力的合成与分解知识点典型例题知识讲解
力的合成与分解 知识点总结与典例(最新)
只能提供拉力
可以提供不能发生突变
【考点分类深度解析】
考点一力的合成
【典例1】物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜面平行。已知物块与斜面之间的动摩擦因数为 ,重力加速度取10m/s2。若轻绳能承受的最大张力为1 500 N,则物块的质量最大为()
解法三:(正交分解法)
将FN、F沿x、y轴进行分解.
Fsin 30°=FNsin 30°,Fcos 30°+FNcos 30°=mg,F=kx,联立得x= ,故C正确.
考点三“活结”和“死结”模型
【典例3】如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态。如果只人为改变一个条件,当衣架静止时,下列说法正确的是()
(2)在任何情况下,沿绳、杆和弹簧伸缩方向的弹力处处相等.
2.三种模型的不同点
轻杆
轻绳
轻弹簧
形变
特点
只能发生微小形变,不能弯曲
只能发生微小形变,各处弹力大小相等,能弯曲
发生明显形变,可伸长,也可压缩,不能弯曲
方向
特点
不一定沿杆,可以是任意方向
只能沿绳,指向绳收缩的方向
一定沿弹簧轴线,与形变方向相反
作用效果特点
2.合力的大小范围
(1)两个共点力的合成
|F1-F2|≤F合≤F1+F2
即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小,为|F1-F2|,当两力同向时,合力最大,为F1+F2.
(2)三个共点力的合成
①三个力共线且同向时,其合力最大,为F1+F2+F3.
②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力最小值为零;如果第三个力不在这个范围内,则合力最小值等于最大的力减去另外两个力.
知识讲解 力的合成与分解 (基础)
力的合成与分解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。
要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
高一物理《力的合成与分解》习题与详解总结
高一物理《力的合成与分解》专题辅导知识要点梳理知识点一——合力与分力、共点力1、合力与分力几个力共同作用的效果与某一个力单独作用的效果相同,则这一个力就叫做那几个力的合力。
那几个力称为这一个力的分力2、共点力如果几个力同时作用在物体上的同一点或者它们的作用线相交于同一点,我们就把这几个力叫做共点力。
知识点二——力的合成1、同一直线上两个力的合成若两个力同方向, F =F1 +F2,方向与分力的方向相同若两个力反方向,,方向与分力大的方向相同2、不在同一直线上两个力的合成,满足平行四边形定则若两个分力大小分别为F1、F2,夹角为,则两个力合力的大小讨论:a.当θ=00时,F =F1 +F2b. 当θ=1800时,c. 当θ=900时,d. 当θ=1200时,且F1 =F2时,F = F1 =F2e.当θ在00∽1800内变化时,当θ增大时,F随之减小,θ减小时,F随之增大知识点三——力的分解1、求一个已知力的分力叫做力的分解。
力的分解是力的合成的逆运算。
力的分解同样也遵守平行四边形定则。
2、把一个力分解成两个分力,仅是一种等效替代关系,不能认为这两个分力有两个施力物体。
同时分力的作用点也一定要和已知力的作用点相同。
3、力的分解时,应该根据力的实际效果来确定它的分力,因为分力与合力只有在相同作用效果的前提下才能够相互代替。
因此力的分解的关键是找出力的作用效果。
常见的几种情况分析如下:(1)斜面上的物体的重力一方面使物体沿斜面下滑,另一方面使物体紧压斜面,因此重力一般分解为沿斜面向下和垂直于斜面向下的两个力F1、F2,如图所示。
(2)地面上物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2,如图所示。
(3)用绳子挂在墙上的篮球受到的重力G产生了两个效果,一个效果将绳子拉紧,另一个效果使球压墙,所以球的重力G可分解为斜向下拉绳子的力F1和水平压墙的力F2,如图所示。
力的合成和分解知识点典型例题
力的合成和分解是物理学中的重要概念,通过以下典型例题可以帮助大家更好地理解和掌握这个知识点。
1. 两个力的合成:假设有一个物体受到两个力F1和F2的作用,F1为5N,方向向东,F2为3N,方向向北。
求这两个力的合力以及合力的方向。
解答:首先,我们需要画出两个力的矢量图。
从原点开始,分别画出长度为5cm和3cm的向东和向北的矢量。
然后,按照平行四边形定则将这两个矢量进行合成。
最后,找到合成矢量的方向,即可得到合力的大小和方向。
2. 三个力的合成:假设有一个物体受到三个力F1、F2和F3的作用,F1为10N,方向向东;F2为15N,方向向北;F3为8N,方向向西。
求这三个力的合力以及合力的方向。
解答:同样地,我们需要画出三个力的矢量图。
从原点开始,分别画出长度为10cm、15cm和8cm 的向东、向北和向西的矢量。
然后,按照平行四边形定则将这三个矢量进行合成。
最后,找到合成矢量的方向,即可得到合力的大小和方向。
3. 力的分解:假设一个力F的作用点在物体上,F的大小为10N,方向未知。
如果我们将这个力分解为两个分力,一个沿x轴方向,一个沿y轴方向。
求这两个分力的大小。
解答:首先,画出力的矢量图,然后将这个矢量分解为两个分力。
假设x轴方向的分力为Fx,y轴方向的分力为Fy。
根据平行四边形定则,我们可以得到Fx和Fy的大小。
最后,根据题目给定的条件,确定Fx和Fy的具体数值。
通过以上典型例题,我们可以更好地理解力的合成和分解的概念,并掌握如何运用平行四边形定则进行力的合成和分解。
力的合成与分解知识点与例题讲解
力的合成与分解知识点与例题讲解Prepared on 22 November 2020力的合成(基础篇)命题人:rain1.合力:一个物体受到几个力共同作用产生的效果与一个力对物体作用产生的效果相同时,这个力就叫做那几个力的合力2.合成:求几个力的合力叫做力的合成.三、合力的求法1.力的平行四边形定则:如果用表示两个共点力F1和F2的线段为邻边作平行四边形,那么,合力F的大小和方向就可以用这两个邻边之间的对角线表示出来。
2.共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于同一点,这几个力叫做共点力。
3.平行四边形定则的两种应用方法(1)图解法a.两个共点力的合成:从力的作用点作两个共点力的图示,然后以F1、F2为边作平行四边形,对角线的长度即为合力的大小,对角线的方向即为合力的方向。
b.两个以上共点力的合成:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到所有的力都合成进去,最后得到的结果就是这些力的合力。
