抽样与抽样分布教材
合集下载
统计学-抽样分布与抽样方法
重复抽样的特点: ①在重复抽样的过程中,被抽取的总体单位总数始终
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法
第5章--抽样分布与参数估计教案资料
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
9
9,1
9,2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
9,10
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
(9.5)
10
10,1
10,2
10,3
10,4
10,5
10,6
10,7
10,8
10,9
10,10
数是 ,标准差是 ,从这个总体中抽出一 个容量是 n 的样本,则样本平均数 X 也服从 正态分布,其平均数 E( X ) 仍为 ,其标准
差为 。 X 5-19
从正态分布的再生定理可以看出,只要总体 变量服从正态分布,则从中抽取的样本,不管n 是多少,样本平均数都服从正态分布。但是在 客观实际中,总体并非都是正态分布。对于从 非正态分布的总体中抽取的样本平均数的分布 问题,需要由中心极限定理来解决。
第5章--抽样分布与参数估计
第一节 抽样的基本概念与数学原理
一、有关抽样的基本概念 二、大数定理与中心极限定理
5-2
一、有关抽样的基本概念
(一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分
单位的集合,这个集合的大小称为样本容量, 一般用n表示,它表明一个样本中所包含的单 位数。
lim
n
1 n
p
n
i 1
X
i
1
(5.5)
5-17
大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。
统计学之抽样与抽样分布
的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
抽样检验和抽样分布
占总体单位数N的比例,即:
n n n n 1 2 3 K n
N1 N2 N3
NN K
各类型组应抽取的样本单位数为:
N n
in
n N i N i N
样本比率抽样样本容量:按前面指定的比
例(n/N)从每组的Ni单位中抽取ni个单位 即构成一个抽样总体,其样本容量为:
K
n= n1+ n2+ n3+…+ nk= ni i 1
数μ;
3、样本平均数 x 分布的均方差 x 等于:
当为有限总体无放回抽样时,其样本均值 标准差为:
N
N x
N
N
p
1
p
如果总体为无限总体的或抽取是有放回的
,其样本均值标准差为:
x
N
(二)非正态总体样本平均数 x 的分布及
性质?
1、中心极限定理可以解决上述问题:
一个具有任意函数形式的总体,其样
2、抽样误差:是指由于随机抽样的偶然因 素使样本各单位的结构不足以代表总体 各单位的结构,而引起抽样指标和全及 指标之间的绝对离差。不包含登记性误 差和不遵守随机原则造成的偏差。
影响抽样误差的因素有:总体各单位标 志值的差异程度;样本的单位数;抽样 的方法;抽样调查的组织形式。
第二节 随机抽样设计
样本容量足够大(n=50),据中心极限
定理,x 近似服从正态分布。
(1)
3160
x
800 113.14
x
N
50
x
P x3000 P
x
3000
3160
/ n
113.14
Pz 1.41 0.9207
同理处理(2)和(3)
统计学 第三章抽样与抽样分布
=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
统计学抽样与抽样分布
查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
(04)第4章+抽样与抽样分布
4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大
第四篇抽样和分布1(药学)PPT课件
该法要求各层间差异尽可能大,才能得到有较 好代表性的样本,并便于各层间分析比较。
24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.
24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.
《统计学》第9章 抽样与抽样分布
二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
数理统计第3章 随机抽样与抽样分布
E ( X i ) = E ( X ) = µ , D( X i ) = D( X ) = σ 2 , i = 1,2,L , n
1 n 1 n 所以 E ( X ) = E ( ∑ X i ) = ∑ E ( X i ) = µ , n i =1 n i =1
1 1 . D ( X ) = D( ∑ X i ) = 2 ∑ D( X i ) = n n i =1 n i =1
11
它反映了总体 二、样本数字特征 均值的信息 它反映了总体 1 n 样本均值 X = ∑Xi 方差的信息 n i=1 1 n 1 n 2 2 2 2 样本方差 S = ∑( Xi − X) = n −1 ∑Xi − nX n −1 i=1 i =1
推导: 推导:
( Xi − X)2 = ∑( Xi2 − 2Xi X + X 2 ) ∑
因此, 应视为一组随机变量, 因此,抽样值 ( x1 , x2 ,L, xn ) 应视为一组随机变量,我们把 的一个样本 子样), 样本( ),其中 称为该样本的容量 容量。 它称为总体 X 的一个样本(或子样),其中 n 称为该样本的容量。
7
二、简单随机抽样
由于抽样的目的是为了对总体的分布进行统 计推断, 计推断,为了使抽取的样本能很好地反映总体的 信息,必须考虑抽样方法 信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“ 最常用的一种抽样方法叫作“简单随机抽 它要求抽取的样本满足下面两点: 样”,它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体 代表性: 有相同的分布. 有相同的分布 2. 独立性: X1,X2,…,Xn是相互独立的随机变量 独立性: 是相互独立的随机变量. 由简单随机抽样得到的样本称为简单随机样本 简单随机样本, 由简单随机抽样得到的样本称为简单随机样本, 今后如不加声明,均指简单随机样本。 今后如不加声明,均指简单随机样本。
抽样与抽样分布
什么是抽样分布?
