冲压模具设计实例讲解.doc
第九讲冲压模具设计实例分析
第八章 冲压模具结构及设计
2、冲压工艺方案的确定
方案一:先落料,后拉深。采用单工序模生产。 方案二:落料-拉深复合冲压。采用复合模生产。 方案三:拉深级进冲压。采用级进模生产。
方案一:模具结构简单,但成本高而生产效率低; 方案二:生产效率较高,尽管模具结构较复杂,但因零件 简单对称,模具制造并不困难; 方案三:生产效率高,但模具结构比较复杂,送进操作不 方便,加之工件尺寸偏大。
整体结构,拉深凸模、落料凹模和凸凹模的结构如图所示。 为了实现先落料后拉深,模具装配后,应使拉深凸模 的端面比落料凹模端面低3mm。 (2)其它零部件的设计与选用 ① 弹性元件的设计
顶件块(压边、卸件),其压力由标准缓冲器提供。 ②模架及其它零部件的选用
第八章 冲压模具结构及设计
6.模具总装图 7.冲压设备的选定 8.工作零件的加工工艺
工方法可以保证这些零件各个孔的同轴度,使装配工作简 化。
(5)卸料橡胶的设计
第八章 冲压模具结构及设计
4、模具总体设计 (1)模具类型的选择
级进模 (2)定位方式的选择
导料板,无侧压装置,挡料销初定距,导正销精定距。 而第一件的冲压位置可以靠操作工目测来定。 (3)卸料、出件方式的选择 弹性卸料,下出件 (4)导向方式的选择 中间导柱的导向方式
第八章 冲压模具结构及设计
6、模具总装图(右图)
7、冲压设备的选定 8、模具零件加工工艺
模具关键零件因采用线切割, 所以这些零件的加工就变得相对 简单。
第八章 冲压模具结构及设计
9、模具的装配
根据级进模装配要点,选凹模作为装配基准件,先装下
模,再装上模,并调整间隙、试冲、返修。
第八章 冲压模具结构及设计
第八章 冲压模具结构及设计
冲压实例-冲压设计举例23页
示例:2.5 设计举例通过对以下冲裁件、弯曲件及拉深件的冲压工艺分析、工艺方案拟订、工艺计算、模具设计和模具主要零件的加工工艺编制,了解工艺编制和模具设计的思路。
2.5.1冲裁模零件名称:托扳(见图2-9)生产批量:大批量材料:08F t=2mm要求设计此工件的冲裁模。
图2-9 产品零件图1.冲裁件工艺分析冲裁件为08F钢板,是优质碳素结构钢,具有良好的可冲压性能;冲裁件结构形状简单,但内、外形有尖锐清角。
为了提高模具寿命,建议将所有90°清角改为R1的圆角;零件图上所有尺寸均未标注公差,属自由尺寸,可按IT14级确定工件尺寸的公差。
经查公差表,各尺寸公差为:580-0.74、380-0.62、300-0.52、160-0.44、14±0.22、17±0.22、Ф3.50+0.3结论:可以冲裁2.确定工艺方案及模具结构形式综上分析,冲裁件尺寸精度要求不高,形状不大,但产量较大,根据材料较厚(2mm)的特点,为保证孔位精度,冲模有较高的生产率,实行工序集中的工艺方案,既采取利用导正钉进行定位、刚性卸料装置、自然漏料方式的连续冲裁模结构形式。
3.模具设计计算(1)排样计算条料宽度及确定步距首先查有关表确定搭边值。
根据零件形状,两工件间按矩形取搭边值a1=2,侧边按圆形取搭边值a=2。
连续模进料步距为32mm。
条料宽度按相应的公式计算:B=(D+2a)-⊿查有关表⊿=0.6B=(58+2×2)-0.6=62-0.6画出排样图,如图2-10。
图2-10 排样图(2)计算总冲压力由于冲模采用刚性卸装置和自然漏料方式,故总的冲压力为:P0=P+P tP=P1+P2而式中P t----------推件力P落--------落料时的冲裁力P冲--------冲孔时的冲裁力计算冲裁力:P落=KL tτ查表τ=300MPa=1.3[2*(58-16)+2*(30-16)+16π]*2*300/1000=126 (KN)P冲-=1.3*4π*3.5*2*300/1000=34(KN)计算推料力Pt:P t=nK t P 取n=3,查表K t=0.055Pt=3*0.055*(126+34)=26.4(KN)计算总冲压力P:P0= P落+ P冲-+Pt=126+34+26.4=186.4(KN)(3)确定压力中心:见图2-11,根据图形分析,因为工件图形对称,故落料时P落的压力中心在O1上;冲孔时P冲的压力中心在O2上。
第4章冲压模具设计实例
第4章 冲压模具设计实例
4
图4-1 圆弧与宽度的关系
第4章 冲压模具设计实例
5
