01背包问题总结(一)
动态规划——01背包问题
动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
(完整版)01背包问题
01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。
为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。
对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。
同理,c2=0,b2=3,a2=6。
对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。
leetcode 背包总结
leetcode 背包总结"背包问题"是计算机科学中常见的一类问题,主要涉及到如何有效地在给定容量的背包中装入最大价值的物品。
这类问题通常可以使用动态规划(Dynamic Programming)的方法来解决。
以下是我在 LeetCode 平台上遇到的一些背包问题的总结:1. 01背包问题:这是一个经典的背包问题,给定一个物品列表和一个容量,目标是选择一些物品放入背包中,使得背包中的物品总价值最大。
每个物品只有一个,可以选择放入背包或者不放入。
可以使用动态规划来解决。
2. 完全背包问题:与01背包问题相似,但每个物品可以放入多个。
目标是在不超过背包容量的情况下,选择一些物品放入背包中,使得背包中的物品总价值最大。
也可以使用动态规划来解决。
3. 多重背包问题:与完全背包问题相似,但每个物品可以放入多个,且每个物品有不同的重量和价值。
目标是在不超过背包容量的情况下,选择一些物品放入背包中,使得背包中的物品总价值最大。
可以使用动态规划来解决。
4. 带有优先级的背包问题:在标准的背包问题中,所有的物品都有相同的优先级。
但在某些情况下,一些物品可能比其他物品更重要,需要优先考虑。
这个问题需要考虑物品的优先级和价值,选择重要的物品放入背包中,使得总价值最大。
5. 分组背包问题:这个问题是将一组物品分组,然后每组物品共享相同的重量。
目标是选择一些组,使得这些组的总价值最大,同时不超过背包的容量。
可以使用动态规划来解决。
解决这类问题的关键是理解问题的本质和限制条件,然后选择合适的算法和数据结构来解决问题。
动态规划是解决这类问题的常用方法,因为它可以有效地处理重叠子问题和最优子结构的问题。
背包问题解题方法总结
背包问题解题⽅法总结最近在⽜客刷题遇到好⼏道背包问题,索性这两天集中⽕⼒刷了⼀些这类的题。
这⾥总结⼀下0-1背包、完全背包和多重背包三种基本的背包问题的解题套路。
(均基于动态规划的思想)0-1背包题⽬:有 N 件物品和容量为 W 的背包。
第 i 件物品的重量为 w_i,价值为 v_i,求将不超过背包容量的物品装⼊背包能得到的最⼤价值。
特点,每件物品的数量只有⼀个,可以选择放或不放某件物品。
⽤dp[i][j]表⽰将前 i+1 件总重量不超过 j 的物品放⼊背包能获得的最⼤价值,则可以⽤以下的转移⽅程来表⽰这个过程:\[dp[i,j] = max(dp[i - 1, j], dp[i-1, j-w[i]] + v[i]) \]注意到dp数组第i⾏的值更新只跟 i-1 ⾏有关,因此可以通过滚动数组或者反向更新的⽅式优化⼀下空间复杂度,在动态规划解题的时候这是⼀种常⽤的空间复杂度优化⽅式。
优化后的代码如下:for(int i = 0; i < N; i++){// 注意到这⾥dp需要从后往前更新,避免更新前就把旧值覆盖// 从实际意义上来说,因为每件物品只有⼀个,从后向前更新保证了更新是在还没放⼊过当前物品的前提下进⾏的for(int j = W; j >= w[i]; j--){dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);}}完全背包题⽬:有 N 种物品和容量为 W 的背包。
第 i 种物品的重量为 w_i,价值为 v_i,每种物品的数量⽆限。
求将不超过背包容量的物品装⼊背包能得到的最⼤价值。
特点:每种物品的数量⽆限多。
考虑到每种物品的数量⽆限。
