函数的零点和二分法
函数零点问题
函数零点问题
函数零点问题,又称为函数根搜索问题,是求解一元函数或多元函数的实根的方法。
即在给定的一个区间[a,b]内求解f(x)=0的根,其中f(x)是一个连续函数。
该问题的求解最常用的方法是二分法和牛顿迭代法。
二分法是一种简单而有效的求解函数零点的方法,它的基本思想是将定义域划分为两个子区间,如果函数在两个子区间的符号不同,则说明该区间存在函数零点,然后再把该区间一分为二,得到新的两个子区间,重复上述步骤,直至找到函数零点的精确位置。
牛顿迭代法是一种根据函数的导数来求函数零点的一种方法,它的基本思想是:令函数f(x)在某点x0上的切线与X轴相交于点P,然后选择P作为下一个迭代点,重复该过程,直至收敛到函数零点。
高一数学函数的零点与二分法教案
一. 教学内容:函数的零点与二分法二. 学习目标1、理解函数零点的概念与性质,会求函数的零点。
2、理解零点的意义,会求简单函数的零点,了解函数的零点与方程的根的关系;3、通过具体实例了解二分法是求方程近似解的常用方法,理解用二分法求函数零点的原理,从中体会函数与方程之间的联系及其在实际问题中的应用.4、在函数与方程的联系中,初步体会事物间相互转化的辩证思想;体验探究的过程、发现的乐趣。
三. 知识要点 1、函数的零点一般地,如果函数()y f x =在实数a 处的值等于零,即()0f a =,则a 叫做这个函数的零点。
归纳:函数的零点并不是“点”,它不是以坐标的形式出现的。
说明:(1)函数的零点是一个实数,即当函数的自变量取这一实数时函数值为零; (2)对于函数的零点问题我们只在实数X 围内讨论;(3)方程的根、函数的图象与x 轴交点的横坐标以及函数的零点是同一个问题的三种不同的表现形式2、函数零点的意义:函数)x (f y =的零点就是方程0)x (f =的实数根,亦即函数)x (f y =的图象与x 轴交点的横坐标.归纳:方程0)x (f =有实数根⇔函数)x (f y =的图象与x 轴有交点⇔函数)x (f y =有零点.3、函数零点存在性的判定方法对于函数相对应的方程能求解的,可以直接求解方程的实数根,从而确定函数的零点;对于函数相对应的方程不能直接求解的,又该怎样处理?如果函数)x (f y =在区间[]b ,a 上的图象是连续不断的一条曲线,并且有0)b (f )a (f <⋅,那么,函数)x (f y =在区间()b ,a 内有零点.即存在()b ,a c ∈,使得0)c (f =,这个c 也就是方程0)x (f =的根。
说明:(1)函数)x (f y =在区间[]b ,a 上有定义; (2)函数的图象是连续不断的一条曲线;(3)函数)x (f y =在区间[]b ,a 两端点的函数值必须满足0)b (f )a (f <⋅; (4)函数)x (f y =在区间()b ,a 内有零点,但不唯一;(5)用判定方法验证函数2x )x (f =,说明该方法仅是判断函数零点存在的一种方法,并不是唯一的方法。
高中数学-函数零点问题及例题解析
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
二分法求函数零点教案(可编辑修改word版)
1、二分法的概念用二分法求方程的近似解对于在区间[a, b]上连续不断且 f (a ) · f (b ) < 0 的函数 y = f (x ) , 通过不断把函数f (x ) 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。
2、用二分法求函数 f (x ) 的零点的近似值的步骤:(1)确定区间[a, b], 验证: f (a ) · f (b ) < 0,确定精确度(2)求区间(a , b)的中点 x 1(3)计算 f (x 1 )若 f (x 1 ) =0, 则就 x 1 是函数的零点若 f (a ) · f (x 1 ) <0,则令 b = x 1 (此时零点 x 0∈(a,x 1 ))若 f (x 1 ) · f (b ) <0,则令 a = x 1 (此时零点 x 0∈( x 1 , b)) (4)判断是否达到精确度即若 | a – b | <, 则得到零点的近似值为 a (或 b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。
否则为不变号零点。
二分法只能求函数的变号零点。
例题讲解:例 1:下列函数图象与 x 轴均有交点,其中不能用二分法求图中函数零点的是( )解:应选 B ,利用二分法求函数零点必须满足零点两侧函数值异号。
1 例 2、 利用二分法求方程 x= 3 - x 的一个近似解(精确到 0.1)。
解:设 f (x ) = 1 + x - 3 ,则求方程 1= 3 - x 的一个近似解,即求函数 f (x ) 的一个近似零x x点。
∵ f (2) = - 1 < 0 , f (3) = 1> 0 ,∴取区间[2,3]作为计算的初始区间。
函数零点与二分法
1.函数零点 概念:对于函数,把使成立的实数叫做函数的零点。
函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点。
零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。
既存在,使得,这个也就是方程的根。
2.二分法 二分法及步骤: 对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 给定精度,用二分法求函数的零点近似值的步骤如下:(1)确定区间,,验证·,给定精度;(2)求区间,的中点;(3)计算:①若=,则就是函数的零点;②若·<,则令=(此时零点); ③若·<,则令=(此时零点); (4)判断是否达到精度;即若,则得到零点零点值(或);否则重复步骤2~4。
(二)考点分析题型1:方程的根与函数零点例1.(1)方程lgx+x=3的解所在区间为( ) A .(0,1)B .(1,2) C .(2,3)D .(3,+∞) (2)设a 为常数,试讨论方程的实根的个数。
解析:(1)在同一平面直角坐标系中,画出函数y=lgx 与y=-x+3的图象(如图)。
它们的交点横坐标,显然在区间(1,3)内,由此可排除A ,D 至于选B 还是选C ,由于画图精确性的限制,单凭直观就比较困难了。
实际上这是要比较与2的大小。
当x=2时,lgx=lg2,3-x=1。
由于lg2<1,因此>2,从而判定∈(2,3),故本题应选C 。
(2)原方程等价于))((D x x f y ∈=0)(=x f x))((D x x f y ∈=)(x f y =0)(=x f )(x f y =x 0)(=x f ⇔)(x f y =x ⇔)(x f y =)(x f y =],[b a 0)()(<b f a f )(x f y =),(b a ),(b a c ∈0)(=c f c a[]b )(a f )(b f 0<)(x f y =)(x f ε)(x f a []b )(a f )(b f 0<εa ()b 1x )(1x f )(1x f 01x )(a f )(1x f 0b 1x ),(10x a x ∈)(1x f )(b f 0a 1x ),(10b x x ∈εε<-||b a a b )lg()3lg()1lg(x a x x -=-+-0x 0x 0x 0x ⎪⎪⎩⎪⎪⎨⎧-=-->->->-xa x x x a x x )3)(1(00301即构造函数和,作出它们的图像,易知平行于x 轴的直线与抛物线的交点情况可得:①当或时,原方程有一解;②当时,原方程有两解; ③当或时,原方程无解点评:图象法求函数零点,考查学生法求方程lgx+x=3解所在的区间。