(2)最小圆角半径:冲裁件的转角处应有一定的圆角,其最 小圆角半径允许值见表4-1。如果是少无废料排样冲裁,或者 采用镶拼模具时可不要求冲裁件有圆角。圆角大大地减小了应 力集中,有效地消除了冲模开裂现象。
第4章 冲压模具设计实例
在冲压生产中,模具设计必须在工艺方案确定的前提下进 行。因此,当得到一个产品的零件图时,首先是进行工艺规程 的制定,然后根据相应的工艺方案设计对应的模具。
第4章 冲压模具设计实例
42
为保证产品质量,同时考虑经济效益和操作的方便安全, 应全面兼顾生产组织各方面的合理性与可行性。在制定冷冲压 工艺规程时,必须制定包括原材料的准备,获得工件所需的基 本冲压工序和其它辅助工序(退火、表面处理等),制定冷冲压工 艺规程就是针对具体的冲压件恰当地选择各工序的性质,正确 确定坯料尺寸、工序数目、工序件尺寸,合理安排冲压工序的 先后顺序和工序的组合形式等内容,最终确定最佳的冷冲压工 艺方案。
3)弯曲件的弯边高度
20
弯曲件的弯边高度不宜过小,其值应为h>r+2t,如图4- 4(a)所示。当h较小时,弯边在模具上支持的长度过小,不容易 形成足够的弯矩,很难得到形状准确的零件。当零件要求h<r+ 2t时,则需预先在圆角内侧压槽,或增加弯边高度,弯曲后再切 除,如图4-4(b)所示。如果所弯直边带有斜角,则在斜边高度 小于r+2t的区段不可能弯曲到要求的角度,而且此处也容易开 裂(见图4-4(c)),因此必须改变零件的形状,加高弯边尺寸,如 图4-4(d)所示。
6
表4-1 冲裁件最小圆角半径 -
பைடு நூலகம்
第4章 冲压模具设计实例
模具设计精品教程-冲压模设计实例分析
冲压模设计实例分析【知识目标】➢熟悉并掌握冲压模设计的一般步骤;➢理解单工序模、复合模和级进模的设计方法。
【技能目标】➢根据冲压件的外形和所用材料,确定冲压工艺类型;➢能进行常见简单冲压模的设计。
【任务描述】如图12-1所示的冲压件,原料采用钢板,该选用哪种冲压工艺呢?怎样进行设计呢?图12-1 冲压件【任务分析】如图12-1所示的冲压件都可以使用冲压模进行生产,要正确选择合适的冲压工艺并设计相应的冲压模来生产这些零件,就要学习本模块的内容。
本模块包括单工序模设计实例详解,复合模设计实例详解和级进模设计实例详解。
【任务引导】(1)冲压模设计步骤一般应包括几步?(2)冲裁、弯曲、拉深等单工序冲压模设计的详细步骤是什么,如何进行设计?(3)复合模设计的详细步骤是什么,如何进行设计?(4)级进模设计的详细步骤是什么,如何进行设计?【知识准备】学习情境1 单工序模设计实例冲压模设计步骤一般应包括:1.分析冲压件的工艺性根据产品的技术图纸,分析冲压件的形状特点、尺寸大小、精度要求以及所选用的材料是否符合冲压工艺的要求。
良好的冲压工艺性应保证材料消耗少、工序数目少、占用设备数量少、模具结构简单而且使用寿命长、产品质量稳定、操作安全简单。
2.确定冲压工艺方案在冲压工艺分析的基础上,以极限变性参数及变形的趋向性分析为依据,提出各种可能的冲压工艺方案,进行综合分析、比较,确定适合于所给定的生产条件的最佳方案。
3.选定模具类型及结构形式,设计模具总装配图及零件图根据确定的冲压工艺和冲压件形状特点、精度要求、生产批量、模具加工条件、操作是否方便与安全等要求,选定冲模类型及结构形式。
此外还需要进行必要的计算,包括模具零件强度计算、压力中心计算、弹性元件选用和核算,再进行装配图设计、模具凸凹模等工作零件设计及标准零件的选取等。
4.冲压设备的选择根据工厂现有设备情况、生产批量、冲压工序性质、冲压件尺寸与精度、冲压加工所需的冲压力、计算变形力以及模具的闭合高度和轮廓尺寸等因素,合理选定冲压设备的类型规格。
冲压模具设计实例讲解
冲压模具设计实例讲解1. 引言冲压模具是用于制作零部件的工具,广泛应用于汽车、电子、家电等行业。
本文将通过一个冲压模具设计实例,为读者介绍冲压模具设计的根本流程和本卷须知。
2. 设计背景我们以一款汽车车门为例,说明冲压模具的设计过程。
车门是汽车的重要部件之一,需要经过冲压加工来获得所需的形状和尺寸。
3. 设计流程3.1 确定产品要求在冲压模具设计之前,首先要明确产品的要求。
包括车门的尺寸、形状、材料以及制造工艺要求等。
3.2 制定模具设计方案根据产品要求,我们可以开始制定模具设计方案。
主要包括冲头、模座、模具顶板等部件的尺寸、形状和结构设计。
3.3 3D建模在制定模具设计方案后,我们可以使用CAD软件进行3D建模。
这样可以更直观地了解模具的结构、尺寸和装配关系。