⽤dp[j]表⽰在重量不超过 j 的情况下背包中物品可以达到的最⼤价值,则转移⽅程如下:\[dp[j]=max(dp[j], dp[j-w[i]]+v[i]) \]核⼼代码如下:for(int i = 0; i < N; i++){for(int j = w[i]; j <= W; j++){ // 这⾥和0-1背包不同dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);}}注意内层for循环是从前向后更新dp数组的,这是唯⼀和上⾯的0-1背包问题区别的地⽅。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
贪心算法-01背包问题
贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
背包问题之零一背包
背包问题之零⼀背包注:参考⽂献《背包九讲》.零⼀背包问题⼀:题⽬描述 有 N 件物品和⼀个容量为 V 的背包.放⼊第 i 件物品耗⽤的费⽤为C i(即所占⽤背包的体积),得到的价值是 W i.求将哪些物品装⼊背包所得到的总价值最⼤.⼆:基本思路 01背包是最基础的背包问题,这道题的特点是每种物品仅有⼀件,可以选择放或不放,且不要求背包必须被放满,只要求最后的总价值最⼤. ⽤⼦问题定义状态:F[i][v] 表⽰对于前 i 件物品,当背包容量为 v 时所能得到的价值最⼤值.设想,将 "前 i 件物品放⼊容量为 v 的背包中" 这个⼦问题,若只考虑第 i 件物品的策略(要么放要么不放),那么就可以转化为⼀个之和前 i - 1 件物品相关的问题.如果不放第 i 件物品, 那么问题就转化为 ”前 i - 1 件物品放⼊容量为 v 的背包中“,价值就是 F[i - 1][v]; 如果放第 i 件物品,那么问题就转化为 ”前 i - 1 件物品放⼊剩下的容量为v - C i的背包中”, 此时获得的价值为 F[i - 1][v - C i] + W i。
特殊的,当 v < C i时,可以认为当前的容量是放不下第 i 件物品的,即此时相当于不放第 i 件物品的价值F[i - 1][v].分析到这⾥则可得状态转移⽅程为: F[i][v] = v < C i F[i - 1][v] : max( F[i - 1][v], F[i - 1][v - C i] + W i ).在这⾥要特别的说明⼀下,这个⽅程⾮常重要,⼀定要知道这是怎么推出来的,⼏乎后⾯的所有的背包问题都和这个⽅程有着密不可分的联系.伪代码如下:F[0...N][0...V] <--- 0for i <--- 1 to N for v <--- C i to V F[i][v] = v < C i F[i - 1][v] : max( F[i - 1][v], F[i - 1][v - C i] + W i );具体代码:1void _01Pack(int F[][MAXV], int N, int V, int C[], int W[]){2 memset(F, 0, sizeof(F));3for(int i = 1; i <= N; i++) {4for(int v = 0; v <= V; v++) {5 F[i][v] = v < C[i] ? F[i - 1][v] : max(F[i - 1][v], F[i - 1][v - C[i]] + W[i]); //放或者不放两者之中选择最优者6 }7 }8 }三:优化空间复杂度 可以清楚的看到上⾯算法的时间复杂度和空间复杂度均为 O(N * V), 这⾥时间复杂度已经不能得到优化,但是空间复杂度确可以优化到O(V). 先看上⾯代码是如何实现的.最外⾯⼀层循环,每次计算出⼆维数组 F[i][0...V] 的值,计算的时候 F[i][0...V] 是由它的上⼀层 F[i - 1][0...V] ⽽得到的.那么如果把这个数组换成⼀维的 F[v] 那么还能保留上⼀次的状态吗.答案是可以的.由于动态规划算法的⽆后效性,第 i + 1 件物品的选择与否不会影响到第 i 件物品(即它的前⼀件物品)的选择状态.那么可以在上⾯第⼆次循环中按照 v <--- V...0 递减的顺序来计算 F[v], 这样计算F[v] 时所需要的状态 F[v] 和 F[v - C i] + W i 仍然还是上⼀次的状态.