高一 数学 函数的零点与二分法课件
二分法在寻找函数零点中的应用
二分法是一种通过不断将区间 一分为二来逼近函数零点的数 值方法。
在给定一个连续函数和一个闭 区间,不知道零点所在的大致 位置时,可以使用二分法来找 到零点。
二分法的基本思想是,如果函 数在区间两端取值异号,则该 区间内必定存在一个零点。
二分法在解决函数零点问题中的优势
实例
以 $f(x) = x^2 - 2x - 3$ 为例, 其零点为 $x = -1, x = 3$。
高次函数的零点问题
高次函数零点定义
高次函数 $f(x)$ 的零点是满足 $f(x) = 0$ 的 $x$ 值。
零点求解方法
通过解高次方程来找到零点。
实例
以 $f(x) = x^3 - x - 1$ 为例,其零点为 $x = 1, x = -1, x = frac{1}{3}$。
以 $f(x) = x - 3$ 为例,其零点为 $x = 3$。
零点求解方法
通过解方程 $ax + b = 0$ 来找到零 点。
二次函数的零点问题
二次函数零点定义
二次函数 $f(x) = ax^2 + bx + c$ 的零点是满足 $f(x) = 0$ 的
$x$ 值。
零点求解方法
通过解二次方程 $ax^2 + bx + c = 0$ 来找到零点。
导数法
通过判断导数的正负来判 断函数的单调性,进而找 到函数的零点。
03 二分法原理
二分法的定义
二分法定义
二分法是一种求解实数近似值的方法,通过不断将区间一分 为二,使区间长度逐渐缩小,当区间长度小于给定的误差范 围时,区间内的任意实数近似值即可作为所求的近似解。
2014.11.18函数零点、二分法、任意角题型全总结
函数零点、二分法、任意角题型全总结题型一:求零点或零点的个数方法1、解方程:根据零点的定义,)(x f y =的零点就是方程0)(=x f 的根,所以方程0)(=x f 根的个数就是函数)(x f y =零点的个数.练:方程 f(x)=96370x x-∙-=的零点是例1、 求函数2223+--=x x x y 的零点. 例2:(2010年福建理科)函数()⎩⎨⎧>+-≤-+=0,ln 20,322x x x x x x f 的零点个数为( )A0 B1 C2 D3方法2数形结合:函数)((x g x h y -=)的零点,也就是)(x h y =图象)(x g y =图象交点横坐标,所以函数)((x g x h y -=)的零点个数就是)(x h y =图象与)(x g y =图象交点个数.例:(2012年北京文科)函数xx x f )21()(21-=的零点个数为( )A0 B1 C2 D3练:1、方程223x x -+=的实数解的个数为 _______ 。
(2)2、函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) 3、若函数a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围是 }1|{>a a4、(10浙江)已知0x 是函数()xx f x-+=112的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则( )A .()01<x f ,()02<x f B .()01<x f ,()02>x f C .()01>x f ,()02<x f D .()01>x f ,()02>x f5、直线y =1与曲线2y x x a =-+有四个交点,则a 的取值范围是 。
6、已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______方法3、零点存在性定理例1、求函数f(x)=lnx +2x -6的零点个数. f(x)= lnx +2x -6只有一个零点。
二分法求函数的零点
若f(a)·f(c)<0 ,则零点x0∈(a,c);
若f(c)·f(b)<0 ,则零点x0∈(c,b).
思考4:若给定精确度ε,如何选取近似 值? 当|m—n|<ε 时,区间[m,n]内的任意 一个值都是函数零点的近似值.
用二分法求函数f(x)零点近似值的步骤如下:
知识探究:
用二分法求函数零点近似值的步骤
思考1:求函数f(x)的零点近似值第一步 应做什么?
确定区间[a,b],使 f(a)f(b)<0 思考2:为了缩小零点所在区间的范围, 接下来应做什么?
求区间的中点c,并计算f(c)的值
思考3:若f(c)=0说明什么? 若f(a)·f(c)<0或f(c)·f(b)<0 ,则 分别说明什么?
4、判断是否达到精确度ε ,即若|a-b|< 则得到零点近似值a(或b),否则重复2~4
ε
(4) 思考:下列函数中能用二分法求零点的是(1) ____.
用二分法求方程的近似解一般步骤:
口 诀
定区间,找中点, 同号去,异号算, 周而复始怎么办? 中值计算两边看. 零点落在异号间. 精确度上来判断.
A
C
E
D
B
利用我们刚才的方法,你能否求出方 程lnx+2x-6=0 的近似解 ? 如果能的话,怎么去解?你能用函数的 零点的性质吗?
见excel软件演示
对于区间[a,b]上连续不断且f(a) · f(b)<0的函数 y=f(x),通过不断地把函数f(x)的零点所在的区间 一分为二,使区间的两个端点逐步逼近零点,进 而得到零点近似值的方法叫做二分法(bisection).
y
二分法求函数零点
二分法求函数零点
二分法求函数零点是一种数值解法,它利用二分搜索的思想,通过不断地将函数的定义域划分为较小的子域,来求函数的零点。
假设函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,即函数在区间[a,b]上必定有一个零点。
1. 首先确定区间[a,b],计算出中点c,即c=(a+b)/2;
2. 计算f(c),若f(c)=0,则c即为所求零点;若f(c)不等于0,
则根据f(c)与f(a)的符号关系,确定下一个搜索区间;
3. 若f(c)与f(a)异号,则零点位于区间[c,b],此时a=c,继续重复步骤1;若f(c)与f(a)同号,则零点位于区间[a,c],此时b=c,继续重复步骤1;
4. 重复步骤1-3,直到搜索区间的宽度小于某一预先设定的精
度值,此时得到的零点即为所求零点。
函数零点与二分法及零点布
变式题:m为何实数值时,关于x的方程 x mx (3 m) 0 有两个大于1的根. 2 转变为函数,借 法一:设 f ( x) x mx (3 m) 由已知得:
判别式 △=b2-4ac
(a≠0)
2+bx+c 函数 y=ax 一元二次方程 ax2+bx+c=0 的图象与x轴的交 点 的根
△>0 △=0
两个不相 等的实根 两个相等 的实根
两个零点 一个二重零点
△< f ( x) x 2 2 x 3 的 图 象,如右图,我们发现函数 f ( x) x2 2 x 3在 区间 2,1 上有零点。计算 f (2) 和 f (1) 的乘 积,你能发现这个乘积有什么特点?在区间
思考:若一个函数图像在区间[a,b]上是连续
的,在什么情况下,图像在区间(a,b)内肯定与 x轴有交点呢? 观察下面的函数图象,
该函数在区间(a,b)、 (b,c)、 (c,d)内是否有零 点?观察这三个区间端点函数值f(a)、f(b)、 f(c)、f(d)的符号,你发现 f(a)· f(b)、 f (b)· f(c)、 f(c)· f(d)具有什么共同点?