3.4 模具加工制造根据3D模型,我们可以进一步进行模具零部件的加工制造。
主要包括数控加工、电火花加工、磨削等工艺。
3.5 模具装配和调试将加工好的模具零部件进行装配,并进行模具调试。
确保模具的各个部位协调运转,到达设计要求。
4. 冲压模具设计的本卷须知4.1 材料选择在冲压模具设计中,材料的选择非常重要。
一般情况下,应选用高强度、高韧性、耐磨损的材料,以保证模具的使用寿命和精度。
4.2 精度要求冲压模具对产品的精度要求很高,因此在设计过程中要考虑到产品的尺寸、形状等因素,并进行适宜的修正和优化。
4.3 加工工艺冲压模具的加工工艺对模具的质量和性能起着决定性的作用。
因此,在制造过程中要选择适宜的加工工艺,并确保加工精度和质量。
4.4 模具保养模具使用后需要定期进行保养和维护,以延长模具的使用寿命。
包括清洁、润滑、更换易损件等工作。
5. 总结冲压模具的设计过程需要考虑产品要求、制定设计方案、进行3D建模、加工制造、装配和调试等多个环节。
同时要注意材料选择、精度要求、加工工艺和模具保养等方面的问题。
通过本文的实例讲解,读者可以更深入地了解冲压模具设计的根本流程和本卷须知。
冲压模具设计实例讲解
冲压模具设计实例讲解冲压模具是工业生产中常用的一种模具,它主要用于金属材料的成型加工。
冲压模具设计是冲压工艺中的重要环节,其设计合理与否直接影响到产品的质量和生产效率。
下面我将通过一个冲压模具设计实例来详细讲解其设计过程和要点。
我们以一个简单的盖板零件为例,来进行冲压模具的设计。
假设这个盖板零件由矩形材料(宽度80mm,长度100mm)制成,其上方有一个凸出的圆形凸台(直径50mm)。
首先,我们需要对盖板的形状和尺寸进行分析,在分析过程中确立产品的几何特征。
根据零件的外形和要求,将整个零件分解为以下几个部分:上模板、下模板、导向柱、顶针、顶模板以及凸台的凸模。
通过仔细测量和分析,确定每个部分的几何形状和尺寸。
其次,我们需要确定零件的材料以及厚度,并结合厚度来选择模具的材料。
在这个实例中,假设盖板材料为2mm的冷轧板(SPCC),则模具材料可以选择为优质合金工具钢。
第三步,我们根据零件的形状,在上模板和下模板上确定模具的开料位置和孔位。
开料位置应当考虑到材料的利用率和加工方便性,孔位的位置应与零件几何特征和加工工艺相匹配,以确保零件可以顺利成型。
在本实例中,下模板的开料位置经过综合考虑后确定在模具中心位置,上模板的开料位置则需要根据凸台的形状和位置来决定。
第四步,我们需要确定导向柱、顶针和顶模板的位置和尺寸。
导向柱的位置应当能够确保上下模板的精确定位,并保证模具在使用过程中的稳定性。
顶针的位置需要根据零件的特征来决定,以确保成型过程中零件的成型质量。
顶模板则需要根据零件的形状和材料选择合适的凸模形状和尺寸,以确保零件的成型质量。
最后一步,我们需要根据上述设计结果进行模具的绘图制作。
绘图要求精确、准确,需要包含所有的模具建构要素和加工尺寸等信息,以便制造部门进行模具加工和组装。
综上所述,冲压模具设计涉及到多个方面的考虑和决策,需要综合考虑零件的特征、工艺要求、材料特性等多个因素。
通过合理的设计和制作,可以保证模具的质量和使用效果,提高产品的生产效率和质量。
冲压模具设计实例讲解
第二节冲压工艺与模具设计实例一、摩托车侧盖前支承冲压工艺设计二、微型汽车水泵叶轮冲压工艺与模具设计一、摩托车侧盖前支承冲压工艺设计图12-1所示为摩托车侧盖前支承零件示意图,材料Q215钢,厚度1.5mm,年生产量5万件,要求编制该冲压工艺方案。
⒈零件及其冲压工艺性分析摩托车侧盖前支承零件是以2个mm的凸包定位且焊接组合在车架的电气元件支架上,腰圆孔用于侧盖的装配,故腰圆孔位置是该零件需要保证的重点。
另外,该零件属隐蔽件,被侧盖完全遮蔽,外观上要求不高,只需平整。
图12-1侧盖前支承零件示意图该零件端部四角为尖角,若采用落料工艺,则工艺性较差,根据该零件的装配使用情况,为了改善落料的工艺性,故将四角修改为圆角,取圆角半径为2mm。
此外零件的“腿”较长,若能有效地利用过弯曲和校正弯曲来控制回弹,则可以得到形状和尺寸比较准确的零件。
腰圆孔边至弯曲半径R中心的距离为2.5mm。
大于材料厚度(1.5mm),从而腰圆孔位于变形区之外,弯曲时不会引起孔变形,故该孔可在弯曲前冲出。
⒉确定工艺方案首先根据零件形状确定冲压工序类型和选择工序顺序。
冲压该零件需要的基本工序有剪切(或落料)、冲腰圆孔、一次弯曲、二次弯曲和冲凸包。