⽽计算 F[v] 之后, v 的顺序是递减的, F[v] 不会影响到 F[v'] (v' < v), 因为F[v']只与 F[v'](上⼀次的值) 和 F[v - C i] 有关, ⽽ F[v] > F[v'] > F[v' - C i]. 所以⼜可得状态转移⽅程. F[v] = max( F[v], F[v - C i] + W i ).伪代码如下:F[0...V] <--- 0for i <--- 1 to N for v <--- V to C i F[v] = max( F[v], F[v - C i] + W i );具体代码:1void _01Pack(int F[], int N, int V, int C[], int W[]){2 memset(F, 0, sizeof(F));3for(int i = 1; i <= N; i++) {4for(int v = V; v >= C[i]; v--) {5 F[i][v] = max(F[v], F[v - C[i]] + W[i]);6 }7 }8 }可以看到从第⼀个状态转移⽅程到第⼆个状态转移⽅程的空间优化效率还是挺⼤的: F[i][v] = max( F[i - 1][v], F[i - 1][v - C i] + W i ). ----> F[v] = max( F[v], F[v - C i] + W i ).在第⼆个⽅程中 F[v]1 = max(F[v]2, F[v - C i] + W i), 其实 F[v]2 就相当与⽅程⼀中的 F[i - 1][v], 对应的 F[v - C i] + W i就相当于 F[i -1][v - C i] + W i.这⼀正确性是在内层循环递减的前提下才成⽴的.否则, 将内层循环改为递增, 那么 F[i][v] 其实是由 F[i][v] 和 F[i][v - C i] 推出来的,这不符合基本思路中的探讨.之前说过由于 01背包的特殊性,这⾥将 01背包抽象化,⽅便之后的调⽤.解决单个物品 01背包的伪代码:def ZeroOnePack (F, C, W) for v <--- V to C F[v] = max( F[v], F[v - C] + W );这么写之后, 01背包总问题解决的伪代码就可以改写成:F[0...V] <--- 0for i <--- 1 to N ZeroOnePack(F, C[i], W[i]);具体代码:1const int MAXN = 10000;2int N, V, C[MAXN], W[MAXN];34void ZeroOnePack(int F[], int C, int W) { // 对于单个物品的决策5for(int v = V; v >= C; v--) {6 F[v] = max(F[v], F[v- C] + W);7 }8 }910void solv(int F[]) {11 memset(F, 0, sizeof(F));12for(int i = 1; i <= V; i++) {13 ZeroOnePack(F, C[i], W[i]);14 }15 }四: 01背包问题的拓展 ------ 初始化的细节问题 在上述 01背包的问题中,仅问得是 “如何选取,才能使的最后的总价值最⼤”, 这⾥并没有规定是否必须装满背包, 但是有的题将会给予这个附加条件, 即“在要求恰好装满背包的前提下, 如何选取物品, 才能使的最后的总价值最⼤ ”. 这两种问法, 在代码实现上相差⽆⼏.如果是上述问法,要求 “恰好装满背包”, 那么在初始化时除了将 F[0] 赋值为 0 之外, 其他的 F[1...V] 都应该赋值为 -∞,这样就可以保证最后的得到的 F[V] 是⼀种恰好装满背包的最优解.如果没有要求必须把背包装满,⽽是只希望价值尽量最⼤,初始化时应该将F[0...V] 全部设置为 0. 之所以可以这么做,是因为初始化的 F[] 事实就是没有任何物品放⼊背包时的合法状态.如果要求背包恰好装满,那么只有容量为 0 的背包在什么也不装且价值为 0 的情况下被装 "恰好装满",其他容量的背包如果不装物品, 那么默认的情况下都是不合法状态,应该被赋值为 -∞, 即对于第⼀个物品⽽⾔, 其合法状态只能由 F[0] 转移得到.如果背包并⾮必须被装满,那么任何容量的背包在没有物品可装时都存在⼀个合法解,即什么都不装,且这个解的价值为 0.