(2)计算法先依据平行四边形定则画出力的平行四边形,然后依据数学公式(如余弦定理)算出对角线所表示的合力的大小和方向。
当两个力互相垂直时,有:F=√F12+F22、tanθ=F2/F1四、合力大小的范围(1)合力F随θ的增大而减小(2)当θ=0°时,F有最大值Fmax=F1+F2,当θ=180°时,F有最小值Fmin=F1-F2(3)合力F既可以大于,也可以等于或小于原来的任意一个分力一般地 | F1-F2≤ F ≤ F1+F2五、矢量与标量矢量:即有大小,又有方向,并遵循平行四边形定则的物理量叫做矢量。
标量:只有大小而没有方向,遵循代数求和法则的物理量叫做标量。
矢量和标量的根本区别就在于它们分别遵循两种不同的求和运算法则.力的分解(基础篇)命题人:尚瑞阳一、分力及力的分解概念1.力的分力:几个力共同产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力。
力的合成与分解知识点与例题讲解
千里之行,始于足下。
力的合成与分解知识点与例题讲解力的合成和分解是力学中的重要概念,它们用来描述多个力对物体产生的总效果以及将一个力分解成多个分力的过程。
以下是关于力的合成和分解的知识点与例题讲解。
一、力的合成力的合成是指将多个力按照一定的方法相加得到它们的合力。
合力是多个力的矢量和,可以用矢量图形法或分解法求得。
1. 矢量图形法首先,将力的大小按比例用箭头表示,箭头的长度表示力的大小,箭头的方向表示力的方向。
然后,将各个力的箭头按照规定的尺度和方向画在同一张纸上,箭头起点相同,终点相连,则合力的箭头就是从起点到终点的箭头。
2. 分解法将一个力按照一定的规则分解成两个或多个力的过程称为力的分解。
常用的分解方法有水平方向分解和垂直方向分解。
水平方向分解:将力按照水平方向分解为两个分力,一个是水平方向分力,另一个是垂直方向分力。
根据三角函数的定义,水平方向分力等于力的大小乘以力的水平方向的余弦值,垂直方向分力等于力的大小乘以力的垂直方向的正弦值。
垂直方向分解:将力按照垂直方向分解为两个分力,一个是水平方向分力,另一个是垂直方向分力。
根据三角函数的定义,水平方向分力等于力的大小乘以力的水平方向的正弦值,垂直方向分力等于力的大小乘以力的垂直方向的余弦值。
第1页/共3页锲而不舍,金石可镂。
二、力的分解力的分解是指将一个力分解成两个或多个部分力的过程。
分解力的目的是分析力的作用效果,常用的分解方法有水平方向分解和垂直方向分解。
1. 水平方向分解将一个力的大小和方向分解成水平方向分力和垂直方向分力,可以用以下公式表示:水平分力 = 力的大小× cosθ垂直分力 = 力的大小× sinθ其中,θ为力的方向与水平方向之间的夹角。
2. 垂直方向分解将一个力的大小和方向分解成水平方向分力和垂直方向分力,可以用以下公式表示:水平分力 = 力的大小× sinθ垂直分力 = 力的大小× cosθ其中,θ为力的方向与水平方向之间的夹角。
(完整word版)高一物理力的合成与分解基础知识讲解
高一物理力的合成与分解基础知识讲解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。
要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
力的合成与分解
力的合成与分解一、精讲释疑1、力的合成方法(1)平行四边形定则求两个互成角度的共点力F1、F2的合力时,可以把表示F1、F2这两个力的形状作为邻边,画平行四边形,这两个邻边所夹的对角线即表示合力的大小和方向。
①当两个力在同一直线上时,求合力时,如果两力同向,直接相加,反向相减。
②如果求两个以上的共点力的合力时,先把其中任意两力做一平行四边形,把这两力的合力求出来,然后再把这两力的合力和第三个力再合成,得出这三个力的合力,依此类推,直到把所有力都合成进去,最后得到的合力就是这些力的合力。
求两个以上的共点力的合力,用正交分解。
(2)三角形定则把要合成的两个力F1、F2首尾相接的画出来,再把F1、F2的另外两端也连接起来,这种连线就表示合力的大小和方向。
例1如果两个共点力F1、F2的合力为F,则A、合力F一定大于任何一个分力FF1F2这句话的意思,三角形的一条边一定大于其他两条边,显然错误。
B 、 合力F 的大小可能等于F 1,也可能等于F 2等腰三角形,其中一腰为合力,正确。
C 、 合力F 有可能小于任何一个分力正确。
D 、 合力F 的大小随F 1、F 2间夹角的增大而减小。
正确。
随平行四边形邻边的夹角增大,所夹对角线减小。
两个力夹角为0时,合力最大,为两个分力之和。
两个力夹角增大,合力减小。
两个力夹角为180°时,合力最小,为二力之差。
2、力的分解方法力的合成的逆运算。
同样遵守平行四边形定则。
两个确定的分力,它的合力是唯一的。
如果把一个力分解,可以分解为方向、大小都不同的分力,不是唯一的。
F F 1F 2 FF 1F 2 FF(1)根据力的实际效果进行分解 三个基本步骤:①根据力的实际效果确定两个分力的方向。
如斜面上物体的重力分解,重力有两个效果。
压斜面的效果,沿斜面往下冲的效果。
②根据已知的力(要分解的力)和这两个分力的方向做四边形。
③由四边形确定分力的大小。
例1有一个三角形支架,一端用轻绳悬挂一个物体,把物体对绳的拉力进行分解。
高一 物理 力的合成与分解
一、思维导图二、知识点要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。
要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
说明:①平行四边形定则只适用于共点力的合成,对非共点力的合成不适用。
②今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。
3.合力与分力的大小关系:由平行四边形可知:F1、F2夹角变化时,合力F的大小和方向也发生变化。
力的合成与分解 知识点总结与典例
力的合成与分解知识要点一、力的合成1.合力与分力(1)定义:如果一个力的作用效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力。
(2)逻辑关系:合力和分力是一种等效替代关系。
2.共点力:作用在物体上的力的作用线或作用线的反向延长线交于一点的力。
3.力的合成的运算法则(1)平行四边形定则:求两个互成角度的共点力F1、F2的合力,可以用表示F1、F2的有向线段为邻边作平行四边形,平行四边形的对角线(在两个有向线段F1、F2之间)就表示合力的大小和方向,如图甲所示。
(2)三角形定则:求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾顺次相接地画出,把F1、F2的另外两端连接起来,则此连线就表示合力的大小和方向,如图乙所示。