例:用二分法求函数f ( x) x x 2 x 2在(1, 2)
3 2
内的零点近似解(精确度0.1).
根所在区间 ( 1, 2) (1,1.5) (1.25,1.5) (1.375,1.5) (1.375,1.4375) 区间端点函数值符号 f(1)<0,f(2)>0 f(1)<0,f(1.5)>0 f(1.25)<0,f(1.5)>0 f(1.375)<0,f(1.5)>0 中点值 1.5 1.25 1.375 1.4375 中点函数值符号 f(1.5)=0.625>0 f(1.25)=-0.984<0 f(1.375)=-0.260<0 f(1.4375)=0.162>0
人教版高数必修一第8讲:函数的零点与二分法(学生版)
4-1函数的零点与二分法1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。
类型一求函数的零点例1:求函数y =x -1的零点:练习1:求函数y =x 3-x 2-4x +4的零点.练习2:函数f (x )=2x +7的零点为( )A .7B .72C .-72 D .-7类型二 零点个数的判断例2:判断函数f (x )=x 2-7x +12的零点个数练习1:二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是( ) A .1个 B .2个 C .0个 D .无法确定练习2:已知二次函数f (x )=ax 2+6x -1有两个不同的零点,则实数a 的取值范围是( ) A .a >-9且a ≠0 B .a >-9 C .a <-9D .a >0或a <0类型三 函数零点的应用例3:若关于x 的方程x 2+(k -2)x +2k -1=0的两实数根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.练习1:已知方程x 2+2px +1=0有一个根大于1,有一个根小于1,则p 的取值范围为__________.练习2:函数f (x )=2(m +1)x 2+4mx +2m -1的一个零点在原点,则m 的值为________.类型四二分法的概念例4:函数图象与x 轴均有公共点,但不能用二分法求公共点横坐标的是( ).练习1:函数y =f (x )在区间[a ,b ]上的图象不间断,并且f (a )·f (b )<0,则这个函数在这个区间上( )A .只有一个变号零点B .有一个不变号零点C .至少有一个变号零点D .不一定有零点练习2:用二分法求函数f (x )=x 3-2的零点时,初始区间可选为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)类型五 用二分法求函数零点的近似值例5:求函数f (x )=x 3+2x 2-3x -6的一个为正数的零点(精确到0.1).练习1:试用计算器求出函数f (x )=x 2,g (x )=2x +2的图象交点的横坐标(精确到0.1).练习2: (2014~2015学年度四川省中学高一月考)用二分法求方程x 3+3x -7=0在(1,2)内近似解的过程中,设函数f (x )=x 3+3x -7,算得f (1)<0,f (1.25)<0,f (1.5)>0,f (1.75)>0,则该方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,1.75)D .(1.75,2)1、(2014·湖北文)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}2、已知x =-1是函数f (x )=ax+b (a ≠0)的一个零点,则函数g (x )=ax 2-bx 的零点是( ) A .-1或1 B .0或-1 C .1或0D .2或13、三次方程x 3+x 2-2x -1=0的根不可能所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)4、(2014~2015学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:0.1)为( ) A .1.2 B .1.3 C .1.4D .1.55、已知函数y =f (x )的图象是连续不断的,有如下的对应值表:A .2个B .3个C .4个D .5个_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.若函数f (x )在定义域{x |x ≠0}上是偶函数,且在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .一个B .两个C .至少两个D .无法判断2.若关于x 的方程ax 2+bx +c =0(a ≠0)有两个实根1、2,则实数f (x )=cx 2+bx +a 的零点为( )A .1,2B .-1,-2C .1,12D .-1,-123.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内4.下列命题中正确的是( )A .方程(x -2)(x -5)=1有两个相异实根,且一个大于5,一个小于2B .函数y =f (x )的图象与直线x =1的交点个数是1C .零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数D .利用二分法所得方程的近似解是惟一的5.在用二分法求函数f (x )的一个正实数零点时,经计算, f (0.64)<0, f (0.72)>0, f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6能力提升6.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表,则使ax 2+bx +c >0成立的x 的取值范围是______.x -3 -2 -1 0 1 2 3 4 y6-4-6-6-467.已知函数2f (x )=c (c ∈R )有两个实根m 、m +6,则实数c 的值为________.8.给出以下结论,其中正确结论的序号是________. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效.9.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02x >0,若f (-4)=2, f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________. 10.已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根.。
求函数零点近似解的一种计算方法----二分法_优质PPT课件
依题意得方程x2+(a-1)x+2=0有两个 相异的正数根,
则
(a 1)2
,
1 a 0
得a∈(-∞,1 2 2).
7
bx 5.已知函数f(x)= 2 3x .若方程f(x) +2x=0有两个相等的实数根,则f(x)= .
由 bx +2x=0,得6x2-(b+4) 2 3x
x=0. 4x
11
题型1 函数零点存在性判断
(1)求函数y=x3-2x2-x+2的零点;
(2)判断函数f(x)=log2x+ 1 x+2的零
点的个数.
2
12
( 1 ) 由 y=x3-2x2-x+2=x2 ( x-2 ) (x-2)=(x-2)(x2-1)
=(x-2)(x-1)(x+1). 令 ( x-2 ) ( x-1 ) ( x+1 ) =0 , 解 得 x=2 或 x=1或x=-1. 所以函数y=x3-2x2-x+2的零点为-1,1,2.
基本初等函数(Ⅰ)
函数与方程
1
1.函数的零点 函数y=f(x)的零点是一个 实数,而不是 一个 点,它是函数的图象与x轴交点的横坐标. 2.二分法 用二分法求函数y=f(x)的 零点近似值的 步骤是:
2
第一步,确定区间[a,b],验
证 f(a)、f(b)的正负
,给定精确度ε;
第二步,求区间[a,b]的中点x1; 第三步,计算 f(x1);若 f(x1)=0 , 则x1就是函数的零点;若 f(x1)f(b)<0 , 则令b=x1;若 f(a)f(x1)<0 ,则令a=x1;
第四步,判断是否达到精确度ε,即若 |a-b|<ε,则得到零点近似值a(或b);否则 重复第二、三、四步.
