2017中考数学真题汇编:圆(带答案)

合集下载

2017年中考数学试题分项版解析汇编(第01期)专题11 圆(含解析)

2017年中考数学试题分项版解析汇编(第01期)专题11 圆(含解析)

专题11 圆一、选择题1.(2017浙江衢州第10题)运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8。

则图中阴影部分的面积是( )A. π225B. π10C. π424+D. π524+【答案】A.【解析】试题解析:作直径CG ,连接OD 、OE 、OF 、DG .∵CG 是圆的直径,∴∠CDG=90°,则2222106CG CD -=-=8,又∵EF=8,∴DG=EF ,∴DG EF =,∴S 扇形ODG =S 扇形OEF ,∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.2考点:1.圆周角定理;2.扇形面积的计算.2.(2017浙江宁波第9题)如图,在Rt ABC △中,90A =∠°,22BC =以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE 的长为( )A.4pB.2pC.pD.2p 【答案】B.【解析】试题解析:如图,连接OD ,OE∵AC ,AB 是圆O 的切线∴OE ⊥AC ,OD ⊥AB∵O 是BC 的中点∴点E ,点D 分别是AC ,AB 的中点∴OE=12AB ,OD= 12AC∵OE=OD∴AC=AB∵2由勾股定理得AB=2∴OE=1DE 的弧长=901180π⨯⨯=2π.考点:1.三角形的中位线;2.弧长的计算.3.(2017重庆A 卷第9题)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .24π- B .324π- C .28π- D .328π- 【答案】B.∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF=1×2﹣12×1×1﹣245360π⨯ =324π-. 故选B .考点:1.矩形的性质;2.扇形的面积计算.4.(2017广西贵港第9题)如图,,,,A B C D 是O 上的四个点,B 是AC 的中点,M 是半径OD 上任意一点,若40BDC ∠= ,则AMB ∠的度数不可能是( )A.45 B.60 C. 75 D.85【答案】D【解析】试题解析:∵B是AC的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.考点:圆周角定理;圆心角、弧、弦的关系.5.(2017贵州如故经9题)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.65B.85C.75D.35【答案】B4【解析】试题解析:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC=25 OBOC,∴cos∠A=cos∠BOC=25.又∵cos∠A=ADAB,AB=4,∴AD=85.故选B.考点:解直角三角形;平行线的性质;圆周角定理.6.(2017湖北武汉第9题)已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为()A.32C..【答案】C【解析】试题解析:如图,AB=7,BC=5,AC=8过A作AD⊥BC于D,设BD=x,则CD=5-x由勾腰定理得:72-x2=82-(5-x)2解得:x=1∴3设ΔABC的内切圆的半径为r,则有:1 2(5r+7r+8r)=12×5×3解得:3故选C.考点:三角形的内切圆.7.(2017江苏无锡第9题)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.D.6【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,,∴HB=AB﹣AH=8,在Rt△BDH中,=设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴OA OFBD BH=,108OF=,∴.故选C.考点:1.切线的性质;2.菱形的性质.8.(2017甘肃兰州第4题)如图,在O⊙中,AB BC=,点D在O⊙上,25CDB=∠°,则AOB=∠( )A.45°B.50°C.55°D.60°【答案】B考点:圆周角定理.9.(2017甘肃兰州第2题)如图,正方形ABCD内接于半径为2的O⊙,则图中阴影部分的面积为( ) A.1p+ B.2p+ C.1p- D.2p-【答案】D.【解析】试题解析:连接AO,DO,∵ABCD是正方形,∴∠AOD=90°,2222OA OD+=,圆内接正方形的边长为=14[4π﹣(2]=(π﹣2)cm2.故选D.8考点:1正多边形和圆;2.扇形面积的计算.10.(2017贵州黔东南州第5题)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C D.4【答案】A.【解析】试题解析:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=12OC=1,∴CD=2OE=2,故选A.考点:圆周角定理;勾股定理;垂径定理.11. (2017贵州黔东南州第8题)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60° B.67.5°C.75° D.54°【答案】A.【解析】10 试题解析:如图,连接DF 、BF .∵FE ⊥AB ,AE=EB ,∴FA=FB ,∵AF=2AE ,∴AF=AB=FB ,∴△AFB 是等边三角形,∵AF=AD=AB ,∴点A 是△DBF 的外接圆的圆心,∴∠FDB=12∠FAB=30°, ∵四边形ABCD 是正方形,∴AD=BC ,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC ,∴△FAD ≌△FBC ,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A .考点:正方形的性质.12.(2017山东烟台第9题)如图,□ABCD 中,070=∠B ,6=BC ,以AD 为直径的⊙O 交CD 于点E ,则弧DE 的长为( )A .π31B .π32 C. π67 D .π34【答案】B .∴DE 的长=40321803ππ⨯=.故选:B .考点:弧长的计算;平行四边形的性质;圆周角定理.13.(2017四川泸州第6题)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB=8,AE=1,则弦CD 的长是().6 D .8【答案】B .12考点:1.垂径定理;2.勾股定理.14.(2017四川自贡第10题)AB 是⊙O 的直径,PA 切⊙O 于点A ,PO 交⊙O 于点C ;连接BC ,若∠P=40°,则∠B 等于( )A .20°B .25°C .30°D .40°【答案】B.【解析】试题解析:∵PA 切⊙O 于点A ,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°﹣40°=50°,∵OC=OB ,∴∠B=∠BCO=25°,故选B .考点:切线的性质.15.(2017新疆建设兵团第9题)如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接BE ,CE .若AB=8,CD=2,则△BCE 的面积为( )A .12B .15C .16D .18【答案】A.【解析】考点:圆周角定理;垂径定理.16.(2017江苏徐州第6题)如图,点,,A B C ,在⊙O 上,72AOB ∠=,则ACB ∠=()A .28B .54 C.18 D .36【答案】D .14【解析】试题解析:根据圆周角定理可知,∠AOB=2∠ACB=72°,即∠ACB=36°,故选D .考点:圆周角定理.二、填空题1.