所以将其全部初始化为 0 是可以的. 注:这个技巧完全可以拓展到其他背包问题中.伪代码:def ZeroOnePack (F, C, W) for v <--- V to C F[v] = max( F[v], F[v - C] + W )end defdef slov() F[0] = 0, F[1...V] <--- -∞ for i <--- 1 to N ZeroOnePack(F, C[i], W[i])end def具体代码:1const int MAXN = 10000;2int N, V, C[MAXN], W[MAXN];34void ZeroOnePack(int F[], int C, int W) {5for(int v = V; v >= C; v--) {6 F[v] = max(F[v], F[v- C] + W);7 }8 }910void solv(int F[]) {11 F[0] = 0;12for(int i = 1; i <= V; i++) F[i] = INT_MIN; // 除F[0] = 0之外, 其他全部赋值为负⽆穷13for(int i = 1; i <= V; i++) {14 ZeroOnePack(F, C[i], W[i]);15 }16 }五:⼀个常数级别的优化上述伪代码的:for i <--- 1 to N for v <--- V to C i可以优化为:for i <--- 1 to N for v <--- V to max( V - SUM(i...N)C i, C i)。
背包算法知识点总结
背包算法知识点总结背包问题是一种典型的组合优化问题,在计算机科学和运筹学中具有广泛的应用。
它的核心思想是在给定一组物品和背包容量的条件下,如何选择物品以使得背包中物品的总价值最大化。
背包问题可以分为0-1背包问题、完全背包问题和多重背包问题等类型。
0-1背包问题是最基本的背包问题,其中每个物品只有一件,且只能选择放入或不放入背包。
解决0-1背包问题通常采用动态规划的方法。
动态规划算法通过构建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
通过状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]和v[i]分别表示第i个物品的重量和价值,可以逐步填充dp数组,最终得到最优解。
完全背包问题与0-1背包问题的主要区别在于,完全背包问题中的物品可以无限选取。
这意味着对于每个物品,可以选择放入0个、1个、2个,甚至更多个。
解决完全背包问题同样可以采用动态规划的方法,但状态转移方程有所不同。
对于完全背包问题,dp[i][j] =max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中如果j >= w[i],则需要考虑所有可能的选取数量。
多重背包问题是0-1背包问题和完全背包问题的结合,其中每种物品有限定的数量。
解决多重背包问题需要对每种物品的数量进行遍历,然后采用0-1背包问题的动态规划方法来求解。
除了动态规划,背包问题还可以通过贪心算法、回溯算法等方法求解。
贪心算法通过每次选择当前价值最大的物品来构建解,但这种方法并不总是能够得到最优解。
回溯算法则通过搜索所有可能的解空间来寻找最优解,但时间复杂度较高。
在实际应用中,背包问题可以用于资源分配、投资组合优化、货物装载等问题。
通过合理的算法设计和优化,可以有效地解决这些实际问题,提高资源的利用效率。
总结来说,背包问题是一类重要的组合优化问题,通过动态规划等算法可以有效求解。
背包问题总结
背包问题总结背包问题总结01背包问题01背包问题解决⼀个这样的问题,即在付出的代价有限,选取的物品也有限的条件(拿与不拿)下如何达到最优解的问题。
⾯临的棘⼿情况是,并不是代价可以承受的情况下总是选择拿取物品,所获得的价值会达到最⼤,可能出现由于⾸先拿取⼀个低价值的物品导致⽆法后续⾼价值的物品⽆法拿取错失最优价值的情况。
解决办法:如果我们遍历所有可能,通过⽐较那么我们⼀定可以得到最优解,但是代价过于⾼昂,存在许多⼦问题的冗余计算的过程,若要解决⼦问题的冗余,能否将⼦问题的状态保存,之后再在需要时找出,这样就能避免⼤量的计算。