求函数零点问题的基本方法
求函数零点问题的基本方法作者:王艳双来源:《成才之路》2012年第06期新课改使高中课程发生很大的变化,减少和增加了很多内容,其中增加了函数零点问题。
函数零点涉及到很多方法:如等价转化、函数方程、数形结合等思想方法,还有近似求函数零点方法——二分法这些成为求函数零点的基本策略。
一、求函数的零点例1求函数y=x2-(x解:令x2-1=0(x2x-1=0(x≥0),解得x=。
所以原函数的零点为和-1和。
点评:求函数f(x)的零点,转化为方程f(x)=0,通过因式分解把方程转化为一(二)次方程求解。
二、判断函数零点个数例2求f(x)=x-的零点个数。
解:函数的定义域(-∞,0)∪(0,+∞)。
令f(x)=0即x-=0,解得:x=2或x=-2。
所以原函数有2个零点。
点评:转化为方程直接求出函数零点,注意函数的定义域。
三、根据函数零点反求参数例3若方程ax-x-a=0有两个解,求a的取值范围。
析:方程ax-x-a=0转化为ax=x+a。
由题知,方程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x 有两个不同的交点,如图所示。
(1)0此种情况不符合题意。
(2)a>1。
直线y=x+a 在y轴上的截距大于1时,函数y=ax与函数y=a+x 有两个不同的交点。
所以a点评:采用分类讨论与用数形结合的思想。
四、用二分法近似求解零点例4求函数f(x)=x3+x2-2x-2的一个正数零点(精确到0.1)。
解:(1)第一步确定零点所在的大致区间(a,b),可利用函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定一个长度为1的区间。
(2)列表如下:零点所在区间中点函数值区间长度(1,2)f(1.5) >0 1(1,1.5) f(1.25)(1.25,1.5) f(1.375)(1.375,1.5) f(1.438)>0 0.125(1.375,1.438) f(1.4065)>0 0.0625可知区间(1.375,1.438)长度小于0.1,故可在(1.375,1.438)内取1.4065作为函数f (x)正数的零点的近似值。
函数的零点和二分法
练习1: 求方程x3+3x-1=0的一个近似解(精确到 0.01)
画y=x3+3x-1的图象比较困难, 变形为x3=1-3x,画两个函数的图象如何?
y
1
y=x3
有惟一解x0∈(0,1)
0 1
x
y=1-3x
课堂小结
1. 二分法定义 二分法是求函数零点近似解的一种计算方法. 2.解题步骤 ①确定初始区间 ②计算并确定下一区间,定端点值符号 ③循环进行,达到精确度。 3. 感悟重要的数学思想:等价转化、函数与 方程、数形结合、分类讨论以及无限逼近 的思想.
由特殊到一般性的归纳:
x2-2x-3=0 x2-2x+1=0 方 程 Δ> 0 Δ= 0 判别式Δ x1=x2=1 x1=-1,x2=3 方程的根 方程ax2 +bx+c=0 两个不相等的 有两个相等的 (a>0)的根 数 实数根x1 、x2 实数根x1 = x2 y=x2-2x-3 y=x2-2x+1 函 y y 函数y=ax2 +bx+c (a>0)的图象 2 4
A. ( – 2 ,0) B. (1,2) C. (0,1)
B)
D. (0,0.5)
2.4.2求函数零点近似解的一种计算方法 ——二分法
问题1: 有12个球,其中有一个比别的球重,你用天平 称几次可以找出这个球?次数越少越好 ? • 第一次,两端各放6个,低的那端有重球. • 第二次,两端各放3个,低的那端有重球. • 第三次,两端各放1个,如果平了,剩下的 那个就是,否则低的那端那个就是!
数离形时少直观,形离数时难入微!
1.简述上述求方程近似解的过程 解:设f (x)=x2-2x-1,x1为其正的零点 x1∈(2,3) ∵ f(2)<0, f(3)>0 ∵f(2.5)=0.25>0 x1∈(2,2.5) ∴f(2)<0, f(2.5)>0 ∵ f(2.25)= -0.4375<0 x1∈(2.25,2.5) ∴ f(2.25)<0, f(2.5)>0 ∵ f(2.375)= -0.2351<0 x1∈(2.375,2.5) ∴ f(2.375)<0, f(2.5)>0 ∵ f(2.4375)= 0.105>0 x1∈(2.375,2.4375) ∴ f(2.375)<0, f(2.4375)>0 ∵ 2.375与2.4375的近似值都是2.4, ∴x1≈2.4
函数零点与二分法解析版 (1)
函数与方程[知识梳理]1.函数的零点,(1)零点的定义:对于函数y=f(x),我们把使f(x)=0的,实数x叫做函数y=f(x)的零点.函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数.(2)零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.3.二分法的定义对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.[常用结论]有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.考点一: 函数零点所在区间判断1.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3) D.(3,4)解析:选B∵f(1)=ln 1+1-2=-1<0,f(2)=ln 2>0,∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,且为增函数, ∴f (x )的零点所在的区间是(1,2).2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)解析:选A ∵a <b <c ,∴f (a )=(a -b )(a -c )>0, f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函数零点存在性定理可知,在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点.因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内,故选A.3.若x 0是方程⎝⎛⎭⎫12x =x 13的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12D.⎝⎛⎭⎫0,13 解析:选C 令g (x )=⎝⎛⎭⎫12x ,f (x )=x 13, 则g (0)=1>f (0)=0,g ⎝⎛⎭⎫12=⎝⎛⎭⎫1212<f ⎝⎛⎭⎫12=⎝⎛⎭⎫1213,g ⎝⎛⎭⎫13=⎝⎛⎭⎫1213>f ⎝⎛⎭⎫13=⎝⎛⎭⎫1313,结合图象可得13<x 0<12.4.已知函数f (x )的图象是连续不断的,且有如下对应值表:x 1 2 3 4 5 f (x )-4-2147在下列区间中,函数f (x )必有零点的区间为( ) A .(1,2)B .(2,3)C .(3,4)D .(4,5)解析:选B 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点.故选B.[解题技法]确定函数f (x )的零点所在区间的常用方法(1)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.考点二:判断函数零点个数[例1] 函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0[解析] 法一:(直接法)由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0, 解得x =-2或x =e. 因此函数f (x )共有2个零点.法二:(图象法)函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.