4.力的合成方法及合力范围的确定(1)共点力合成的方法①作图法②计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力。
(2)合力范围的确定①两个共点力的合力范围:|F1–F2|≤F≤F1+F2,即两个力的大小不变时,其合力随夹角的增大而减小。
当两个力反向时,合力最小,为|F1–F2|;当两个力同向时,合力最大,为F1+F2。
②三个共点力的合成范围A.最大值:三个力同向时,其合力最大,为F max=F1+F2+F3。
B.最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min=0;如果不能,则合力的最小值的大小等于最大的一个力减去另外两个力和的绝对值,即F min=F1–|F2+F3|(F1为三个力中最大的力)。
(3)解答共点力的合成问题时的两点注意①合成力时,要正确理解合力与分力的大小关系。
合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势。
②三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差。
二、力的分解1.概念:求一个力的分力的过程。
2.遵循的原则:平行四边形定则或三角形定则。
高一物理力的合成与分解知识点经典例题精析
物理学科导学案
教师: 学生: 年级: 高一日期: 星期:六时段: 下午2:00--4:00
B .只受重力与浮力的作用
C .受重力,浮力,斜向上的冲力
D .受重力,浮力,风力,斜向上的冲力
2.人站在自动扶梯的水平踏板上,随扶梯斜向上匀速运动,如图所示.以下说法正确的是 (
A .人受到重力和支持力的作用
B .人受到重力、支持力和摩擦力的作用
C .人受到的合外力不为零
D .人受到的合外力方向与速度方向相同
3.如图所示,质量为m 的物体放在倾角为θ的斜面上,它跟斜面的动摩擦因数为µ,在恒定水平推力F 的作用下物体沿斜面向上匀速运动,则物体受到的摩擦力是( )
A .µmg cos θ
B .µ(mg sin θ+F cos θ)
C .F cos θ- mg sin θ
D .µ(mg cos θ+F sin θ)
4. 如图所示,物体a 、b 和c 叠放在水平桌面上,水平为F b =5N 、F c =10N 分别作用于物体b 、c 上,a 、b 和c 仍保持静止.以f 1、f 2、f 3分别表示a 与b 、b 与c 、c 与桌面间的静摩擦力的大小,则C
A. f 1=5N ,f 2=0,f 3=5N
B. f 1=5N ,f 2=5N ,f 3=0
C. f 1=0,f 2=5N ,f 3=5N
D. f 1=0,f 2=10N ,f 3=5N m F θ。
力的合成和分解解题技巧
F 1 F 2 F O F 1 F 2F O 力的合成和分解解题技巧一. 知识清单:1.力的合成(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。
由三角形定则还可以得到一个有用的推论:如果n 个力首尾相接组成一个封闭多边形,则这n 个力的合力为零。
(3)共点的两个力合力的大小围是|F 1-F 2| ≤ F 合≤ F 1+F 2(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
2.力的分解(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
(3)几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:①当已知合力F 的大小、方向及一个分力F 1的方向时,另一个分力F 2取最小值的条件是两分力垂直。
如图所示,F 2的最小值为:F 2min =F sin α②当已知合力F 的方向及一个分力F 1的大小、方向时,另一个分力F 2取最小值的条件是:所求分力F 2与合力F 垂直,如图所示,F 2的最小值为:F 2min =F 1sin α ③当已知合力F 的大小及一个分力F 1的大小时,另一个分力F 2取最小值的条件是:已知大小的分力F 1与合力F 同方向,F 2的最小值为|F -F 1|(5)正交分解法:把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
(新)中学物理《第二节 力的合成与分解》知识详解及典型训练试题
第二节 力的合成与分解【基本概念、规律】一、力的合成 1.合力与分力 (1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.(2)关系:合力和分力是一种等效替代关系. 2.力的合成:求几个力的合力的过程. 3.力的运算法则(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向. 二、力的分解1.概念:求一个力的分力的过程.2.遵循的法则:平行四边形定则或三角形定则. 3.分解的方法(1)按力产生的实际效果进行分解. (2)正交分解. 三、矢量和标量 1.矢量既有大小又有方向的物理量,相加时遵循平行四边形定则. 2.标量只有大小没有方向的物理量,求和时按算术法则相加.【重要考点归纳】考点一 共点力的合成 1.共点力合成的方法 (1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法. 2.重要结论(1)二个分力一定时,夹角θ越大,合力越小.(2)合力一定,二等大分力的夹角越大,二分力越大. (3)合力可以大于分力,等于分力,也可以小于分力. 3.几种特殊情况下力的合成(1)两分力F 1、F 2互相垂直时(如图甲所示):F 合=F 21+F 22,tan θ=F 2F 1.甲 乙(2)两分力大小相等时,即F 1=F 2=F 时(如图乙所示):F 合=2Fcos θ2.(3)两分力大小相等,夹角为120°时,可得F 合=F. 解答共点力的合成时应注意的问题 (1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势. (2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.考点二 力的两种分解方法 1.力的效果分解法(1)根据力的实际作用效果确定两个实际分力的方向; (2)再根据两个实际分力的方向画出平行四边形; (3)最后由平行四边形和数学知识求出两分力的大小. 2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系. (3)方法:物体受到多个力作用F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解.x 轴上的合力:F x =F x1+F x2+F x3+… y 轴上的合力:F y =F y1+F y2+F y3+…合力大小:F =F 2x +F 2y合力方向:与x 轴夹角为θ,则tan θ=F yF x.