动态规划将⼤问题分解为⼀个个⼦问题,⽗问题的最优解有赖于⼦问题最优解的来实现,譬如:如果我们拥有 i- 1种物品在0n**种代价限n情况的最优解呢?制的情况下的最优解,我们能否找出**i**种物品**0在是否选择第i件物品的当⼝,我们有两种选择:不选择:直接继承i-1在代价限制条件下的最优解选择:那么在付出代价之后我们可以将付出代价后的最优解与i物品的价值组合获得最优解⽬标是获得选择/不选择情况下的最优解,所以可以选择其中的最⼤值代码实现:if(j<space[i])dp[i][j]=dp[i-1][j];elsedp[i][j]=max(dp[i-1][j],dp[i-1][j-space[i]]+val[i]);空间优化:如⽤⼀个⼀维数组记录,通过逆序遍历,通过⽐较dp[i]与dp[i - w] + v(倒序情况下dp[i-w]没有被更新)既可以获得最优解代码实现:for(i=1;i<=N;i++)//遍历n种物品选择情况{for(j=C;j>=space[i];j--)//倒序同时保证代价能够承受{dp[j]=max(dp[j],dp[j-space[i]]+val[i]);}}实际问题分析这是⼀个典型的01背包问题,在背包体积有限为V的情况下有N件物品进⾏选择,每件物品都有相应的价值与代价⼀个有趣的问题这个问题需要解决如何将物品分割,使得物品分隔相对均匀且A堆不⼩于B堆这同样是01背包问题,01背包问题可解决的是背包空间有限的情况下,所能获取到的最⼤资源的问题。
01背包问题实验心得体会
01背包问题实验心得体会01背包问题是一个经典的动态规划问题,也是算法设计与分析中常见的一个问题。
在这个问题中,有一个容量为C的背包和N个物品,每个物品有一个重量和一个价值,要求选出一些物品放入背包中,使得总重量不超过背包容量且总价值最大。
在实验中,我首先对01背包问题进行了建模和分析,然后使用了两种不同的算法进行求解,分别是基于贪心算法和动态规划算法。
最后,对两种算法进行了对比和分析。
首先,我对01背包问题进行了建模。
根据题目要求,我将问题定义为一个二维表格,表格的行表示物品的索引,列表示背包的容量。
表格中的每个元素表示在考虑前i个物品并且背包容量为j的情况下,可以获得的最大价值。
根据这个定义,我可以通过填充表格中的元素来逐步求解问题。
然后,我使用了两种算法来求解01背包问题。
首先是贪心算法,贪心算法的核心思想是每次选择当前最优解,但是在01背包问题中,贪心算法不一定能够得到最优解。
因此,我使用了一个简单的贪心策略,即每次选择单位价值最高的物品放入背包中。
这个算法的时间复杂度为O(NlogN),因为需要对物品按照单位价值进行排序。
然后是动态规划算法,动态规划算法是一种通过将问题分解为子问题,并且利用子问题的解来求解原问题的方法。
对于01背包问题,动态规划算法的思路是从表格的左上角开始,逐行逐列地填充表格中的元素。
具体的填充方法是,对于第i个物品和第j个背包容量,如果当前物品的重量大于背包容量,则当前元素的值等于上一行相同列的元素的值;否则,当前元素的值等于上一行相同列的元素的值和上一行当前列减去当前物品重量所对应的元素的值的最大值。
这个算法的时间复杂度为O(NC),其中N为物品的个数,C为背包的容量。
实验结果显示,贪心算法的解并不一定是最优解,而动态规划算法的解一定是最优解。
这是因为贪心算法在每一次选择中只考虑了当前最优解,而没有考虑到整体最优解。
而动态规划算法通过填充表格的方式,可以逐步求解出整体最优解,并且保证了子问题的最优解是原问题的最优解。
背包问题问题实验报告(3篇)
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
背包问题(1)
背包问题报告小组成员:张灿、吴雪涛、高坤、占强、习慧平小组分工情况小组成员查找资料制作ppt 编写程序讲解ppt 制作报告张灿ⅴⅴⅴⅴⅴ吴雪涛ⅴ高坤ⅴⅴ占强ⅴ习慧平ⅴ背包问题一、背包问题的历史由来它是在1978年由Merkel和Hellman提出的。
它的主要思路是假定某人拥有大量物品,重量各不同。
此人通过秘密地选择一部分物品并将它们放到背包中来加密消息。
背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。