如果要估计总体的均值 ;是用样本平均值 还是用中位数m?
x,
3.5 第一次,2,2,6,m=2 x 3.33 第二次,3,4,6,m=4, x 4.33
还是掷骰子,总体均值 可见,不能仅仅根据一个样本去比较是 本n个观察值计算的统计量的概率分布。
x 和m
平均身高=169.8CM
总平均身高=168.6CM 平均身高=174.6CM
抽样的三个特点
遵守随机原则; 以样本的数量特征推断总体的数量特征 抽样推断产生抽样误差,但抽样误差可以 事先计算并控制。
抽样推断的应用
不可能进行全面调查时; 不必要进行全面调查时; 来不及进行全面调查时; 对全面调查资料进行补充修正时。
随机原则的实现
抽签法,是将总体中每个单位的编号写在外形 完全一致的签上,将其搅拌均匀,从中任意抽 选,签上的号码所对应的单位就是样本单位。
随机数表法:将总体中每个单位编上号码,然
后使用随机数表,查出所要抽取的调查单位。 计算机模拟法:是将随机数字编制为程序存储 在计算机中,需要时将总体中各单位编上号码, 启用随机数字发生器输出随机数字。
4 统计抽样与抽样分布
抽样的基本概念
抽样方法
抽样分布的概念
样本均值的抽样分布
本章的学习目的
本章的学习目的是为了认识到通过样本推 断总体的科学性。 当总体元素非常多,或者检查具有破坏性 时,需要进行抽样。抽样的目的是为了推 断总体的数量特征,但这种推断必定伴有
某种程度的不确定性,需要用概率来表示
正态分布的计算 - 例题
第7章抽样与抽样分布
· · ·
· · ·
统计学
STATISTICS
3· 等距抽样(机械抽样或系统抽样)
将总体单位按某一标志排序,然后按相等间隔 抽取样本单位构成样本的抽样形式 随机起点 · · · · · · (总体单位按某一标志排序) 按无关标志排队,其抽样效果相当于简单随机抽样; 半距起点 对称起点
按有关标志排队,其抽样效果相当于类型抽样。
明确 总体及 抽样单位
统计学
STATISTICS
明确 调查目 的
确定或构 建抽样框
提出指标 精度要求
选择抽样 组织形式
2019/1/31
确定 样本容量
制定 具体办法 步骤
23
统计学
STATISTICS
2.抽样方案设计的基本原则
(1)保证实现抽样随机性的原则 (2)保证实现最大的抽样效果原则
3.抽样方案设计中的重要问题
不重复抽样
每次从总体中抽选一个单位后就不 再将其放回参加下一次的抽选。又 称不放回抽样. 总体单位数减少n,同一单位只可 7 能被抽中一次。
2019/1/31
可能的样本数目考虑各单Biblioteka 的中选顺序 AB≠BA统计学
STATISTICS
考虑顺序的重复抽样 不考虑顺序的重复抽样 考虑顺序的不重复抽样
N
n
Nn N 2
15
(二)随机抽样的组织方式 STATISTICS
1· 简单随机抽样(纯随机抽样)
根据随机原则直接从总体中抽取单位构成样 本的一种抽样方式。
•每个容量为n的样本都有同等机会(概率)被抽中 •简单、直观,是最简单、最基本、最符合随机原 则,但同时也是抽样误差最大的抽样组织形式 •仅适用于规模不大、分布比较均匀的总体 •一般有抽签、抓阄、随机数码表、抽样函数等
统计学之抽样与抽样分布
a. n/N > 30 b. N/n < 0.05 c. n/N < 0.05 d. n/N > 0.05
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值
抽样与抽样分布
N (1.0 2.5) 2 (4.0 2.5) 2 2 0.625 16 n
比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n
样本均值的分布与总体分布的比较 (例题分析)
总体分布
.3 P(X)
抽样分布
.3 .2 .1 0
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。总 体的均值、方差及分布如下 总体分布
.3
均值和方差
x
i 1
N
i
.2 .1 0
1 2 3 4
N
N i 1
2.5
2
2 ( x ) i
抽样中的泰坦尼克事件
在1936年美国总统选举前一份颇有名气的 杂志的工作人员做了一次民意调查, 调查兰 顿(当时任堪萨斯州州长)和罗斯福(当时总 统)中谁将担任下一界总统, 为了了解公众意 向, 调查者通过电话簿和车辆登记簿上的名 单给一大批人发了调查表, 通过分析回收的 调查表, 发现兰顿非常受欢迎,于是此杂志预 测兰顿将在选举中获胜.