其中弯曲决定了零件的总体形状和尺寸,因此选择合理的弯曲方法十分重要。
(1) 弯曲变形的方法及比较该零件弯曲变形的方法可采用如图12-2所示中的任何一种。
第一种方法(图12-2a)为一次成形,其优点是用一副模具成形,可以提高生产率,减少所需设备和操作人员。
缺点是毛坯的整个面积几乎都参与激烈的变形,零件表面擦伤严重,且擦伤面积大,零件形状与尺寸都不精确,弯曲处变薄严重,这些缺陷将随零件“腿”长的增加和“腿”长的减小而愈加明显。
第二种方法(图12-2b)是先用一副模具弯曲端部两角,然后在另一副模具上弯曲中间两角。
这显然比第一种方法弯曲变形的激烈程度缓和的多,但回弹现象难以控制,且增加了模具、设备和操作人员。
冲压模具设计实例
弯曲模零件简图:如图3-11所示零件名称:汽车务轮架加固板材料:08钢板厚度:4mm生产批量:大量生产要求编制工艺方案。
图3-11 汽车备轮架加固板零件图一. 冲压件的工艺分析该零件为备轮架加固板,材料较厚,其主要作用是增加汽车备轮架强度。
零件外形对称,无尖角、凹陷或其他形状突变,系典型的板料冲压件。
零件外形尺寸无公差要求,壁部圆角半径,相对圆角半径为,大于表相关资料所示的最小弯曲半径值,因此可以弯曲成形。
的八个小孔和两个腰圆孔分别均布在零件的三个平面上,孔距有们置要求,但孔径无公差配合。
圆孔精度不高,弯曲角为,也无公差要求。
通过上述工艺分析,可以看出该零件为普通的厚板弯曲件,尺寸精度要求不高,主要是轮廓成形问题,又属大量生产,因此可以用冲压方法生产。
二. 确定工艺方案(1)计算毛坯尺寸该零件的毛坯展开尺寸可按式下式计算:上式中圆角半径;板料厚度;为中性层系数,由表查得;,为直边尺寸,由图3-13可知,将这些数值代入,得毛坯宽度方向的计算尺寸考虑到弯曲时板料纤维的伸长,经过试压修正,实际毛坯尺寸取。
同理,可计算出其他部位尺寸,最后得出如图3-14所示的弯曲毛坯的形状和尺寸。
(2)确定排样方式和计算材料利用率图3-14的毛坯形状和尺寸较大,为便于手工送料,选用单排冲压。
有三种排样方式,见图3-15a、b、c。
由表查得沿送料进方向的搭边,侧向搭边,因此,三种单排样方式产材料利用率分别为64%、64%和70%。
第三种排样方式,落料时需二次送进,但材料利用率最高,为此,本实例可选用第三种排样方法。
图3-14 加固板冲压件展开图a)材料利用率64% b)材料利用率64%c)材料利用率70%图3-15 加固板的排样方式(3)冲压工序性质和工序次数的选择冲压该零件,需要的基本工序和次数有:(a)落料;(b)冲孔6个;(c)冲底部孔2个;(d)冲孔;(e)冲2个腰圆孔;(f)首次弯曲成形;(g)二次弯曲成形。
(1)工序组合及其方案比较根据以上这些工序,可以作出下列各种组合方案。
冲压模具设计实例
冲压模具设计实例冲压模具是一种常见的机械模具,用于在冲压过程中对金属材料进行切割、弯曲、拉伸等加工。
下面是一个冲压模具设计的实例:设计要求:设计一个用于冲压汽车车身外壳的模具。
车身外壳由钣金材料制成,需要进行切割、弯曲和拉伸等加工。
模具应具有高效、稳定的冲压性能,并能够满足汽车外壳的精度和质量要求。
设计步骤:1.确定模具结构:根据汽车车身外壳的形状和加工要求,决定采用什么样的模具结构。
常见的模具结构有单步模具、多工位模具和逐步模具等。
考虑到冲压外壳的复杂形状和多种加工要求,选择采用多工位模具。
2.分析冲压工艺:对汽车车身外壳进行冲压工艺分析,确定需要进行的切割、弯曲和拉伸等加工步骤。
根据工艺要求,确定每一个工位的动作和工艺参数。
3.设计模具结构:根据冲压工艺和要求,设计模具的结构。
模具主要由上模板、下模板、顶柱、导向柱、導向套和模具座等组成。
根据模具的结构和功能要求,确定各个零部件的形状、尺寸和安装方式。
4.绘制模具图纸:根据设计的模具结构,绘制模具的详细图纸。
图纸应包含模具的各个零部件的尺寸、形状和配合要求,以及模具的装配和使用说明。
5.进行模具加工:根据模具图纸,制作和加工模具的各个零部件。
根据材料的选择和工艺要求,采用不同的加工方式,包括铣削、车削、镗削和磨削等。
6.完成模具装配:将加工好的各个零部件进行装配,确保零部件的配合精度和工作性能。
对模具进行调试和试用,保证模具的稳定性和工艺性能。
7.进行模具试产:使用设计好的模具对汽车车身外壳进行试产。
根据试产效果和质量,对模具进行优化和改进。
对模具的结构和工艺参数进行调整,以提高冲压效率和产品质量。