附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。
背包问题是熟知的不可计算问题,背包体制以其加密,解密速度快而其人注目。
在解决大量的复杂组合优化问题时,它常常作为一个子问题出现,从实际的观点看,许多问题可以用背包问题来描述,如装箱问题,货仓装载,预算控制,存储分配,项目选择决策等,都是典型的应用例子。
随着网络技术的不断发展,背包公钥密码在电子商务中的公钥设计中也起着重要的作用。
然而当问题的规模较大时,得到最优解是极其困难的。
但是,大多数一次背包体制均被破译了,因此现在很少有人使用它。
二、背包问题的描述背包问题(Knapsack problem)是一种组合优化的NP完全问题。
问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。
问题的名称来源于如何选择最合适的物品放置于给定背包中。
相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。
也可以将背包问题描述为决定性问题,即在总重量不超过W的前提下,总价值是否能达到V?三、背包问题的定义我们有n种物品,物品j的重量为w j,价格为p j。
我们假定所有物品的重量和价格都是非负的。
背包所能承受的最大重量为W。
如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。
可以用公式表示为:maximizesubject to如果限定物品j最多只能选择b j个,则问题称为有界背包问题。
01背包问题及变种详解
P01: 01背包问题题目有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
经典背包问题的探讨
经典背包问题的探讨⼀、背包问题的描述背包问题可以有多种形式,下⾯将对其逐⼀进⾏描述:(1)经典的0-1背包问题(⽆物品的价值):假设有⼀个能装⼊容量为C的背包和n件重量分别为w1,w2,,...,wn的物品,能否从n件物品中挑选若⼲件恰好装满背包,要求找出所有满⾜上述条件的解。
当C=10,各件物品重量为{1,8,4,3,5,2}时,可以找到下列4组解:(1,4,3,2)、(1,4,5)、(8,2)和(3,5,2)。
根据这个问题的⼀个变形是:已知⼀个数为C,⼀个长度为n的⽆序的数组,分别是数w1,w2,...,wn,能否从这n个数中找到若⼲个数使其和等于数C,要求找出所有满⾜上述条件的解。
(2)经典的0-1背包问题(有物品的价值):给定n种物品和⼀个背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
应该如何选择装⼊背包中的物品,使得装⼊背包中物品的总价值最⼤?上⾯的两个问题都是0-1背包问题,因为隐含的信息是:对每种物品只有两种选择,即装⼊背包或者不装⼊背包。
不能将物品装⼊多次,也不能只装⼊部分的物品。
(3)背包问题:与0-1背包问题类似,所不同的是在选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包。
⼆、解决思路对于问题(1),本⽂采⽤的是回溯思想,利⽤栈的“后进先出”的特性,⾸先将物品排成⼀列,然后顺序选取物品装⼊背包,假设已选取了前i件物品之后背包还没装满,则继续选取第i+1件物品,若选该件物品的重量太⼤不能装⼊,则放弃⽽继续选取下⼀件,直⾄背包装满为⽌。
但是如果在剩余物品中找不到合适的物品以填满背包,则说明“刚刚”装⼊背包的那件物品“不合适”,应该将它取出,再继续从它之后的物品中选取,如此重复,直⾄求得满⾜要求的解,或者⽆解为⽌。
因为回溯的规则也是“后进先出”,所以采⽤栈这个数据结构。
对于问题(2),其实可以采⽤问题(1)的解法,因为要使价值最⼤化,肯定也是尽可能多的往背包⾥装物品。
动态规划专题01背包问题详解【转】
动态规划专题01背包问题详解【转】对于动态规划,每个刚接触的⼈都需要⼀段时间来理解,特别是第⼀次接触的时候总是想不通为什么这种⽅法可⾏,这篇⽂章就是为了帮助⼤家理解动态规划,并通过讲解基本的01背包问题来引导读者如何去思考动态规划。