一般情况下,应用正交分解法建立坐标系时,应尽量使所求量(或未知量)“落”在坐标轴上,这样解方程较简单,但在本题中,由于两个未知量F AC 和F BC 与竖直方向夹角已知,所以坐标轴选取了沿水平和竖直两个方向.【思想方法与技巧】方法技巧——辅助图法巧解力的合成和分解问题对力分解的唯一性判断、分力最小值的计算以及合力与分力夹角最大值的计算,当力的大小不变方向改变时,通常采取作图法,优点是直观、简捷.力的合成和分解[学习目标] 1.知道什么是共点力.2.知道合力和分力的概念,合力与分力是等效替代关系.3.知道什么是力的合成和力的分解,理解力的合成和分解遵循的规律——平行四边形定则.4.知道平行四边形定则是矢量合成的普遍法则.一、合力和分力的关系 导学探究1.如图3,一个成年人或两个孩子均能提起同一桶水,那么该成年人用的力与两个孩子用的力的作用效果是否相同?二者能否等效替代?图32.两个孩子共提一桶水时,要想省力,两个孩子拉力间的夹角应大些还是小些?为什么?知识深化1.两分力同向(θ=0)时,合力最大,F=F1+F2,合力与分力同向.2.两分力反向(θ=180°)时,合力最小,F=|F1-F2|,合力的方向与较大的一个分力的方向相同.3.当两个分力大小不变时,合力F随两分力夹角θ的增大而减小,合力的大小取值范围:|F1-F2|≤F≤F1+F2.4.合力大小可能大于某一分力,可能小于某一分力,也可能等于某一分力.1.判断下列说法的正误.(1)合力的作用可以替代几个分力的共同作用,它与分力是等效替代关系.()(2)合力总比分力大.()(3)力F的大小为100 N,它的一个分力F1的大小为60 N,则另一个分力可能小于40 N.()(4)由于矢量的方向可以用正、负表示,故具有正负值的物理量一定是矢量.()(5)矢量与标量的区别之一是它们的运算方法不同.()2.两个共点力互相垂直,F1=F2=10 N,则它们的合力F=________ N,合力与F1间的夹角θ=________.3.如图2,将一个大小为2 3 N的水平力分解成两个力,其中一个分力在竖直方向,另一个分力与水平方向的夹角是30°,则两个分力的大小分别是________ N和________ N.命题角度1合力与分力的关系下列关于合力与分力的说法中错误的是()A.合力与分力同时作用在物体上B.分力同时作用于物体时共同产生的效果与合力单独作用时产生的效果是相同的C.合力可能大于分力,也可能小于分力D.当两分力大小不变时,增大两分力间的夹角,则合力一定减小命题角度2合力的范围两个共点力F1和F2的合力大小为6 N,则F1和F2的大小不可能是()A.F1=2 N,F2=9 N B.F1=4 N,F2=8 NC.F1=2 N,F2=8 N D.F1=2 N,F2=7 N命题角度3合力与夹角的关系如图4,用两个夹角为120°的水平拉力,拉静止在地面上的箱子,保持力的大小不变,逐渐减小两力的夹角θ,箱子始终保持静止,则这两个力的合力()图4A.逐渐减小B.逐渐增大C.先增大后减小D.保持不变针对训练(2019·咸阳市高一期末)元旦期间某商场推出“消费满100减20”的优惠活动并在其外墙上悬挂一块告示牌,如图所示为一些悬挂告示牌的方式,若α<β,则每根细绳所受的拉力中,数值最大的是()二、力的合成和分解1.力的合成和分解都遵循平行四边形定则. 2.合力或分力的求解 (1)作图法(如图5所示)图5(2)计算法两分力不共线时,可以根据平行四边形定则作出力的示意图,然后由几何关系求解.以下为两种特殊情况:①相互垂直的两个力的合成(即α=90°):F =F 12+F 22,F 与F 1的夹角的正切值tan β=F 2F 1,如图6所示.图6②两个等大的力的合成:平行四边形为菱形,利用其对角线互相垂直平分的特点可解得F 合=2F cos α2,如图7所示.若α=120°,则合力大小等于分力大小,如图8所示.图7 图8注意 平行四边形定则只适用于共点力. 3.三角形定则平行四边形的一半是三角形,在求合力的时候,只要把表示原来两个力的矢量首尾相接,然后从第一个力的箭尾向第二个力的箭头画一个矢量(如图9所示),这个矢量就表示原来两个力的合力.图9如图10所示,两个人共同用力将一个牌匾拉上墙头.其中一人用了450 N 的拉力,另一个人用了600 N 的拉力,如果这两个人所用拉力的夹角是90°,求它们的合力.图10按下列要求作图.图11(1)已知力F及其一个分力F1,在图11甲中画出另一个分力F2.(2)已知力F及其两个分力的方向,在图乙中画出两个分力F1和F2.1.(合力与分力关系)(2019·北京平谷区高一期末)一物体受到大小分别为3 N和4 N两个共点力的作用,则它们的合力()A.可能为3 N B.一定为5 NC.一定为7 N D.可能为8 N2.(力的合成)(2019·济南一中期中)有两个大小相等的共点力F1和F2,当它们之间的夹角为60°时,合力大小为F,则当它们之间的夹角为120°时,合力的大小为()A.2F B.33F C.2F D.32F3.(力的合成)如图12所示,水平地面上固定着一根竖直立柱,某人用绳子通过柱顶的光滑定滑轮将100 N的货物拉住.已知人拉着绳子的一端,且该绳端与水平方向夹角为30°,则柱顶所受压力大小为()图12A.200 N B.100 3 NC.100 N D.50 3 N4.(力的分解)如图13,一个大小为3 N的力F分解为两个分力,其中一个分力F1与F垂直,大小等于4 N,那么另一个分力的大小是()图13A.7 N B.5 NC.1 N D.4 N考点一合力与分力的关系1.关于合力与其两个分力的关系,下列说法中正确的是()A.合力的作用效果与两个分力共同作用的效果相同B.两个分力的作用效果与它们合力的作用效果不一定相同C.两个分力的大小之和就是合力的大小D.一个力可以分解为任意大小的两个分力2.(2020·华中师大一附中高一月考)两个力F1和F2间的夹角为θ(0≤θ≤180°),两力的合力为F,以下说法正确的是()A.若F1和F2大小不变,则θ角越大,合力F就越大B.合力F总比F1和F2中的任何一个力都大C.如果夹角θ不变,F1大小不变,只要F2增大,合力F就必然增大D.如果夹角θ不变,F1大小不变,F2增大,合力F可能增大,也可能减小3.(多选)(2019·舟山市模拟)在一条直线上的两个共点力F1、F2的合力大小为F,保持F1、F2的方向不变,F1、F2、F均不为0,下列说法正确的是()A.若F1、F2同时增大一倍,则F也一定增大一倍B.若F1、F2同时增加10 N,则F一定增加20 NC.若F1增加10 N,F2减少10 N,则F可能增加20 ND.若F1、F2中一个不变,另一个增大,则F一定增大4.