8.进行产量生产:在模具试产通过后,开始进行批量生产。
根据生产计划,进行模具的换模和调试,确保每个模具的稳定性和工艺性能。
对产量进行检测和控制,保证产品的质量和工艺要求。
以上是一个冲压模具设计的实例。
在实际设计中,还需要考虑材料、设备和加工工艺等因素。
《冲压模具课程设计》范例
《冲压模具课程设计》范例《冲压模具课程设计》范例【范例】(1)题目:东风EQ-1090汽车储气简支架(2)原始数据数据如图7—1所示。
大批量生产,材料为Q215,t=3mm。
图7-1零件图(3)工艺分析此工件既有冲孔,又有落料两个工序。
材料为Q235、t=3mm的碳素钢,具有良好的冲压性能,适合冲裁,工件结构中等复杂,有一个直径φ44mm的圆孔,一个60mm×26mm、圆角半径为R6mm的长方形孔和两个直径13mm的椭圆孔。
此工件满足冲裁的加工要求,孔与孔、孔与工件边缘之间的最小壁厚大于8mm。
工件的尺寸落料按ITll级,冲孔按IT10级计算。
尺寸精度一般,普通冲裁完全能满足要求。
(4)冲裁工艺方案的确定①方案种类该工件包括落料、冲孑L两个基本工序,可有以下三种工艺方案。
方案一:先冲孔,后落料。
采用单工序模生产。
方案二:冲孔一落料级进冲压。
采用级进模生产。
方案三:采用落料一冲孔同时进行的复合模生产。
②方案的比较各方案的特点及比较如下。
方案一:模具结构简单,制造方便,但需要两道工序,两副模具,成本相对较高,生产效率低,且更重要的是在第一道工序完成后,进入第二道工序必然会增大误差,使工件精度、质量大打折扣,达不到所需的要求,难以满足生产需要。
故而不选此方案。
方案二:级进模是一种多工位、效率高的加工方法。
但级进模轮廓尺寸较大,制造复杂,成本较高,一般适用于大批量、小型冲压件。
而本工件尺寸轮廓较大,采用此方案,势必会增大模具尺寸,使加工难度提高,因而也排除此方案。
方案三:只需要一套模具,工件的精度及生产效率要求都能满足,模具轮廓尺寸较小、模具的制造成本不高。
故本方案用先冲孔后落料的方法。
③方案的确定综上所述,本套模具采用冲孔一落料复合模。
(5)模具结构形式的确定复合模有两种结构形式,正装式复合模和倒装式复合模。
分析该工件成形后脱模方便性,正装式复合模成形后工件留在下模,需向上推出工件,取件不方便。
冲压模具设计实例
冲压模具设计实例设计实例:汽车车门内板冲压模具1.需求分析首先进行需求分析,了解客户对产品的要求。
在这个实例中,我们的客户要求生产汽车车门内板,需要模具能够冲压出符合要求的车门内板。
2.零件设计根据客户需求,设计车门内板零件。
考虑到实际生产中的材料和工艺要求,确定车门内板的形状、尺寸和厚度等。
3.工艺设计根据车门内板的形状和材料特性,确定冲压工艺。
包括冲压次数、冲压力度、冲裁布局等。
4.模具设计根据上述工艺要求,开始进行冲压模具的设计。
主要步骤如下:(1)模具结构设计:确定模具的结构形式,包括上模座、下模座、导柱、导套等部件。
(2)模具材料选择:根据模具的使用要求和生产批量确定模具材料。
汽车车门内板的生产通常使用耐磨性、强度高的工具钢。
(3)模具零件设计:根据模具结构设计的要求,设计模具的每个零件,包括上模、下模、剪切刀等。
(4)组件装配设计:将每个零件进行装配设计,确保零件可以精准地定位和配合。
(5)冲裁布局设计:根据冲裁过程的要求,确定上模、下模和冲裁刀的位置和布局,确保冲裁过程稳定和准确。
(6)模具热处理设计:由于模具在冲压过程中受到较大的应力和摩擦力,需要进行热处理,提高其硬度和耐磨性。
(7)模具安装设计:考虑到模具的使用和维护,设计合理的模具安装方式,方便更换模具和进行维护。
5.模具加工制造根据模具设计图纸,进行模具加工制造。
包括数控加工、磨削、电火花等工艺。
确保模具加工精度和质量。
6.模具调试和试产完成模具制造后,进行模具的调试和试产。
包括模具的安装和调整,冲压参数的调整等。
确保模具运行稳定和冲压产品质量合格。
通过以上步骤,完成一套汽车车门内板冲压模具的设计和制造。
在实际生产中,可以根据需求进行相应的改进和优化。
冲压模具设计是一门综合性较强的工程技术,需要综合考虑材料、工艺、机械、加工等方面的知识。
只有通过科学合理的设计,才能制造出高质量的冲压模具。
冲压模具设计和制造实例(doc42页).doc
冲压模具设计与制造实例例:图1所示冲裁件,材料为A3,厚度为2mm,大批量生产。
试制定工件冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。