系统抽样(systematic sampling)
将总体各单位按某种顺序排列,并按某种规则确 定一个随机起点,然后,每隔一定的间隔抽取一 个单位,直至抽取n个单位形成一个样本。
整群抽样(cluster sampling)
在总体中以群(或组)为单位,将简单或系统抽 样方式,抽取若干群(或)组,然后对所有抽中 的各群(或各组)中的全部单位一一进行调查。
1. t 分布是对称分布,均值为0。 2. 样本容量大于或等于30时, t 分布接近于标准正态分布,这时可 用标准正态分布来代替t 分布。 3. t 分布是一个分布族,不同自由度对应不同的 t 分布。 4. 与标准正态分布相比,t 分布的中心部分较低,两个尾部较高。 5. 变量t 的取值范围在 与 之间。
抽样和抽样分布培训课件(PPT 49张)
0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989
7
自有限总体的抽样
• 无放回抽样:一个元素一旦选入样本,就从总体中剔除, 不能再次被选入。 • 放回抽样:一个元素一旦选入样本,仍被放回总体中。
先前被选入的元素可能再次被选,并且在样本中可出现
多次(多于一次)。
8
自无限总体的抽样
• 无限总体经常被定义为一个持续进行的过程,总体的元 素由在相同条件下过程无限运行下去产生的每一项构成。 在这种情况下,对总体内所有项排列是不可能的。
14
点估计
样本均值 51814.00美元 样本标准差
3347.72美元
样本比率 0.63
点估计的 统计过程
15
由30名管理人员组成的简单随机样本的点估计值
16
由30名管理人员组成的500个简单随机样本的点估计值
17
由30名管理人员组成的500个简单随机样本的抽样分布
• 抽样分布:样本统计量所有可能值构成的概率分布。
0.04 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988
第6章 抽样与抽样分布
6 -71- 4 71-
统计学
STATISTICS
统计应用
“抓阄”征兵计划 抓阄”
然而结果是, 73 个较小的号码被分配给了前半 然而结果是 , 有 73个较小的号码被分配给了前半 年的日子,同时有110个较小的号码被分配给了后 年的日子,同时有110个较小的号码被分配给了后 半年的日子。 换句话说, 半年的日子 。 换句话说 , 如果你生于后半年的某 一天, 那么, 一天 , 那么 , 你因为被分配给一个较小号码而去 服兵役的机会要大于生于前半年的人 在这种情况下, 在这种情况下 , 两个数字之间只应该有随机误差 ,而73和110之间的差别超出了随机性所能解释的 73和110之间的差别超出了随机性所能解释的 范围。 范围 。 这种非随机性是由于乒乓球在被抽取之前 没有被充分搅拌造成的。 在第二年, 没有被充分搅拌造成的 。 在第二年 , 主管这件事 的部门在抓阄之前去咨询了统计学家( 的部门在抓阄之前去咨询了统计学家 ( 这可能使生 于后半年的人感觉稍微舒服些) 于后半年的人感觉稍微舒服些)
6 -71- 5 71-
统计学
STATISTICS
第 6 章 抽样与抽样分布
6.1 概率抽样方法 6.2 三种不同性质的分布 6.3 一个总体参数推断时样本统计量的抽样 分布 6.4 两个总体参数推断时样本统计量的抽样 分布
6 -71- 6 71-
统计学
STATISTICS
学习目标
1. 2. 3. 4. 5.