[答案] B[解题技法]函数零点个数的判断方法(1)直接求零点,令f (x )=0,有几个解就有几个零点;(2)零点存在性定理,要求函数f (x )在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,再结合函数的图象与性质确定函数零点个数;(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.[跟踪训练]1.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( ) A .0 B .1 C .2D .3解析:选C 令f (x )+3x =0,则⎩⎪⎨⎪⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x+3x =0, 解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.2.(2019·南宁模拟)设函数f (x )=ln x -2x +6,则f (x )零点的个数为( ) A .3 B .2 C .1D .0解析:选B 令f (x )=0,则ln x =2x -6,令g (x )=ln x (x >0),h (x )=2x -6(x >0),在同一平面直角坐标系中画出这两个函数的图象,如图所示,两个函数图象的交点个数就等于函数f (x )零点的个数,容易看出函数f (x )零点的个数为2,故选B.考点三:函数零点的应用考向(一) 根据函数零点个数求参数[例2] (2019·安徽合肥二模)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞) B.⎝⎛⎭⎫-1e 2,0 C .(1,+∞)∪{0}D .(0,1][解析] 令g (x )=f (x )-b =0,函数g (x )=f (x )-b 有三个零点等价于f (x )=b 有三个根,当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),由f ′(x )<0得e x (x +2)<0,即x <-2,此时f (x )为减函数,由f ′(x )>0得e x (x +2)>0,即-2<x <0,此时f (x )为增函数,即当x =-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图象如图,要使f (x )=b 有三个根,则0<b ≤1,故选D.[答案] D考向(二) 根据函数零点的范围求参数范围[例3] 若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是____________.[解析] 依题意,结合函数f (x )的图象分析可知m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0, 即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0, 解得14<m <12.[答案] ⎝⎛⎭⎫14,12考向(三) 求函数多个零点(方程根)的和[例4] 已知函数f (x )=⎩⎪⎨⎪⎧2x -2-1,x ≥0,x +2,x <0,g (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,1x ,x <0,则函数f (g (x ))的所有零点之和是________.解析:由f (x )=0,得x =2或x =-2,由g (x )=2,得x =1+3,由g (x )=-2,得x =-12,所以函数f (g (x ))的所有零点之和是-12+1+3=12+ 3.答案:12+ 3[规律探求]看个性考向(一)是根据函数零点的个数求参数范围,解决此类问题通常先对解析式变形,然后在同一坐标系内画出函数的图象,数形结合求解.考向(二)是根据函数零点所在区间求参数,解决此类问题应先判断函数的单调性,再利用零点存在性定理,建立参数所满足的不等式,解不等式,即得参数的取值范围. 考向(三)是求函数零点的和,求函数的多个零点(或方程的根以及直线y =m 与函数图象的多个交点横坐标)的和时,应考虑函数的性质,尤其是对称性特征(这里的对称性主要包括函数本身关于点的对称,直线的对称等). 找共性根据函数零点求参数范围的一般步骤为:(1)转化:把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况. (2)列式:根据零点存在性定理或结合函数图象列式.(3)结论:求出参数的取值范围或根据图象得出参数的取值范围.[跟踪训练]1.函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 解析:选D 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有解,即a =x +1x 在⎝⎛⎭⎫12,3上有解,设t =x +1x,x ∈⎝⎛⎭⎫12,3,则t 的取值范围是⎣⎡⎭⎫2,103,∴实数a 的取值范围是⎣⎡⎭⎫2,103. 2.若函数f (x )=log 2x +x -k (k ∈Z )在区间(2,3)内有零点,则k =________.解析:因函数f (x )在区间(2,3)内递增,则f (2)f (3)<0,即(log 22+2-k )·(log 23+3-k )<0,整理得(3-k )·(log 23+3-k )<0,解得3<k <3+log 23,而4<3+log 23<5.因为k ∈Z ,所以k =4.[课时过关检测] __A 级——夯基保分练1.(2019·十堰调研)已知函数f (x )=⎩⎪⎨⎪⎧ln (x -1),x >1,2x -1-1,x ≤1,则f (x )的零点个数为( )A .0B .1C .2D .3解析:选C 当x >1时,令f (x )=ln(x -1)=0,得x =2;当x ≤1时,令f (x )=2x -1-1=0,得x =1.故选C.2.函数f (x )=ln x -2x 2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B 易知f (x )=ln x -2x 2的定义域为(0,+∞),且在定义域上单调递增.∵f (1)=-2<0,f (2)=ln 2-12>0,∴f (1)·f (2)<0,∴根据零点存在性定理知f (x )=ln x -2x 2的零点所在的区间为(1,2).3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2D .3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一平面直角坐标系中作出函数y =|x -2|(x >0),y =ln x (x >0)的图象如图所示.由图可知函数f (x )在定义域内的零点个数为2.4.(2019·郑州质量测试)已知函数f (x )=⎩⎪⎨⎪⎧e x -a ,x ≤0,2x -a ,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则实数a 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(-∞,1]解析:选A 画出函数f (x )的大致图象如图所示.因为函数f (x )在R 上有两个零点,所以f (x )在(-∞,0]和(0,+∞)上各有一个零点.当x ≤0时,f (x )有一个零点,需a ≤1;当x >0时,f (x )有一个零点,需-a <0,即a >0.综上,0<a ≤1.5.设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x +x -3,则f (x )的零点个数为( ) A .1 B .2 C .3D .4解析:选C 因为函数f (x )是定义域为R 的奇函数,所以f (0)=0,即x =0是函数f (x )的1个零点.当x >0时,令f (x )=e x +x -3=0,则e x =-x +3,分别画出函数y =e x 和y =-x +3的图象,如图所示,两函数图象有1个交点,所以函数f (x )有1个零点.