零件名称:止动件生产批量:大批材料:A3材料厚度:t=2mm一、冲压工艺与模具设计1.冲压件工艺分析①材料:该冲裁件的材料A3钢是普通碳素钢,具有较好的可冲压性能。
②零件结构:该冲裁件结构简单,并在转角有四处R2圆角,比较适合冲裁。
③尺寸精度:零件图上所有未注公差的尺寸,属自由尺寸,-0.74 0-0.52-0.52-0.52-0.52可按IT14级确定工件尺寸的公差。
孔边距12mm 的公差为-0.11,属11级精度。
查公差表可得各尺寸公差为:零件外形:65 mm 24 mm 30 mm R30 mm R2 mm零件内形:10 mm孔心距:37±0.31mm 结论:适合冲裁。
2.工艺方案及模具结构类型该零件包括落料、冲孔两个工序,可以采用以下三种工艺方案:①先落料,再冲孔,采用单工序模生产。
②落料-冲孔复合冲压,采用复合模生产。
③冲孔-落料连续冲压,采用级进模生产。
方案①模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件大批量生产的需求。
由于零件结构简单,为提高生产效率,主要应采用复合冲裁或级进冲裁方式。
由于孔边距尺寸12 mm 有公差要求,为了更好地保证此尺寸精度,最后确定 用复合冲裁方式进行生产。
+0.36 0-0.11工件尺寸可知,凸凹模壁厚大于最小壁厚,为便于操作,所以复合模结构采用倒装复合模及弹性卸料和定位钉定位方式。
3.排样设计查《冲压模具设计与制造》表2.5.2,确定搭边值:两工件间的搭边:a=2.2mm工件边缘搭边:a1=2.5mm步距为:32.2mm条料宽度B=D+2a1=65+2*2.5=70确定后排样图如2所示一个步距内的材料利用率η为:η=A/BS×100%=1550÷(70×32.2)×100%=68.8%查板材标准,宜选900mm×1000mm的钢板,每张钢板可剪裁为14张条料(70mm×1000mm),每张条料可冲378个工件,则η为:η=nA1/LB×100%=378×1550/900×1000×100%=65.1%即每张板材的材料利用率为65.1%4.冲压力与压力中心计算⑴冲压力落料力F总=1.3Ltτ=1.3×215.96×2×450=252.67(KN)其中τ按非退火A3钢板计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案六:将方案三全部工序组合,采用带料连续冲压。其优点是工序集中,只用一副模具完成全部工序,其实质是把方案三的各工序分别布置在连续模的各工位上,所以还具有方案三的各项优点,缺点是模具结构复杂,安装、调试和维修困难。制造周期长。
直径 为一般要求的自由尺寸,冲压成形的直径精度的偏差大于表4-1拉深直径的极限偏差。但高度尺寸 精度高于表4-3中的尺寸偏差,需由整形保证。
表12-108Al—ZF的力学性能(GB/T5213—1985T和GB/T710—1991)
/MPa
(%)
不小于
260~300
200
44
0.66
初步分析可以知道叶轮零件的冲压成形需要多道工序。首先,零件中部是有凸缘的圆筒拉深
支点间距 近似取10mm。将上述数据代入 表达式,得:
取 ,得
压料力 =50%×2376=1188
则第二道工序总冲压力
根据第二道工序所需要的冲压力,选用公称压力为400kN的压力机完全能够满足使用要求。
(3)第三道工序—二次弯形(见图12-8)该工序仍需要压料,故冲压力包括自由弯曲力 和压料力 。
自由弯曲力
件,有两个价梯,筒底还要冲 的孔;其次,零件外圈为翻边后形成的7个“竖立”叶片,围绕中心均匀分布。另外,叶片翻边前还要修边、切槽、由于拉深圆角半径比较小(0.5~1),加上对叶片底面有跳动度的要求,因此还需要整形。
对拉深工序,在叶片展开前,按料厚中心线计算有 ≈4.53>1.4,并且叶片展开后凸缘将更宽,所以属于宽凸缘拉深。另外,零件拉深度大(如最小价梯直径的相对高度h/d=20.5/13.5=1.52,远大于一般带凸缘筒形件第一次拉深许可的最大相对拉深高度),所以拉深成形比较困难,要多次拉深。
考虑到弯曲时材料略有伸长,故取毛坯展开长度L=168mm。
对于精度要求高的弯曲件,还需要通过试弯后进行修正,以获得准确的展开尺寸。
(2)确定排样方案和计算材料利用率
1)确定排样方案,根据零件形状选用合理的排样方案,以提高材料利用率。该零件采用落料与冲孔复合冲压,毛坯形状为矩形,长度方向尺寸较大,为便于送料,采用单排方案(见图12-4)。