6 -71- 14 71-
用Excel对分类数据抽样 Excel对分类数据抽样
统计学
STATISTICS
简单随机抽样
(用Excel对数值型数据随机抽样) Excel对数值型数据随机抽样 对数值型数据随机抽样)
统计学
STATISTICS
统计应用
“抓阄”征兵计划 抓阄”
然而结果是, 73 个较小的号码被分配给了前半 然而结果是 , 有 73个较小的号码被分配给了前半 年的日子,同时有110个较小的号码被分配给了后 年的日子,同时有110个较小的号码被分配给了后 半年的日子。 换句话说, 半年的日子 。 换句话说 , 如果你生于后半年的某 一天, 那么, 一天 , 那么 , 你因为被分配给一个较小号码而去 服兵役的机会要大于生于前半年的人 在这种情况下, 在这种情况下 , 两个数字之间只应该有随机误差 ,而73和110之间的差别超出了随机性所能解释的 73和110之间的差别超出了随机性所能解释的 范围。 范围 。 这种非随机性是由于乒乓球在被抽取之前 没有被充分搅拌造成的。 在第二年, 没有被充分搅拌造成的 。 在第二年 , 主管这件事 的部门在抓阄之前去咨询了统计学家( 的部门在抓阄之前去咨询了统计学家 ( 这可能使生 于后半年的人感觉稍微舒服些) 于后半年的人感觉稍微舒服些)
6 -71- 5 71-
统计学
STATISTICS
第 6 章 抽样与抽样分布
6.1 概率抽样方法 6.2 三种不同性质的分布 6.3 一个总体参数推断时样本统计量的抽样 分布 6.4 两个总体参数推断时样本统计量的抽样 分布
6 -71- 6 71-
统计学
STATISTICS
学习目标
1. 2. 3. 4. 5.
6 -71- 14 71-
用Excel对分类数据抽样 Excel对分类数据抽样
统计学
STATISTICS
简单随机抽样
(用Excel对数值型数据随机抽样) Excel对数值型数据随机抽样 对数值型数据随机抽样)
抽样总体与抽样分布
总体、 一 总体、个体与样本
定义:设 X1,X2,…,Xn,为取自总体X容量为n的样本,如果 X1,X2,…,Xn,相互 独立,且都是与总体X有相同分布的随机变量,则称 X1,X2,…,Xn,为取 自总体X的简单随机样本,简称样本。 注意:独立同分布简单随机样本 注意:独立同分布 样本 X1,X2,…,Xn,的一组具体观察值 x1,x2,…,xn,为它们的观察值。 全体样本值组成的集合称为样本空间。容量为n的样本的样本空间是n 维实空间R n 中的一个子集。 n 设总体X的分布函数为F (x1,x2,…,xn)=F (x1,)F(x2) …F(xn) = ∏ F ( xi )
则样本密度函数若总体x为离散型随机变量其概率为pxpxx则样本概率为p为取自总体x的样本称此样本的任何一不含总体分布未知数参数的函数为该样本的统计量
第 四 章 参数估计与假设检验
第一节 数理统计基础与抽样分布
总体、 一 总体、个体与样本
用概率论的方法研究随机现象,必然涉及到对随机变量观 测结果的处理。将随机现象得到的大量观测数据进行收集、 整理、分析,由此形成的各种方法构成数理统计的基本内 容。数理统计就是研究如何进行观测以及如何根据观测得 到统计资料,对被研究的随机现象的一般概率特征,如概 率分布、数学期望、方差作出统计判断。 抽样方法: 收集、整理、分析带有随机的数据; 统计推断: 利用数据。对总体未知参数进行推断估计。 一个统计问题所研究的对象的全体为总体。 把组成总体的每一个基本单元成为个体。 统计学中称随机变量(或向量)X为总体 总体。随机变量(或 总体 向量)的分布为总体分布 总体分布。 总体分布
二 统计量与样本矩
定义:设X1,X2,…,Xn,为取自总体X的样本,称此样本的任何一不含总体 分布未知数参数的函数为该样本的统计量 统计量。 统计量 例3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
x
xi
i 1
M
1.0 1.5 4.0 16
2.5
n
(xi x )2
2 x
i 1
M