本⽂⼒求通俗易懂,⽆异性,不让读者感到迷惑,引导读者去思考,所以如果你在阅读中发现有不通顺的地⽅,让你产⽣错误理解的地⽅,让你难得读懂的地⽅,请跟贴指出,谢谢!初识动态规划经典的01背包问题是这样的:有⼀个包和n个物品,包的容量为m,每个物品都有各⾃的体积和价值,问当从这n个物品中选择多个物品放在包⾥⽽物品体积总数不超过包的容量m时,能够得到的最⼤价值是多少?[对于每个物品不可以取多次,最多只能取⼀次,之所以叫做01背包,0表⽰不取,1表⽰取]为了⽤⼀种⽣动⼜更形象的⽅式来讲解此题,我把此题⽤另⼀种⽅式来描述,如下:有⼀个国家,所有的国民都⾮常⽼实憨厚,某天他们在⾃⼰的国家发现了⼗座⾦矿,并且这⼗座⾦矿在地图上排成⼀条直线,国王知道这个消息后⾮常⾼兴,他希望能够把这些⾦⼦都挖出来造福国民,⾸先他把这些⾦矿按照在地图上的位置从西⾄东进⾏编号,依次为0、1、2、3、4、5、6、7、8、9,然后他命令他的⼿下去对每⼀座⾦矿进⾏勘测,以便知道挖取每⼀座⾦矿需要多少⼈⼒以及每座⾦矿能够挖出多少⾦⼦,然后动员国民都来挖⾦⼦。
题⽬补充1:挖每⼀座⾦矿需要的⼈数是固定的,多⼀个⼈少⼀个⼈都不⾏。
国王知道每个⾦矿各需要多少⼈⼿,⾦矿i需要的⼈数为peopleNeeded[i]。
题⽬补充2:每⼀座⾦矿所挖出来的⾦⼦数是固定的,当第i座⾦矿有peopleNeeded[i]⼈去挖的话,就⼀定能恰好挖出gold[i]个⾦⼦。
否则⼀个⾦⼦都挖不出来。
题⽬补充3:开采⼀座⾦矿的⼈完成开采⼯作后,他们不会再次去开采其它⾦矿,因此⼀个⼈最多只能使⽤⼀次。
题⽬补充4:国王在全国范围内仅招募到了10000名愿意为了国家去挖⾦⼦的⼈,因此这些⼈可能不够把所有的⾦⼦都挖出来,但是国王希望挖到的⾦⼦越多越好。
回溯法01背包问题例题
回溯法是一种解决0-1背包问题的有效方法。
以下是使用回溯法解决0-1背包问题的具体步骤和例题:1.定义问题:假设有N件物品,每件物品有一定的重量Wi和价值Vi,背包能够承受的最大重量为W。
目标是选择一些物品放入背包,使得背包中物品的总价值最大,同时不超过背包的最大承重。
2.使用回溯法求解:回溯法的核心是深度优先搜索,通过尝试每一种可能性来找到最优解。
o初始化:将所有物品按照价值从大到小排序。
o递归函数:▪如果当前选择的物品重量超过了背包的承重,则返回(因为无法放入背包)。
▪如果当前选择的物品价值大于之前所有选择物品的总价值,则更新当前最大价值。
▪标记当前选择的物品为已选(例如,使用一个布尔数组表示)。
▪递归地尝试下一个物品。
o回溯:如果递归到最后一个物品,并且没有超过背包的承重,则将最后一个物品加入背包,并更新最大价值。
然后回溯到上一个物品,尝试不放入背包中。
3.求解步骤:o初始状态:未选择任何物品,总价值为0。
o递归函数:对于每个物品i,如果未选择(即第i个物品的布尔数组标记为false),则执行递归函数。
如果选择了第i个物品,并且总价值大于当前最大价值,则更新最大价值。
标记第i个物品为已选。
然后递归地尝试下一个物品。
o回溯:如果尝试了所有物品都没有超过背包的承重,并且总价值大于当前最大价值,则将最后一个选择的物品加入背包,并更新最大价值。
然后回溯到上一个物品,尝试不放入背包中。
4.例题:假设有3件物品,重量分别为20、15、10,价值分别为20、30、25,背包的承重为25。
根据回溯法求解的步骤如下:o首先尝试第一个物品(重量20,价值20)。
由于20>25,所以无法放入背包。
o接下来尝试第二个物品(重量15,价值30)。
由于15+20=35>25,所以也无法放入背包。
o然后尝试第三个物品(重量10,价值25)。
由于10+20=30<25,所以可以放入背包中。
此时的最大价值为25+25=50。
01背包问题总结
01背包问题总结01背包问题题意:有N件物品和⼀个容量为M的背包。
第i件物品的体积是c[i],价值是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
(不⼀定要将背包装满),但不能超过背包的容量。