图12-1侧盖前支承零件示意图
该零件端部四角为尖角,若采用落料工艺,则工艺性较差,根据该零件的装配使用情况,为了改善落料的工艺性,故将四角修改为圆角,取圆角半径为2mm。此外零件的“腿”较长,若能有效地利用过弯曲和校正弯曲来控制回弹,则可以得到形状和尺寸比较准确的零件。
腰圆孔边至弯曲半径R中心的距离为2.5mm。大于材料厚度(1.5mm),从而腰圆孔位于变形区之外,弯曲时不会引起孔变形,故该孔可在弯曲前冲出。
根据第一道工序所需的冲压力,选用公称压力为400kN的压力机就完全能够满足使用要求。
(2)第二道工序—一次弯形(见图12-7)该工序的冲压力包括预弯中部两角和弯曲、校正端部两角及压料力等,这些力并不是同时发生或达到最大值的,最初只有压弯力和预弯力,滑块下降到一定位置时开始压弯端部两角,最后进行校正弯曲,故最大冲压力只考虑校正弯曲力 和压料力 。
⒉确定工艺方案
首先根据零件形状确定冲压工序类型和选择工序顺序。冲压该零件需要的基本工序有剪切(或落料)、冲腰圆孔、一次弯曲、二次弯曲和冲凸包。其中弯曲决定了零件的总体形状和尺寸,因此选择合理的弯曲方法十分重要。
(1)弯曲变形的方法及比较该零件弯曲变形的方法可采用如图12-2所示中的任何一种。
第一种方法(图12-2a)为一次成形,其优点是用一副模具成形,可以提高生产率,减少所需设备和操作人员。缺点是毛坯的整个面积几乎都参与激烈的变形,零件表面擦伤严重,且擦伤面积大,零件形状与尺寸都不精确,弯曲处变薄严重,这些缺陷将随零件“腿”长的增加和“腿”长成,因此制定合理的成形工艺方案十分重要。考虑到生产批量大,应在生产合格零件的基础上尽量提高生产率效率,降低生产成本。要提高生产效率,应该尽量复合能复合的工序。但复合程度太高,模具结构复杂,安装、调试困难,模具成本提高,同时可能降低模具强度,缩短模具寿命。根据叶轮零件实际情况,可能复合的工序有:落料与第一次拉深;最后一次拉深和整形;修边、切槽;切槽、;冲孔;修边、冲孔;切槽、冲孔。
式中 —卸料力系数,由表2-8查取;
—落料力(N)。
将数值代入卸料力公式可得
_
冲孔推件力
式中 —梗塞件数量(即腰圆形废料数),取n=4;
—推件力系数,由表2-8查取;
—冲孔力(N)。
将数值代入推件力公式可得
第一道工序总冲压力
=264600+9024+8580
=282204≈282(kN)
选择冲压设备时着重考虑的主要参数是公称压力、装模高度、滑块行程、台面尺寸等。
图12-6落料冲孔模具结构形式图12-7一次弯形模具结构形式
图12-8二次弯形模具结构形式图12-9冲凸包模具结构形式
二、微型汽车水泵叶轮冲压工艺与模具设计
图12-10所示叶轮零件,材料08Al—ZF,大批量生产。要求确定该零件冲压成形工艺,设计冲压成形模具。
⒈零件及其冲压工艺性分析
叶轮用于微型汽车上发动机冷却系统的离心式水泵内,工件时以1500~3000r/min左右的速度旋转,使冷却水在冷却系统中不断地循环流动。为保证足够的强度和刚度,叶轮采用厚度为2mm的钢板。
综合上述,该零件虽然对表面外观要求不高,但由于“腿”特别长,需要有效地利用过弯曲和校正来控制回弹,其方案三和方案六都能满足这一要求,但考虑到该零件件生产批量不是太大,故选用方案三,其冲压工序如下:
落料冲孔、一次弯形(弯曲端部两角并使中间两角预弯45°)、二次弯形(弯曲中间两角)、冲凸包。
⒊主要工艺参数计算
冲裁力
式中L—剪切长度;
t—材料厚度(1.5mm);
—拉深强度,由表8-49查取,取 =400Mpa;
τ—抗剪强度。
剪切长度L按图12-5所示尺寸计算`
式中 —落料长度(mm);
—冲孔长度(mm)。
将图示尺寸代入 计算公式可得
因此,
=376+65=441mm
将以上数值代入冲裁力计算公式可得
落料卸料力
对于冲裁及翻边工序,考虑到零件总体尺寸不大,而且叶片“竖直”后各叶片之间的空间狭小,结构紧凑,另外拉深后零件的底部还要冲 的孔,所以模具结构设计与模具制造有一定难度,要特别注意模具的强度和刚度。
综上所述,叶轮由平板毛坯冲压成形应包括的基本工序有:冲裁(落料、冲孔、修边与切槽)、拉深(多次拉深)、翻边(将外圈叶片翻成竖直)等。由于是多工序、多套模具成形,还要特别注意各工序间的定位。
图12-3毛坯计算图图12-4排样方案
搭边值 和 由表2-12查得,得 =2mm, =1.8mm。????