根据对称性知,当x <0时,函数f (x )也有1个零点. 综上所述,f (x )的零点个数为3.6.(多选)已知函数f (x )=⎝⎛⎭⎫13x-log 2x ,0<a <b <c ,f (a )f (b )f (c )<0,实数d 是函数f (x )的一个零点.给出下列四个判断,其中可能成立的是( )A .d <aB .d >bC .d >cD .d <c解析:选ABD 由y =⎝⎛⎭⎫13x 在(0,+∞)上单调递减,y =log 2x 在(0,+∞)上单调递增,可得f (x )=⎝⎛⎭⎫13x-log 2x 在定义域(0,+∞)上是单调减函数,当0<a <b <c 时,f (a )>f (b )>f (c ),又因为f (a )f (b )f (c )<0,f (d )=0,所以①f (a ),f (b ),f (c )都为负值,则a ,b ,c 都大于d ,②f (a )>0,f (b )>0,f (c )<0,则a ,b 都小于d ,c 大于d .综合①②可得d >c 不可能成立.7.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为______. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-128.已知函数f (x )=⎩⎪⎨⎪⎧x ln x ,x >0,x 2-x -2,x ≤0,则f (x )的零点为________.解析:当x >0时,由f (x )=0, 即x ln x =0得ln x =0,解得x =1; 当x ≤0时,由f (x )=0,即x 2-x -2=0,解得x =-1或x =2. 因为x ≤0,所以x =-1. 综上,函数f (x )的零点为1,-1. 答案:1,-19.已知方程2x +3x =k 的解在[1,2)内,则k 的取值范围为________. 解析:令函数f (x )=2x +3x -k , 则f (x )在R 上是增函数.当方程2x +3x =k 的解在(1,2)内时,f (1)·f (2)<0, 即(5-k )(10-k )<0,解得5<k <10. 当f (1)=0时,k =5.综上,k 的取值范围为[5,10). 答案:[5,10)10.(一题两空)已知函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,x 3,x <1,若f (x 0)=-1,则x 0=________;若关于x 的方程f (x )=k 有两个不同零点,则实数k 的取值范围是________.解析:解方程f (x 0)=-1,得⎩⎪⎨⎪⎧x ≥1,1x 0=-1或⎩⎪⎨⎪⎧x 0<1,x 30=-1,解得x 0=-1.关于x 的方程f (x )=k 有两个不同零点等价于y =f (x )的图象与直线y =k 有两个不同交点,观察图象可知:当0<k <1时y =f (x )的图象与直线y =k 有两个不同交点.即k ∈(0,1).答案:-1 (0,1)11.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=x 2+2x . 又因为f (x )是奇函数, 所以f (x )=-f (-x )=-x 2-2x .所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解,即y =f (x )与y =a 的图象有3个不同的交点.作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个不同的解,只需-1<a <1, 故实数a 的取值范围为(-1,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则有t =-x 2-2x =-(x +1)2+1<1,而原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎡⎭⎫1,54. B 级——提能综合练13.(2019·宣城二模)已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 019+(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >d >bB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选A 根据题意,设g (x )=(x -a )(x -b ),则f (x )=g (x )+2 019,若g (x )=0,则x =a 或x =b ,即函数g (x )的图象与x 轴的交点为(a ,0)和(b ,0).f (x )=2 019+(x -a )(x -b )=0即g (x )=-2 019,若f (x )=2 019+(x -a )(x -b )的零点为c ,d ,则g (x )的图象与直线y =-2 019的交点坐标为(c ,-2 019)和(d ,-2 019),由图象知a >c >d >b ,故选A.14.(2019·湖南娄底二模)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2等于________.解析:考虑到x 1,x 2是函数y =e x 、函数y =ln x 分别与函数y =1x的图象的公共点A ,B 的横坐标,而A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于直线y =x 对称,因此x 1x 2=1. 答案:115.已知函数f (x )=ax 2+bx +c ,且f (1)=-a 2,3a >2c >2b . (1)求证:a >0且-3<b a <-34; (2)求证:函数f (x )在区间(0,2)内至少有一个零点.证明:(1)∵f (1)=a +b +c =-a 2, ∴c =-32a -b .∵3a >2c =-3a -2b , ∴3a >-b .∵2c >2b ,∴-3a >4b .若a >0,则-3<b a <-34; 若a =0,则0>-b ,0>b ,不成立;若a <0,则b a <-3,b a >-34,不成立. (2)f (0)=c ,f (2)=4a +2b +c ,f (1)=-a 2,Δ=b 2-4ac =b 2+4ab +6a 2>0. 当c >0时,f (0)>0,f (1)<0,∴f (x )在(0,1)内至少有一个零点.当c =0时,f (0)=0,f (1)<0,f (2)=4a +2b =a >0,∴f (x )在(0,2)内有一个零点.当c <0时,f (0)<0,f (1)<0,b =-32a -c ,f (2)=4a -3a -2c +c =a -c >0, ∴f (x )在(0,2)内有一个零点.综上,f (x )在(0,2)内至少有一个零点.C 级——拔高创新练16.已知定义在R 上的函数f (x )满足:①f (x )+f (2-x )=0;②f (x -2)=f (-x );③当x ∈[-1,1]时,f (x )=⎩⎪⎨⎪⎧1-x 2,x ∈[-1,0],cos ⎝⎛⎭⎫π2x ,x ∈(0,1],则函数y =f (x )-⎝⎛⎭⎫12|x |在区间[-3,3]上的零点个数为( ) A .5B .6C .7D .8解析:选A 由①f (x )+f (2-x )=0可得f (x )的图象关于点(1,0)对称;由②f (x -2)=f (-x )可得f (x )的图象关于直线x =-1对称.如图,作出f (x )在[-1,1]上的图象,再由对称性,作出f (x )在[-3,3]上的图象,作出函数y =⎝⎛⎭⎫12|x |在[-3,3]上的图象,由图象观察可得它们共有5个交点,即函数y =f (x )-⎝⎛⎭⎫12|x |在区间[-3,3]上的零点个数为5.故选A.。
函数的零点与二分法
函数的零点与二分法1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。