(1.0 2.5)2
(4.0 2.5)2
2
0.625
16
n
式中:M为样本数目
比较及结论:1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
Ⅲ-26
样本均值的分布与总体分布的比较
Ⅲ-19
(1)抽样平均数的平均误差(抽样均值误差)注意啦:
重复抽样
当抽样比例
小于5%时,
不区别抽样
方法影响
不重复抽样
2 N n
()
x n N 1
N n N 1
称为修正系数
Ⅲ-20
(2)抽样成数的平均误差
重复抽样
p
P(1 P) n
不重复抽样
p
P(1 P) ( N n) n N 1
N n N 1
的点
为卡方分布的上a分位点。
a
2 a
(
n)
Ⅲ-40
样本方差的分布
设总体服从正态分布 X~ N(μ,σ2 ),X1,X2, …,Xn为来自该正态总体的样本,则样本方 差 s2 的分布为
(n 1)s 2
2
~
2 (n 1)
将2(n – 1)称为自由度为(n-1)的卡方分布
Ⅲ-41
卡方 (2) 分布
第一个 观察值
第二个观察值
1234
1 1.0 1.5 2.0 2.5
2 1.5 2.0 2.5 3.0
3 2.0 2.5 3.0 3.5
4 2.5 3.0 3.5 4.0
.3 P ( x ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
Ⅲ-25
所有样本均值的均值和方差
12个样本的均值(x)
第一个
第二个观察值
观察值
1
2
3
4
1
-
1.5
2.0
2.5
2
1.5
-
2.5
3.0
3
2.0
2.5
-
3.5
4
2.5
3.0
3.5
-
Ⅲ-34
12个样本的均值(x)
样本均值 频数 频率
1.5
2 2/12
2.0
2 2/12
2.5
4 4/12
3.0
2 2/12
3.5
2 2/12
合计 12 1
0.4
总体
选择容量为n 的 简单随机样本 计算样本方差S2
计算卡方值
2 = (n-1)S2/σ2
计算出所有的
2值
Ⅲ-42
不同容量样本的抽样分布
n=1 n=4 n=10 n=20
2
样本统计量
样本均值
样本成数
样本方差
正态总体或非正 态总体大样本
正态 总体小样本
大样本
正态分布
t分布
Ⅲ-43
正态分布
2分布
解:(1)重复抽样条件下
单位 A B C D A A,A A,B A,C A,D B B,A B,B B,C B,D C C,A C,B C,C C,D D D,A D,B D,C D,D
(2)不重复抽样条件下
单位 A A-
BCD A,B A,C A,D
B B,A - B,C B,D
C C,A C,B - C,D
0.95 (1 0.95) 0.02179 100
Ⅲ-30
根据中心极限定理可知,当样本容量足够大时,样 本均值的抽样分布逐渐趋于正态分布。而抽样成数 的样本容量足够大的条件是np≥5和n(1-p)≥5,而本例 中n=100,p=0.95,所以服从正态分布,即 p~N(p,p(1-p)/n)
2 = p(1-p)/n
x~N(μ,σ2/n)
=10
n= 4
x 5
n =16
x 2.5
= 50 X
总体分布
x 50
X
抽样分布
Ⅲ-28
中心极限定理(图示)
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值x 的
抽样分布近似服从均值为μ、方差为σ2/n的正态分布
一个任意分
p
P(1 P) ( N n) n N 1
0.95 (1 0.95) 10000 100 0.02168
100
10000 1
Ⅲ-37
样本方差的抽样分布
卡方分布定义
设X1,X2,…,Xn为来自总体N(0,1)的样本,则 称统计量
服从自由度为n的卡方分布 简记为:
Ⅲ-39
卡方分布定义
对于给定的正数a,0<a<1,称满足条件
第3章 抽样与抽样分布
本章内容
§3.1 总体与样本 §3.2 抽样的组织形式 §3.3 抽样误差与抽样分布
Ⅲ-2
§3.1 总体与样本
一、全及总体与抽样总体 1、全及总体