同一平面内的三个力,大小分别为4 N、6N、7 N,若三力同时作用于某一物体,则该物体所受三力合力的最大值和最小值分别为()A.17 N 3 N B.5 N 3 NC.9 N0 D.17 N0考点二力的合成和分解的计算5.物体受到两个方向相反的力的作用,两力F1、F2的大小分别为5 N、10 N,现保持F1不变,将F2从10 N逐渐减小到0.在此过程中,它们的合力大小变化情况是()A.逐渐减小B.逐渐增大C.先减小,后增大D.先增大,后减小6.(多选)小娟、小明两人共提一桶水匀速前行,如图1所示,已知两人手臂上的拉力大小相等且为F,两人手臂间的夹角为θ,水和水桶的总重力为G,则下列说法中正确的是()图1A .当θ为120°时,F =GB .不管θ为何值,均有F =G2C .当θ=0时,F =G2D .θ越大时,F 越小7.(多选)(2019·泰州二中高一上期中)如图2所示为两个大小不变、夹角θ变化的力的合力的大小F 与θ角之间的关系图像(0≤θ≤360°),下列说法中错误的是( )图2A .合力大小的变化范围是0≤F ≤10 NB .合力大小的变化范围是2 N ≤F ≤14 NC .这两个分力的大小分别为6 N 和8 ND .这两个分力的大小分别为2 N 和8 N8.(2019·日照市高一期末)一运动员双手握住单杠,使身体悬空静止,当两手间距增大时,每只手臂所受的力F T 及它们的合力F 的大小变化情况是( ) A .F T 增大,F 增大 B .F T 增大,F 减小 C .F T 增大,F 不变 D .F T 减小,F 不变9.按下列两种情况把一个竖直向下的180 N 的力分解为两个分力.(已知sin 53°=0.8,cos 53°=0.6)图3(1)一个分力水平向右,大小等于240 N ,求另一个分力的大小和方向;(2)一个分力在水平方向上,另一个分力与竖直方向的夹角为30°斜向左下(如图3所示),求两个分力的大小.答案(1)300 N与竖直方向夹角为53°斜向左下(2)水平方向分力的大小为60 3 N,斜向左下的分力的大小为120 3 N10.(多选)某研究性学习小组为颈椎病人设计了一个牵引装置:如图4所示,一根绳绕过两个定滑轮和一个动滑轮后两端挂着相同的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内,如果要增大手指所受的拉力,可采取的方法是()图4A.只减小重物的重量B.只增加重物的重量C.只将手指向下移动D.只将手指向上移动11.(2019·启东市高一期末)两个大小相等的共点力F1、F2,当它们间的夹角为90°时,合力的大小为20 N;则当它们间的夹角为120°时,合力的大小为()A.40 N B.10 2 NC.20 2 N D.10 N12.(2019·荆州中学高一上期末)如图所示,大小分别为F1、F2、F3的三个力恰好围成一个闭合的三角形,且三个力的大小关系是F1<F2<F3,则下列四个图中,这三个力的合力最大的是()13.设有三个力同时作用在质点P上,它们的大小和方向相当于正六边形的两条边和一条对角线,如图5所示,这三个力中最小的力的大小为F,则这三个力的合力大小为()图5A.3F B.4FC.5F D.6F14.如图6所示,一条小船在河中心向正东方向行驶,船上挂起一风帆,帆受侧向风作用,风力大小F1为100 N,方向为东偏南30°,为了使船受到的合力恰能沿正东方向,岸上一人用一根绳子拉船,绳子方向与河岸垂直,求出风力和绳子拉力的合力大小及绳子拉力F2的大小.图615.(2019·宝鸡市模拟)实际生活中常常利用如图7所示的装置将重物吊到高处.现有一质量为M的同学欲将一质量也为M的重物吊起,已知绳子在水平天花板上的悬点与定滑轮固定点之间的距离为L,不计滑轮的大小、滑轮与绳的重力及滑轮受到的摩擦力.当该同学把重物缓慢拉升到最高点时,动滑轮与天花板间的距离为()图7A.36L B.33L C.32L D.12L第2课时力的效果分解法和力的正交分解法[学习目标] 1.学会根据力的效果分解力.2.初步理解力的正交分解法.3.会根据不同给定条件分解力.一、按效果分解力导学探究1.如果不受限制,分解同一个力能作出多少平行四边形?有多少组解?2.已知合力F和两分力的方向(如图1),利用平行四边形定则,能作多少平行四边形?两分力有几组解?图13.如图2甲所示,小明用斜向上的力拉行李箱,其简化图如图乙所示,拉力会产生两个效果,如何分解拉力,写出两个分力大小.图24.如图3,将一质量为m的木块放在倾角为θ的斜面上,木块的重力产生哪两个效果,如何分解重力,写出两个分力的大小.图3知识深化1.按效果分解(1)分解原则:根据力的作用效果确定分力的方向,然后再画出力的平行四边形.(2)基本思路2.两种常见典型力的分解实例如图4所示,一质量分布均匀的小球静止在固定斜面和竖直挡板之间,各接触面均光滑,小球质量为m=100 g,按照力的效果作出重力及其两个分力的示意图,并求出各分力的大小.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)图4在日常生活中,力的分解有着广泛的应用,如图5甲用斧子把木桩劈开,已知两个侧面之间的夹角为2θ,斧子对木桩施加一个向下的力F时,产生了大小相等的两个侧向分力F1、F2,由图乙可得下列关系正确的是()图5A.F1=F2=F2sin θB.F1=F2=F2cos θC.F1=F2=F2sin 2θD.F1=F2=F2cos 2θ二、力的正交分解法1.力的正交分解法把力沿着两个经选定的互相垂直的方向分解的方法叫力的正交分解法.如图6所示,将力F沿x轴和y轴两个方向分解,则图6F x=F cos αF y=F sin α2.正交分解法求合力(1)建立直角坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.图7(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图7所示.(3)分别求出x 轴、y 轴上各分力的矢量和,即:F x =F 1x +F 2x +…,F y =F 1y +F 2y +…. (4)求共点力的合力:合力大小F =F 2x +F 2y ,设合力的方向与x 轴的夹角为α则tan α=F yF x .在同一平面内的三个力F 1、F 2、F 3的大小依次为18 N 、40 N 、24 N ,方向如图8所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)图8如图9所示,甲、乙、丙三个物体质量相同,与地面间的动摩擦因数均相同,受到三个大小相同的作用力F ,当它们滑动时,下列说法正确的是( )图9A .甲、乙、丙所受摩擦力相同B .甲受到的摩擦力最大C .乙受到的摩擦力最大D .丙受到的摩擦力最大 三、力的分解中定解条件讨论把力按照题中给定的条件分解.