
. 侯永涛等, 基于 UG 的双横臂独立悬架运动学分析
系统. 农业机械学报,XX(12).
. 贾宝,梅雪峰, 汽车双横臂独立悬架参数优化与仿真研究. 沈阳航空航天大学学报,XX(06)
. 孙涛,吕彩琴,王凯,孙经瑞, 汽车双横臂独立悬架的建模与仿真. 信息技术,XX(04)。