类型一求函数的零点例1:求函数y =x -1的零点: 解析:令y =x -1=0,得x =1, ∴函数y =x -1的零点是1. 答案:1练习1:求函数y =x 3-x 2-4x +4的零点. 答案:-2,1,2.练习2:函数f (x )=2x +7的零点为( ) A .7 B .72 C .-72 D .-7答案:C类型二 零点个数的判断例2:判断函数f (x )=x 2-7x +12的零点个数解析:由f (x )=0,即x 2-7x +12=0得Δ=49-4×12=1>0,∴方程x 2-7x +12=0有两个不相等的实数根3,4, ∴函数f (x )有两个零点,分别是3,4. 答案:2个练习1:二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是( ) A .1个 B .2个 C .0个 D .无法确定答案:B练习2:已知二次函数f (x )=ax 2+6x -1有两个不同的零点,则实数a 的取值范围是( ) A .a >-9且a ≠0 B .a >-9 C .a <-9 D .a >0或a <0答案:A类型三 函数零点的应用例3:若关于x 的方程x 2+(k -2)x +2k -1=0的两实数根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.解析:设函数f(x)=x 2+(k -2)x +2k -1,先画出函数的简图,如图所示,函数f(x)=x 2+(k -2)x +2k -1的图象开口向上,零点x 1∈(0,1),x 2∈(1,2),由⎩⎪⎨⎪⎧f 0>0f 1<0f 2>0,即⎩⎪⎨⎪⎧2k -1>01+k -2+2k -1<04+2k -2+2k -1>0,解得,12<k <23,∴实数k 的取值范围是⎝ ⎛⎭⎪⎫12,23. 答案:⎝ ⎛⎭⎪⎫12,23. 练习1:已知方程x 2+2px +1=0有一个根大于1,有一个根小于1,则p 的取值范围为__________.答案:(-∞,-1)练习2:函数f (x )=2(m +1)x 2+4mx +2m -1的一个零点在原点,则m 的值为________.答案:12类型四 二分法的概念例4:函数图象与x 轴均有公共点,但不能用二分法求公共点横坐标的是( ).解析:选项B 中的函数零点是不变号零点,不能用二分法求解. 答案:B练习1:函数y =f (x )在区间[a ,b ]上的图象不间断,并且f (a )·f (b )<0,则这个函数在这个区间上( )A .只有一个变号零点B .有一个不变号零点C .至少有一个变号零点D .不一定有零点 答案:C练习2:用二分法求函数f (x )=x 3-2的零点时,初始区间可选为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案:B类型五 用二分法求函数零点的近似值例5: 求函数f (x )=x 3+2x 2-3x -6的一个为正数的零点(精确到0.1).解析:由于f (1)=-6<0,f (2)=4>0,可取区间[1,2]作为计算的初始区间.用二分法逐次计算,列表如下:求函数精确到0.1的实数解.答案:1.7练习1: 试用计算器求出函数f (x )=x 2,g (x )=2x +2的图象交点的横坐标(精确到0.1). 答案:-0.7.练习2: (2014~2015学年度四川省中学高一月考)用二分法求方程x 3+3x -7=0在(1,2)内近似解的过程中,设函数f (x )=x 3+3x -7,算得f (1)<0,f (1.25)<0,f (1.5)>0,f (1.75)>0,则该方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,1.75)D .(1.75,2)答案:B1、(2014·湖北文)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}答案: D2、已知x =-1是函数f (x )=ax+b (a ≠0)的一个零点,则函数g (x )=ax 2-bx 的零点是( ) A .-1或1 B .0或-1 C .1或0 D .2或1答案: C3、三次方程x 3+x 2-2x -1=0的根不可能所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案: C4、(2014~2015学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:0.1)为( )A .1.2B .1.3C .1.4D .1.5答案:C5、已知函数y =f (x )的图象是连续不断的,有如下的对应值表:A .2个B .3个C .4个D .5个答案:B基础巩固1.若函数f (x )在定义域{x |x ≠0}上是偶函数,且在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .一个B .两个C .至少两个D .无法判断答案: B2.若关于x 的方程ax 2+bx +c =0(a ≠0)有两个实根1、2,则实数f (x )=cx 2+bx +a 的零点为( )A .1,2B .-1,-2C .1,12D .-1,-12答案: C3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案: A4.下列命题中正确的是( )A .方程(x -2)(x -5)=1有两个相异实根,且一个大于5,一个小于2B .函数y =f (x )的图象与直线x =1的交点个数是1C .零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数D .利用二分法所得方程的近似解是惟一的 答案: A5.在用二分法求函数f (x )的一个正实数零点时,经计算, f (0.64)<0, f (0.72)>0, f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6答案: C能力提升6.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表,则使ax 2+bx +c >0成立的x 的取值范围是______.x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46答案: (7.已知函数f (x )=x 2+ax +b (a 、b ∈R )的值域为[0,+∞),若关于x 的方程f (x )=c (c ∈R )有两个实根m 、m +6,则实数c 的值为________.答案:98.给出以下结论,其中正确结论的序号是________. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效. 答案: ②③9. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +cx ≤02 x >0,若f (-4)=2, f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________. 答案:310. 已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根.答案:(1)1<a <2.(2)若a =3217,则f (x )=3217x 3-6417x +2817,∴f (-1)=6017>0, f (0)=2817>0, f (1)=-417<0,∴函数零点在(0,1),又f (12)=0,1 2.∴方程f(x)=0在区间(-1,1)上的根为。
函数的零点与解析问题及例题分析
函数的零点与解析问题及例题分析1. 函数的零点函数的零点指的是函数取值为零的点,即满足$f(x) = 0$的$x$值。
求函数的零点是许多数学问题中的基本任务。
求函数的零点方法很多,常见的包括二分法、牛顿法、割线法等。
下面以二分法为例来说明求函数零点的过程。
例题1::已知函数$f(x) = \sin(x)$,求$f(x)$的零点。
解析过程如下:1. 首先确定一个区间$[a, b]$,使得$f(a)$和$f(b)$异号。
2. 将区间中点记作$c$,计算$f(c)$的值。