(2017浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________ 【答案】22【解析】试题解析:连接AP ,PQ ,当AP 最小时,PQ 最小,∴当AP ⊥直线y=﹣34x+3时,PQ 最小, ∵A 的坐标为(﹣1,0),y=﹣34x+3可化为3x+4y ﹣12=0,∴|3(1)4012|=3,∴.考点:1.切线的性质;2.一次函数的性质.2.(2017山东德州第17题)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(,F G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若45EOF ∠= ,则此窗户的透光率(透光区域与矩形窗面的面枳的比值)为 .【解析】试题解析:如图,过F 作FG ⊥OF ,连接OG,OM,ON△OFH 是等腰直角三角形, ∴FH=OFsin45°=22,AB=2,BC=2OF=2 ∴矩形ABCD 面积=22∴S 空白=2S 扇形FOM+2S ΔAOG =290112+2113602π⨯⨯⨯⨯⨯⨯16 =+12π∴窗户的透光率=(+2)28π 考点:扇形的面积及概率3.(2017重庆A 卷第15题)如图,BC 是⊙O 的直径,点A 在圆上,连接AO ,AC ,∠AOB=64°,则∠ACB= .【答案】32°.【解析】试题解析:∵AO=OC ,∴∠ACB=∠OAC ,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠AC B=64°÷2=32°.考点:圆周角定理.4.(2017甘肃庆阳第14题)如图,△ABC 内接于⊙O ,若∠OAB=32°,则∠C= °.【答案】58°.【解析】试题解析:如图,连接OB ,∵OA=OB ,∴△AOB 是等腰三角形,∴∠OAB=∠OBA ,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.考点:圆周角定理.5. (2017甘肃庆阳第17题)如图,在△ABC 中,∠ACB=90°,AC=1,AB=2,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则弧CD 的长等于 .(结果保留π)【答案】3π. 【解析】考点:弧长的计算;含30度角的直角三角形.6.(2017广西贵港第17题)如图,在扇形OAB 中,C 是OA 的中点,,CD OA CD ⊥ 与AB 交于点D ,以O 为圆心,OC 的长为半径作CE 交OB 于点E ,若4,120OA AOB =∠=,则图中阴影部分的面积为 .(结果保留π)18【答案】4233π+ 【解析】试题解析:连接OD 、AD ,∵点C 为OA 的中点,∴∠CDO=30°,∠DOC=60°,∴△ADO 为等边三角形,∴S 扇形AOD =260483603ππ⨯=, ∴S 阴影=S 扇形AOB ﹣S 扇形COE ﹣(S 扇形AOD ﹣S △COD ) =221204120281(223)36036032πππ⨯⨯---⨯⨯ =164823333πππ--+=4233π+ 考点:扇形面积的计算;线段垂直平分线的性质.7.(2017湖南怀化第14题)如图,O ⊙的半径为2,点A ,B 在O ⊙上,90AOB =∠°,则阴影部分的面积为 .【答案】π﹣2.考点:扇形面积的计算.8. (2017湖南怀化第16题)如图,在菱形ABCD中,120∠°,10cmAB=,点P是这个菱形内部ABC=或边上的一点,若以,,P B C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为cm.【答案】10(cm).【解析】试题解析:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10;③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为10(cm).2考点:菱形的性质;等腰三角形的性质.9.(2017江苏无锡第17题)如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由AE ,EF ,FB ,AB 所围成图形(图中阴影部分)的面积等于 .53﹣6π. 【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形,∴GH=EF=2,∴O 1G=12, ∵O 1E=1,∴3 ∴1112O G O E =;∴∠O 1EG=30°,∴∠AO 1E=30°,同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3=36π. 考点:1.扇形面积的计算;2.矩形的性质.10.(2017江苏盐城第14题)如图,将⊙O 沿弦AB 折叠,点C 在AmB 上,点D 在AB 上,若∠ACB=70°,则∠ADB= °.【答案】110°【解析】试题解析:∵点C 在AmB 上,点D 在AB 上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°考点:圆周角定理.11.(2017山东烟台第18题)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB .已知6=OA ,取OA 的中点C ,过点C 作OA CD ⊥交弧AB 于点D ,点F 是弧AB 上一点,若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合.用剪刀沿着线段FA DF BD ,,依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .22【答案】36π﹣108【解析】试题解析:如图,∵CD ⊥OA ,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=12OA=12OD , ∴∠ODC=∠BOD=30°,作DE ⊥OB 于点E ,则DE=12OD=3, ∴S 弓形BD =S 扇形BOD ﹣S △BOD =2306360π⨯﹣12×6×3=3π﹣9, 则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108考点:扇形面积的计算12.(2017四川宜宾第15题)如图,⊙O 的内接正五边形ABCDE 的对角线AD 与BE 相交于点G ,AE=2,则EG 的长是 .1【解析】考点:正多边形和圆.13.(2017四川宜宾第17题)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,,则AD= .如果CD=3【答案】4.【解析】试题解析:∵AB=AC,∴∠ABC=∠ACB=∠ADB=30°,∵BD是直径,∴∠BAD=90°,∠ABD=60°,∴∠CBD=∠ABD﹣∠ABC=30°,∴∠ABC=∠CBD,∴AC CD AB==,∴CB AD=,∴AD=CB,∵∠BCD=90°,433,∴AD=BC=4.考点:1.圆周角定理;2.等腰三角形的性质;3.含30°角的直角三角形.14.(2017江苏徐州第15题)正六边形的每个内角等于.【答案】120°.【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7206︒=120°.考点:多边形的内角与外角.15. (2017江苏徐州第16题)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为,2D AB BC==,则AOB∠=.【答案】60°.【解析】24考点:切线的性质.ABm=︒,16.(2017浙江嘉兴第13题)如图,小明自制一块乒乓球拍,正面是半径为8cm的O,90弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.【答案】(32+48π)cm2【解析】试题解析:连接OA、OB,∵AB=90°,∴∠AOB=90°,∴S△AOB=12×8×8=32,扇形ACB(阴影部分)=22036078π⨯⨯=48π,则弓形ACB胶皮面积为(32+48π)cm2考点:1.垂径定理的应用;2.扇形面积的计算.三、解答题1.(2017浙江衢州第19题)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。