指调查对象的全部单位构成的整体,即具有某种 共同性质的若干单位的集合体。简称总体、母体。 可分为有限总体和无限总体 总体单位数用N来表示 2、抽样总体 从全及总体中按照随机原则抽取一部分单位构成 的集合体。简称样本、子样。 大样本和小样本 样本单位数用n来表示
T ( X ) 为统计量,它服从自由度为(n-1)的t 分布
0.3
0.2
0.1
0
1.5
2
2.5
3
3.5
样本均值的抽样分布
Ⅲ-35
所有样本均值的均值和方差
n
x
xi
i 1
M
1.5 3.5 12
30 12
2.5
n
(xi x )2
2
i 1
x
M
(1.5 2.5)2 (3.5 2.5)2 5 2 ( N n )
12
12 n N 1
代表性误差: 偏差 随机误差
Ⅲ-18
2、抽样误差的概念 指根据样本数据计算而得到的样本统计量与被估计的未知 的总体参数真值之间的随机误差。
3、影响抽样误差的因素 (1)抽样单位数目的多少 (2)总体被研究标志的变异程度 (3)抽样方法和组织形式的不同
4、抽样平均误差 指抽样平均数(或抽样成数)的标准差。它反映抽样平均 数(或抽样成数)与总体平均数(或总体成数)的平均误 差程度。
(1)抽样平均数
Ⅲ-7
(2)抽样成数
定义:在抽样总体中, 一个现象有两种表现 时,其中具有某一种 表现的单位数占抽样 总体单位数目的比重, 叫抽样成数,或样本 成数。
pq 1
例:某灯泡厂生产的10000只 灯泡中,从中抽取1000只进 行检验,其中有50只不合格, 则
样本不合格率:
p=50/1000=5% 合格率:q=1-p=95%
总体分布
.3
.2
.1 0
1
234
= 2.5
σ2 =1.25
抽样分布
.3 P ( x ) .2
x 2.5
2 x
0.625
.1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
Ⅲ-27
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N ~ (μ,σ2 )时,来自该总体 的所有容量为n的样本的均值x 也服从正态分布, x 的数学期望为μ,方差为σ2/n。即
D D,A D,B D,C -
Ⅲ-12
§3.2 抽样的组织形式
一、简单随机抽样(纯随机抽样) 二、类型抽样(分类抽样) 三、机械抽样(等距抽样) 四、整群抽样
Ⅲ-13
一、简单随机抽样(纯随机抽样)
1、概念
对全及总体的所有单位不进行任何分类或排队,按照随机 原则直接从总体单位N中抽取n个单位作为样本,保证每个 单位在抽选中都有相等的中选机会。
T 统计量的分布
学生氏分布定义 设X~N(0,1),Y~2(n),并且X,Y 独立,则称随机变量
服从自由度为n 的t分布,记为t~t(n)
Ⅲ-45
t分布定义
对于给定的正数a,0<a<1,称满足条件
的点
为t(n)分布的上a分位点。
a
ta (n)
Ⅲ-46
T 统计量的分布
设X1,X2,…,Xn是来自正态总体N~(μ1,σ12 )的一个 样本, 称
2、具体抽样方法
将总体各单位编号,然后随机抽取,直到抽够预定数目。
Ⅲ-14
二、类型抽样(分类抽样)
1、概念 先将总体按某个标志分成若干组,再随机从各组 中抽取样本单位。
2、具体抽样方法 (1)不等比例类型抽样法 (2)等比例类型抽样法
Ⅲ-15
三、机械抽样(等距抽样)
1、概念
将总体各单位按某一标志进行排序,然后再按固 定的顺序和间隔来抽选样本单位。
x
n
布的总体
当样本容量足够
大时(n ≥30) ,
样本均值的抽样
分布逐渐趋于正
态分布
x
X
Ⅲ-29
二、抽样分布 (一)重复抽样分布
2、抽样成数的抽样分布
例:对某种产品质量的合格率进行检验,现用重复 抽样方法,从总体中抽取100个样本进行检验,其 合格率p=95%,其抽样平均误差为:
p
P(1 P) n
Ⅲ-3
二、全及指标和抽样指标 1、全及指标
根据总体各单位标志值计算的反映总体数量特征 的综合指标,也称为总体指标或总体参数。 (1)总体平均数
Ⅲ-4