若代表合力的对角线与给定的代表分力的有向线段能构成平行四边形(或三角形),说明合力可以分解成给定的分力,即有解;若不能,则无解.常见的有几种情况.一个成人与一个小孩分别在河的两岸拉一条船,船沿河岸前进,成人的拉力为F1=400 N,方向如图10所示(未画出小孩的拉力方向),要使船在河流中平行于河岸行驶.求小孩对船施加的最小力F2的大小和方向.图101.(力的效果分解)将处于静止状态的物体所受重力按力的效果进行分解,图中错误的是()2.(力的效果分解)如图11所示,小明在倾斜的地面上使用一台没有故障的体重秤,那么测出来的体重示数比他实际体重()图11A.偏大B.偏小C.准确D.不准确,但无法判断偏大还是偏小3.(力的正交分解)如图12所示,重为30 N的物体A放于水平桌面上,现用大小为20 N、方向与水平方向成30°角的力拉物体A,物体A仍保持静止,则物体A对桌面的压力大小为()图12A.30 N B.20 N C.10 N D.04.(力的分解的讨论)已知两个共点力的合力大小为50 N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N,则()A.F1的大小是唯一的B.F2的方向是唯一的C.F2有两个可能的方向D.F2可取任意方向考点一按效果分解力1.如图1,将F沿水平和竖直方向分解,则其竖直方向的分力为()图1A.F sin θB.F cos θC.Fsin θ D.Fcos θ2.如图2,静止在斜面上的重物的重力可以分解为沿斜面方向向下的分力F1和垂直于斜面方向的分力F2,关于这两个分力,下列说法正确的是()图2A.F1作用在物体上,F2作用在斜面上B.F2的性质是弹力C.F2就是物体对斜面的正压力D.F1和F2是与物体的重力等效的力,实际存在的就是重力3.小明想推动家里的衣橱,但使出了很大力气也推不动,他便想了个妙招,如图3所示,用A、B两块木板,搭成一个底角较小的人字形架,然后往中央一站,衣橱居然被推动了!下列说法正确的是()图3A.这是不可能的,因为小明根本没有用力去推衣橱B.这是不可能的,因为无论如何小明的力气也没那么大C.这有可能,A板对衣橱的推力有可能大于小明的重力D.这有可能,但A板对衣橱的推力不可能大于小明的重力4.(2019·沈阳市期中)如图4所示为斧头劈柴的剖面图,BC边为斧头背,AB、AC边为斧头的两刃面.要使斧头更容易劈开木柴,需要()图4A.BC边短一些,AB边也短一些B.BC边长一些,AB边短一些C.BC边短一些,AB边长一些D.BC边长一些,AB边也长一些考点二力的正交分解5.如图5所示,物块m静止于一斜面上,斜面固定.若将斜面的倾角θ稍微增大一些,物块m仍静止在斜面上,则()图5A.斜面对物块的摩擦力变小B.斜面对物块的摩擦力变大C.斜面对物块的支持力变大D.物块所受的合外力变大6.(多选)如图6所示,质量为m的物体放在水平桌面上,在与水平方向成θ角的拉力F作用下保持静止,已知物体与桌面间的动摩擦因数为μ,下列判断正确的是()图6A.物体对地面的压力为mgB.物体受到地面的支持力为mg-F sin θC.物体受到的摩擦力为FD.物体受到的摩擦力为F cos θ考点三力的分解的讨论7.如图7所示,将一个已知力F分解为F1和F2,已知F=10 N,F1与F的夹角为37°,则F2的大小不可能是(sin 37°=0.6,cos 37°=0.8)()图7A.4 N B.6 NC.10 N D.100 N8.将力F分解成F1和F2,若已知F1的大小以及F2与F的夹角θ(θ为锐角),则错误的是()A.当F1<F sin θ时,无解B.当F1=F sin θ时,有一解C.当F<F1时,有一解D.当F1>F sin θ时,有两解9.如图8所示,轻杆OB左端用铰链与墙连接,与竖直方向的夹角为θ,右端用轻绳与墙连接,轻绳OA水平,质量为m的物体悬挂在O点,设轻绳OA和轻杆OB作用于O点的弹力分别为F1和F2,以下结果正确的是()图8A.F1=mg sin θB.F1=mgsin θC.F2=mg cos θD.F2=mgcos θ10.如图9所示,将绳子的一端系在汽车上,另一端系在等高的树干上,两端点间绳长为10 m.用300 N的拉力把水平绳子的中点往下拉离原位置0.5 m,不考虑绳子的重力和绳子的伸长量,则绳子作用在汽车上的力的大小为()图9A.1 500 N B.6 000 NC.300 N D.1 500 3 N11.如图10所示,用绳AB和BC吊起一重物P处于静止状态,AB绳与水平面间的夹角为53°,BC绳与水平面的夹角为37°.求:当所挂重物质量为10 kg时,AB绳、BC绳上的拉力各为多大?(g取10 m/s2,sin 37°=0.6,cos 37°=0.8).图1012.如图11所示,在水平地面上用绳子拉一质量m=46 kg的箱子,绳子与地面的夹角为37°,拉力F=100 N时箱子恰好匀速移动.g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:图11(1)箱子所受的摩擦力大小;(2)地面和箱子之间的动摩擦因数.13.(2019·西安一中模拟)如图12所示是扩张机的原理示意图,A、B为活动铰链,C为固定铰链,在A处作用一水平力F,滑块就以比F大得多的压力向上顶物体D,已知图中2l=1.0 m,b=0.05 m,F=400 N,滑块与左壁接触,接触面光滑,则D受到向上顶的力为(滑块和杆的重力不计)()图12 A.3 000 N B.2 000 N C.1 000 N D.500 N。
力的合成与分解知识点与例题讲解
力的合成(基础篇)命题人:rain二、合力、力的合成1.合力:一个物体受到几个力共同作用产生的效果与一个力对物体作用产生的效果相同时,这个力就叫做那几个力的合力2.合成:求几个力的合力叫做力的合成.三、合力的求法1.力的平行四边形定则:如果用表示两个共点力F1和F2的线段为邻边作平行四边形,那么,合力F的大小和方向就可以用这两个邻边之间的对角线表示出来。
2.共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于同一点,这几个力叫做共点力。
3.平行四边形定则的两种应用方法(1)图解法a.两个共点力的合成:从力的作用点作两个共点力的图示,然后以F1、F2为边作平行四边形,对角线的长度即为合力的大小,对角线的方向即为合力的方向。
b.两个以上共点力的合成:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到所有的力都合成进去,最后得到的结果就是这些力的合力。
(2)计算法先依据平行四边形定则画出力的平行四边形,然后依据数学公式(如余弦定理)算出对角线所表示的合力的大小和方向。
当两个力互相垂直时,有:F=√F12+F22、tanθ=F2/F1四、合力大小的范围(1)合力F随θ的增大而减小(2)当θ=0°时,F有最大值Fmax=F1+F2,当θ=180°时,F有最小值Fmin=F1-F2(3)合力F既可以大于,也可以等于或小于原来的任意一个分力一般地 | F1-F2 ≤ F ≤ F1+F2五、矢量与标量矢量:即有大小,又有方向,并遵循平行四边形定则的物理量叫做矢量。