3. 如果$f(c)$为零,则$c$是$f(x)$的零点;否则,根据$f(c)$和$f(a)$(或$f(b)$)的符号确定新的区间。
4. 重复步骤2和3,直到找到一个足够接近零点的解。
2. 解析问题解析问题是指在数学运算中的一些特殊情况,如分母为零、根号内为负数等。
解析问题的存在可能导致函数无法取值或无法计算。
解析问题的判定和处理与具体的数学表达式有关。
以下是一些常见的例子:- 分母为零:当函数中出现分母为零的情况时,其解析问题是分母为零的$x$值,并且在该点处函数无法取值。
- 根号内为负数:当函数中出现根号内为负数的情况时,其解析问题是根号内为负数的$x$值,并且在该点处函数无法计算。
解析问题在数学问题的解决中需要注意,可以通过数值计算的方法来规避这些问题。
3. 例题分析例题2::已知函数$f(x) = \frac{1}{x^2 - 4}$,求$f(x)$的定义域。
解析过程如下:由于分母为$x^2 - 4$,我们需要排除使分母为零的情况。
即解方程$x^2 - 4 = 0$,求得$x = \pm 2$。
因此,函数$f(x)$的定义域为$(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$。
以上是关于函数的零点与解析问题的简要分析和例题讲解。
希望对您有所帮助!。
《函数的零点》 讲义
《函数的零点》讲义一、函数零点的定义在数学中,函数的零点是一个非常重要的概念。
那什么是函数的零点呢?简单来说,如果函数 y = f(x) 在 x = a 处的函数值 f(a) = 0,那么x = a 就叫做函数 y = f(x) 的零点。
比如说,对于函数 f(x) = x 1,当 f(x) = 0 时,也就是 x 1 = 0,解得 x = 1。
所以 1 就是函数 f(x) = x 1 的零点。
再比如函数 f(x) = x² 4,令 f(x) = 0,即 x² 4 = 0,通过求解可得x = 2 或 x =-2,所以 2 和-2 都是函数 f(x) = x² 4 的零点。
二、函数零点存在性定理有了函数零点的定义,我们来看看函数零点存在性定理。
如果函数 y = f(x) 在区间 a, b 上的图象是连续不断的一条曲线,并且有 f(a)·f(b) < 0,那么函数 y = f(x) 在区间(a, b) 内至少有一个零点。
这个定理非常有用,它为我们判断函数在某个区间内是否存在零点提供了依据。
比如说,函数 f(x) = x² 2x 3 在区间 1, 4 上,f(1) =-4,f(4) = 5,因为 f(1)·f(4) < 0,所以函数在区间(1, 4) 内至少有一个零点。
但要注意,函数在区间内有零点,不一定只有一个零点。
三、函数零点与方程根的关系函数的零点与方程的根有着密切的关系。
方程 f(x) = 0 的根就是函数 y = f(x) 的零点。
例如,方程 x² 5x + 6 = 0 的根为 x = 2 和 x = 3,这两个值就是函数 f(x) = x² 5x + 6 的零点。
反过来,如果知道函数的零点,也就得到了相应方程的根。
通过求函数的零点来解方程,是一种重要的数学方法。
四、求函数零点的方法接下来,我们看看怎么求函数的零点。
求函数零点的四种解题方法
求函数零点的四种解题方法
1.图像法:
图像法是通过绘制函数的图形来求函数零点的一种方法。
首先,根据函数的表达式或数据,绘制函数的图形,然后寻找其图形上的零点,从而求出函数的零点。
2.分段表示法:
分段表示法是根据函数的表达式,将函数分成多段,然后求出每一段的零点,从而求出函数的整体零点。
3.二分法:
二分法是指将函数的定义域分成两个部分,求解函数在每个部分上是单调函数的情况,然后对比函数的值。
如果函数在两边都接近零点,那么可以缩小搜索范围,直到找到所求的精确的函数零点。
4.牛顿迭代法:
牛顿迭代法是基于泰勒公式和函数的一阶导数来求函数零点的方法。
首先,选择一个初始值作为零点的近似值,然后用牛顿迭代公式来求函数零点的值,得到一个接近零点的新值,不断重复上述过程,直到求得函数零点的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本课小结:
知识点: 1.函数零点定义 题型: 1.会求函数零点
2.二次函数的零点问题
3.零点存在性定理 4.二分法求零点近似值
2.解决二次函数的零点问题
3.利用零点存在性定理判断 零点个数情况 4.二分法求零点近似值
本课作业:学案中课后作业
判断下列函数是否存在零点
y 3x 6x 1
5
x y -2 -1.5 109 44.17 0 1 1 -8 2 107
由零点存在定理可知:区间(0,1) 和(1,2)上均至少存在一个零点
问题:如何求该函数零点的近似解?
3:二分法
我们把每次将函数y=f(x)的零点所在区间收缩一
半的方法,使区间的两端点逐步逼近函数的零 点,以求得零点的近似值,这种方法叫二分法。
2
1 4a 0 1 a 4 1 综上所述: a 0或 a 4
[自 主 预 习· 探 新 知二]
判断下列函数是否存在零点
y 3x 6x 1
2
x y -2 -1.5 109 44.17 0 1 1 -8 2 107
由上表,你得到的猜想是?
零点存在定理 :
函数f(x)图像
函数h(x)图像
变号零点 穿过x轴 3. 零点 不变号零点 不穿过x轴
4.性质:
(1)函数图象过变号零点时,函数值变号,
过不变号零点时,函数值不变号
(2)相邻的两零点间,函数值保持同号
5. 二次函数零点的判定
判别式
0
0
0
没有实数 根
方程 ax2 bx c 0
二分法求零点近似解的步骤:
1)定初始区间 2)取区间的中点,并判断函数值
若函数值为0,则得到零点,否则
3)根据异号定区间
4)重复2)3)直到区间满足精确度的要求
思考:用二分法求得的零点是什么类型的零点?
例3.下列图像与x轴均有交点,其中不能用二分法求函 数零点的是( )
完成学案巩固训练(5分钟)
无零点
[ 基础自测] 1.思考辨析 (1)所有的函数都有零点.( )
ห้องสมุดไป่ตู้
(2)若方程f(x)=0有两个不等实根x1,x2,则函数y=f(x)的零点为(x1,0), (x2,0).( ) )
1 (3)f(x)=x-x只有一个零点.(
[ 答案]
(1)× (2)× (3)×
【典例分析】
例 1.求函数 y=x3-2x2-x+2 的零点.
解 : 令y 0 x 2x x 2 0
3 2
x ( x 2) ( x 2) 0 ( x 2)(x 1)(x 1) 0
2
函数的零点为 1 , 1,2
例 2:若函数 y=ax2-x-1 只有一个零点.求实数 a 的取值范围.
解:
①a 0时,y x 1只有一个零点 ②a 0时, 0 ( 1) 4a (1) 0
函数的零点和二分法
做好上课准备:端正坐姿
1.笔记本、练习本
2.学案课题(15) 3.打开课本P70
学习目标: 1.结合二次函数的图像,判断一元二次方程根的存在性及根的情况 2.了解函数的零点、方程的根、函数图象与 x 轴交点的横坐标之间的关系. 3.理解零点存在性定理,并且会用二分法求函数零点近似值
如果函数y=f(x)在区间[a, b]上的图象是连续不断
的, 并且f(a) · f(b)<0,则函数y=f(x)在区间(a, b)
上至少有一个零点,即存在c∈(a, b),使得
f(c)=0,这个c也就是方程f(x)=0的根
对零点存在性定理巩固理解:
• • • • • 1)至少 2)连续 3) f(a) · f(b)>0,不确定有无零点 4)反之不成立 5)存在定理可确定存在的是变号零点
[自 主 预 习· 探 新 知一]
函数的零点 1.定义
f(α)=0 ,则α叫做这个函数 等于零 ,即_______ 如果函数 y=f(x)在实数α处的值_________
零点 . 的_______ 2.数形理解:
方程f (x)=0的实数根
函数y=f (x)的图象与x轴交点的横坐标
函数y=f (x)的零点
(a 0) 的根
2 函数 y ax bx c
两个不相 等的实数 根x1,x2
两个不相 等的实数 根x1=x2
(a 0) 的图像
函数
两个变号零点
b 2a b x2 2a x1
y ax bx c
2
(a 0) 的零点
一个不变号 零点 b 2a