2)确定板料规格和裁料方式。根据条料的宽度尺寸,选择合适的板料规格,使剩余的边料越小越好。该零件宽度用料为172mm,以选择1.5mm×710mm×1420mm的板料规格为宜。
裁料方式既要考虑所选板料规格、冲制零件的数量,又要考虑裁料操作的方便性,该零件以纵裁下料为宜。对于较为大型的零件,则着重考虑冲制零件的数量,以降低零件的材料费用。
为减轻震动,减小噪声,叶轮零件的加工精度有一定的要求。除了7个叶轮形状和尺寸应一致外,叶轮中部与固定轴配合部位的要求也较高。由于靠冲压加工难以达到直径 和 以及高度尺寸 的要求,实际生产中采用了冲压成形后再切削加工的办法(需进行切削加工的表面标有粗糙度,图12-10)。冲压成形后要留有足够的机加余量,因此孔 和 的冲压尺寸取为 和 。
第二节冲压工艺与模具设计实例
一、摩托车侧盖前支承冲压工艺设计
二、微型汽车水泵叶轮冲压工艺与模具设计
一、摩托车侧盖前支承冲压工艺设计
图12-1所示为摩托车侧盖前支承零件示意图,材料Q215钢,厚度1.5mm,年生产量5万件,要求编制该冲压工艺方案。
⒈零件及其冲压工艺性分析
摩托车侧盖前支承零件是以2个 mm的凸包定位且焊接组合在车架的电气元件支架上,腰圆孔用于侧盖的装配,故腰圆孔位置是该零件需要保证的重点。另外,该零件属隐蔽件,被侧盖完全遮蔽,外观上要求不高,只需平整。
(3)计算材料消耗工艺定额和材料利用率。根据排样计算,一张钢板可冲制的零件数量为n=4×59=236(件)。
材料消耗工艺定额
材料利用率
=79.7%
零件面积由图12-5计算得出。
图12-5落料、冲孔工序略图
⒋计算各工序冲压力和选择冲压设备
(1)第一道工序—落料冲孔(见图12-6)该工序冲压力包括冲裁力 ,卸料力 和推料力 ,按图12-6所示的结构形式,系采用打杆在滑块快回到最高位置时将工件直接从凹模内打出,故不再考虑顶件力 。
(1)毛坯展开尺寸(查工具书)展开尺寸按图12-3分段计算。毛坯展开长度
式中 =12.5mm;
=45.5m;
=30mm;
和 按 计算。
其中圆周半径r分别为2mm和4mm,材料厚度t=1.5mm,中性层位置系数x按 由表3-2查取。当r=2mm时取x=0.43,r=4mm时取x=0.46。
将以上数值代入上式得
压料力
则第三道工序总冲压力
第三道工序所需的冲压力很小,若单从这一角度考虑,所选的压力机太小,滑块行程不能满足该工序的加工需要。故该工序宜选用滑块行程较大的400kN的压力机。
(4)第四道工序—冲凸包(见图12-9)该工序需要压料和顶料,其冲压力包括凸包成形力 和卸料力 及顶件力 ,从图12-1所示标注的尺寸看,凸包的成形情况与冲裁相似,故凸包成形力 可按冲裁力公式计算得
图12-2弯曲成形
a)一副模具成形 b)、c)两副模具成形
(2)工序组合方案及比较根据冲压该零件需要的基本工序和弯曲成形的不同方法,可以作出下列各种组合方案。