标量:只有大小而没有方向,遵循代数求和法则的物理量叫做标量。
矢量和标量的根本区别就在于它们分别遵循两种不同的求和运算法则.力的分解(基础篇)命题人:尚瑞阳一、分力及力的分解概念1.力的分力:几个力共同产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力。
2. 力的分解:求一个已知力的分力叫做力的分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力的合成与分解典型例题知识点1 力的合成 1.合力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力的作用效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力. 2.共点力如果一个物体受到两个或者更多力的作用,有些情况下这些力共同作用在同一点上,或者虽不作用在同一点上,但他们的力的作用线延长线交于一点,这样的一组力叫做共点力. 3.共点力的合成法则求几个已知力的合力叫力的合成.力的合成就是找一个力去替代几个已知的力,而不改变其作用效果.力的平行四边形定则:如右图所示,以表示两个力的有向线段为邻边作平行四边形,这两边夹角的对角线大小和方向就表示合力的大小和方向.(只适用于共点力)下面根据已知两个力夹角θ的大小来讨论力的合成的几种情况:(1)当0θ=︒时,即12F F 、同向,此时合力最大,12F F F =+,方向和两个力的方向相同.(2)当180θ=︒时,即12F F 、方向相反,此时合力最小,12F F F =-,方向和12F F 、中较大的那个力相同.(3)当90θ=︒时,即12F F 、相互垂直,如图,2212F F F =+,12tan F F α=. (4)当θ为任意角时,根据余弦定律,合力2212122cos F F F F F θ=++根据以上分析可知,无论两个力的夹角为多少,必然有1212F F F F F -+≤≤成立.【例1】 将二力F 1、F 2合成F 合,则可以肯定 ( )A .F 1和F 合是同一性质的力B .F 1、F 2是同一施力物体产生的力C .F 合的效果与F 1、F 2的总效果相同D .F 1、F 2的代数和等于F 合【例2】 某物体在三个共点力作用下处于平衡状态,若把其中一个力1F 的方向沿顺时针转过90︒而保持其大小不变,其余两个力保持不变,则此时物体所受到的合力大小为( ) A .1FB .12FC .12FD .无法确定【例3】 两个共点力F l 、F 2大小不同,它们的合力大小为F ,则( )A .F 1、F 2同时增大一倍,F 也增大一倍B .F 1、F 2同时增加10N ,F 也增加10NC .F 1增加10N ,F 2减少10N ,F 一定不变D .若F 1、F 2中的一个增大,F 不一定增大【例4】 有两个大小恒定的力,作用在一点上,当两力同向时,合力为A ,反向时合力为B ,当两力相互垂直时,其合力大小为( ) A .22A B +B .22()/2A B +C .A B +D .()/2A B +【例5】 如图,有五个力作用于同一点O ,表示这五个力的有向线段恰分别构成一个正六边形的两条邻边和三条对角线.已知F 2=10N ,则这五个力的合力大小为( )A .20NB .30NC .40ND .60N【例6】 如图为节日里悬挂灯笼的一种方式,A 、B 点等高,O 为结点,轻绳AO 、BO 长度相等,拉力分别为A F 、B F ,灯笼受到的重力为G .下列表述正确的是( ) A .A F 一定小于G B .A F 与B F 大小相等 C .A F 与B F 是一对平衡力 D .A F 与B F 大小之和等于G【例7】 用一根长1m 的轻质细绳将一副质量为1kg 的画框对称悬挂在墙壁上,已知绳能承受的最大张力为10N ,为使绳不断裂,画框上两个挂钉的间距最大为(g 取210m/s )( )A .3m2B.2m2C.1m2D.3m4【例8】如图所示,轻质光滑滑轮两侧用细绳连着两个物体A与B,物体B放在水平地面上,A、B均静止.已知A和B的质量分别为m A、m B,绳与水平方向的夹角为θ,则()A.物体B受到的摩擦力可能为0B.物体B受到的摩擦力为m A gcosθC.物体B对地面的压力可能为0D.物体B对地面的压力为m B g-m A gsinθ【例9】在研究共点力合成实验中,得到如图所示的合力与两力夹角θ的关系曲线,关于合力F的范围及两个分力的大小,下列说法中正确的是()A.2N≤F≤14NB.2N≤F≤10NC.两力大小分别为2N、8ND.两力大小分别为6N、8N【例10】如图2-2-10所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P在F1、F2和F3三力作用下保持静止,下列判断正确的是().A.F1>F2>F3B.F3>F1>F2C.F2>F3>F1D.F3>F2>F1【例11】如图所示,O是等边三角形ABC的中心,D是三角形中的任意一点,如果作矢量DA、DB、DC 分别表示三个力,三个力的方向如图中箭头所示,则这三个力的合力大小用的长度表示为( )A. B. 2 C. 3 D. 4知识点2 力的分解1.分力几个力共同产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力. 2.力的分解(1)求一个已知力的分力叫做力的分解.(2)分解规律:力的分解是力的合成的逆运算,同样遵守平行四边形定则,即把已知力作为平形四边形的对角线,那么,与已知力共面的平行四边形的两条邻边就表示已知力的两个分力.3.力的分解方法力的分解方法:根据力F 产生的作用效果,先确定两个分力的方向,再根据平行四边形定则用作图法作出两个分力1F 和2F 的示意图,最后根据相关数学知识计算出两个分力的大小.实际上,对于同一条对角线,可以作出无数个不同的平行四边形.也就是说,同一个力可以分解为无数对大小、方向不同的分力.一个已知力究竟应该怎样分解,这要根据实际情况来决定. 4.力的正交分解方法正交分解法是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运用普通代数运算公式来解决矢量的运算,它是处理力的合成和分解的复杂问题的一种简便方法,其步骤如下: (1)正确选定直角坐标系.通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际问题来确定,原则是使坐标轴与尽可能多的力重合,即:使向两坐标轴投影分解的力尽可能少.在处理静力学问题时,通常是选用水平方向和竖直方向上的直角坐标,处理斜面类问题时多采用沿斜面方向和垂直斜面方向的直角坐标.