下⾯给出⼀个具体例⼦便于理解:物品编号物体体积物品价值123234345456然后我将给出⼀个表格,橙⾊底纹的数据含义:在当前背包容量下,考虑前n个物品的最佳组合(不超过背包容量,不⼀定要装满),使得背包总价值最⼤,在格⼦中填⼊这个最⼤的总价值.如:最右下⽅的格⼦代表在容量为8的背包中,从前4个物品选择x种物品后得到使背包内价值最⼤的⽅案,这个价值为10(将2、4放⼊)上⾯其实⽤的是⼆维数组的解法,在这⾥分析⼀下吧:在这⾥细分有三种情况,粗劣的分有两种情况;⼀.⽆法装下当前物品;那么说明这⼀次背包内物品的体积和上⼀次⼀样,也就是前n个物品的最佳组合产⽣的价值和前n-1个物品的最佳组合产⽣的价值相同.⼆.可以装下当前物品;1.选择不装当前物品:和⽆法装下当前物品的结果⼀样,前n个物品的最佳组合产⽣的价值和前n-1个物品的最佳组合产⽣的价值相同.2.选择装当前物品:除去当前物品在该背包占⽤的空间所得到的空间在前n-1个物品中最佳组合产⽣的价值加上当前物品所产⽣的价值构成总价值.接着⽐较1、2者2⼤⼩。
Code:#include<stdio.h>#include<iostream>#include<algorithm>#include<stdlib.h>#include<string.h>#include<math.h>using namespace std;typedef long long LL;const int maxn=1e5+7;const int maxm=2e5+7;const int maxi=1000;const long long INF=0x3f3f3f3f;const long long mod=1e9+7;int n,m;int w[maxi],d[maxi];//w[i]:第i件物品的体积,d[i]:第i件物品的价值.int f[maxi][maxi];//f[i][j]代表在体积j下,前i个物品的最佳组合所产⽣的价值(最⼤价值)int main(){scanf("%d%d",&n,&m);for(int i=1;i<=n;i++)scanf("%d%d",&w[i],&d[i]);for(int i=1;i<=n;i++){int v=1;while(v<w[i])//当前背包的体积⽆法放下当前物品{f[i][v]=f[i-1][v];//直接将前i-1个物品最佳组合的价值赋值给前i个物品的最佳组合价值v++;}for(v=w[i];v<=m;v++)//当前背包的体积可以放下当前物品f[i][v]=max(f[i-1][v],f[i-1][v-w[i]]+d[i]);//选择将第i个物品不放⼊背包或者放⼊背包}printf("%d",f[n][m]);return 0;}However,这道题仍然是可以进⾏优化的,⽤⼀个⼀维的滚动数组就可以达到⽬的。
背包问题总结
背包问题总结背包问题0/1背包有\(n\)个物品,每个物品有⼀个体积\(v\),价值\(w\),每个物品只能选⼀次,问在所选体积不超过\(m\)的情况下的最⼤价值枚举每个物品选或不选设\(f[i,j]\)表⽰前\(i\)件物品,选的体积不超过\(j\)的最⼤价值初始化 \(f[0,[0,m]] = 0\)转移\[f[i,j] = max(f[i-1,j],f[i-1,j-v_i]+w_i) \]⽬标 \(f[n,m]\)倒序循环\(j\)可滚动数组优化空间注意:如果\(f[i,j]\)的定义是选的体积等于\(j\)的最⼤价值,那么初始化 \(f[0,[1,m]] = inf,f[0,0] = 0\)⽬标 \(\max\{f[n,i]\},0 \leq i \leq m\)如果题⽬要求等于\(m\)就只能⽤第⼆种定义,相应的⽬标就为\(f[n,m]\)完全背包每个物品可选⽆数次滚动并正序循环\(j\)即可注意的地⽅同上多重背包每个物品有\(c\)个1. ⼆进制拆分2. 单调队列优化for(in(n),in(m),i = 1;i <= n; ++i) {for(in(w),in(v),in(c),j = 0;j < v; ++j) {l = 1,r = 0,lim = (m-j)/v;for(k = 0;k <= lim; ++k) {while(l <= r && q[r].v <= f[k*v+j]-k*w) --r;q[++r] = qwq {k,f[k*v+j]-k*w};while(l <= r && q[l].pos < k-c) ++l;if(l <= r) f[k*v+j] = q[l].v+k*w;}}}out(f[m]);分组背包每组⾄多选⼀个物品树上分组背包。