(2)分别将各个力投影到坐标轴上,分别求出x 轴和y 轴上各力的投影的合力xF 和y F :123x x x x F F F F =+++⋯ 123y y y y F F F F =+++⋯(式中的1x F 和1y F 是1F 在x 轴和y 轴上的两个分量,其余类推.)这样,共点力的合力大小为:22x y F F F =+.设合力的方向与x 轴正方向之间的夹角为α,因为tan y xF F α=,特别的,多力平衡时:0F =,则可推得0x F =,0y F =.对力的分解的讨论力分解时有解或无解,简单地说就是代表合力的对角线与给定的代表分力的有向线段是否能构成平行四边形(或三角形).若可以构成平行四边形(或三角形),说明该合力可以分解成给定的分力,即有解.如果不能构成平行四边形(或三角形),说明该合力不能按给定的分力分解,即无解.具体情况有以下几种:(1)已知合力和两个分力的方向,有唯一解,分解如图1:图1 图2(2)已知合力和两个分力的大小.1.若|F1-F2|>F ,或F>F1+F2,则无解.2.若|F1-F2|<F<F1+F2,有两个解.分解如图2.题型一. 对分力合力的理解【例12】 关于力的分解,下列说法正确的是( )A .力的分解的本质就是用同时作用于物体的几个力产生的作用效果代替一个力作用效果B .分力大小可能大于合力大小(3).已知合力和一个分力的大小和方向,有唯一解.如图3-5-3.图3-5-3 (4).已知合力和一个分力的大小,另一个分力的方向.分解如图3-5-4. 图3-5-4C .力的分解是力的合成的逆运算,同样遵循平行四边形定则D .分解一个力往往根据它产生的效果来分解它题型二 分力解的讨论【例13】 分解一个力,若已知它的一个分力的大小和另一个分力的方向,以下说法中正确的是( )A .只有惟一一组解B .一定有两组解C .可能有无数个解D .可能有两组解【例14】 把一个力分解为两个力1F 和2F ,已知合力为40N F =,1F 与合力的夹角为30︒,如图所示,若2F 取某一数值,可使1F 有两个大小不同的数值,则2F 大小的取值范围是什么?【例15】 把一个已知力F 分解,要求其中一个分力F 1跟F 成30°角,而大小未知;另一个分力,但方向未知,则F 1的大小可能是 ( )A .B .C .D .【例16】 如图所示,F 1、F 2为有一定夹角的两个力,L 为过O 点的一条直线,当L 取什么方向时,F 1、F 2在L 上分力之和为最大( )A .F 1、F 2合力的方向B .F 1、F 2中较大力的方向C .F 1、F 2中较小力的方向D .以上说法都不正确【例17】 根据重力产生的实际效果,分解图中各球受到的重力,各球接触面均光滑.F 1的方向30︒FO甲乙丙丁【例18】 已知如图,A 的重量为G .在F 的作用下,沿斜面向上滑动,若动摩擦因数为 ,求:滑动摩擦力的大小.【变力问题】【例19】 如图所示,用两根绳子吊着一个物体,逐渐增大两绳间的夹角,物体始终保持静止,则两绳对物体的拉力的合力( )A .大小不变B .逐渐增大C .逐渐减小D .先减小后增大【例20】 如图所示,物体A 在同一平面内的四个共点力F 1、F 2、F 3和F 4的作用下处于静止状态,若其中力F 1沿逆时针方向转过120°而保持其大小不变,且其他三个力的大小和方向均不变,则此时物体所受的合力大小为( ) A .2F 1 B .3F 1 C .F 1 D .32F 1【例21】 如图所示,OA 为一粗糙的木板,可绕O 在竖直平面内转动,板上放一质量为m 的物块,当缓慢使板沿逆时针方向转动,物块始终保持静止,则下列说法中正确的是( ) A .物块受到的静摩擦力逐渐增大 B .物块对木板的压力逐渐减小 C .物块受到的合力逐渐增大D .木板对物块的支持力及静摩擦力的合力不变【极值问题】【例22】 如图所示,用一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向夹30°角且绷紧,小球A 处于静止,对小球施加的最小的力是( ) A .3mg B .32mg C .12mg D .33mg【例23】 如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小?课后练习题1. 在以下进行的力的分解中,正确的说法是( )A .一个2N 的力能够分解为6N 和3N 的两个共点力B .一个2N 的力能够分解为6N 和5N 的两个共点力C .一个10N 的力能够分解为5N 和4N 的两个共点力D .一个10N 的力能够分解为两个大小都是10N 的共点力2. 右图给出了六个力1234456F F F F F F F 、、、、、、,它们作用于同一点O ,大小已在图中标出,相邻的两个力之间的夹角均为60︒,则这六个力的合力大小为( )A .20NB .40NC .60ND .03. 如图所示,轻绳MO 和NO 共同吊起质量为m 的重物.MO 与NO 垂直,MO 与竖直方向的夹角30θ=︒.已知重力加速度为g .则( )A .MO 所受的拉力大小为3mg B .MO 所受的拉力大小为23mg C .NO 所受的拉力大小为3mg D .NO 所受的拉力大小为2mg4. 如图所示,一木块在拉力F 的作用下,沿水平面做匀速直线运动,则拉力F 和摩擦力f F 的合力的方向是( )A .向上偏右B .向上偏左C .向上D .向右αβAO5. 将一个力10N F =分解为两个分力,已知一个分力的方向与F 成30︒角,另一个分力的大小为6N ,则在分解中( )A .有无数组解B .有两解C .有惟一解D .无解6. 7.8. 在图中电灯的重力为20N ,绳AO 与天花板间的夹角为45︒,绳BO 水平.求绳AO 、BO 所受的拉力.9. 10. 11.12. 一攀岩运动员正沿竖直岩壁缓慢攀登,由于身背较重的行囊,重心上移至肩部的O 点,总质量为60 kg .此时手臂与身体垂直,手臂与岩壁夹角为53°.则手受到的拉力和脚受到的作用力分别为(设手、脚受到的作用力均通过重心O ,g 取10 m/s 2,sin53°=0.8,cos53°=0.6)( )A .360N 480NB .480N 360NC .450N 800ND .800N 450NCABO13. 如图所示装置,两物体质量分别为1m 、2m ,悬点ab 间的距离大于滑轮的直径,不计一切摩擦,若装置处于静止状态,则( )A .2m 可以大于1mB .2m 一定大于12mC .2m 可能等于12mD .1θ一定等于2θ14. 如图所示,一物块置于水平地面上.当用与水平方向成60o 角的力1F 拉物块时,物块做匀速直线运动;当改用与水平方向成30o 角的力2F 推物块时,物块仍做匀速直线运动.若1F 和2F 的大小相等,则物块与地面之间的动摩擦因数为( )A .31-B .23-C .3122-D .1-32b θ2θ1m 1m 2a。