(完整版)2017中考数学圆的综合题试题

(完整版)2017中考数学圆的综合题试题

圆的综合题1. 如图,AB 是⊙O 的弦,AB =4,过圆心O 的直线垂直AB 于点D ,交⊙O 于点C 和点E ,连接AC 、BC 、OB ,cos ∠ACB =13,延长OE 到点F ,使EF =2OE .(1)求证:∠BOE =∠ACB ; (2)求⊙O 的半径;(3)求证:BF 是⊙O 的切线.2. 如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC 、 BC ,分别与⊙O 相交于点D 、点E ,且»»AD DE ,过点D 作DF ⊥BC 于点F ,连接BD 、DE 、AE . (1)求证:DF 是⊙O 的切线;(2)试判断△DEC 的形状,并说明理由;(3)若⊙O 的半径为5,AC =12,求sin ∠EAB 的值.3. (2016长沙9分)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.4. (2016德州10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC 于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.5. (2015永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.6 (2017原创)如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 和点D ,点E 为»DC的中点,连接OE 交CD 于点F ,连接BE 交CD 于点G .(1) 求证:AB =AG ;(2) (2)若DG =DE ,求证:GB 2=GC ·GA ;(3)在(2)的条件下,若tan D =34,EG =10,求⊙O 的半径.7.(2015达州)在△ABC 的外接圆⊙O 中,△ABC 的外角平分线CD 交⊙O 于点D ,F 为»AD 上一点,且»»AF BC ,连接DF ,并延长DF 交BA 的延长线于点E. (1)判断DB 与DA 的数量关系,并说明理由;(2)求证:△BCD ≌△AFD ;(3)若∠ACM =120°,⊙O 的半径为5,DC =6,求DE 的长.8. 如图,AB 为⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CG 是⊙O 的弦,CG ⊥AB ,垂足为点D .(1)求证:△ACD ∽△ABC ;(2)求证:∠PCA =∠ABC ;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CG 于点F ,连接BE ,若sin P =35,CF =5,求BE 的长.9、(2016大庆9分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交斜边AB于点M,若H是AC的中点,连接MH。

2017中考数学答案

2017中考数学答案

2017中考数学答案2017年的中考数学科目是事关学生们升学的重要考试。

对于学生们来说,准确的答案可以是他们顺利通过考试的关键。

在本文中,我将为大家提供一份2017中考数学科目的答案。

第一部分:选择题1.答案:B解析:根据题目中给出的条件可以得出,在圆中,半径等于直径的一半。

因此,直径等于2乘以半径。

而题目中给出的半径是10,所以直径等于20。

2.答案:C解析:题目中给出了一个三角形,其中两个角度已知。

在一个三角形中,三个内角的和等于180度。

根据题目中给出的两个角度之和是105度,所以第三个角度是180度减去105度,得出的答案是75度。

3.答案:A解析:根据题目中给出的数据,可以计算出每个人每天所需要的千卡数。

首先,将所给的大卡数转换为千卡数,即1000大卡等于1千卡。

然后将这个千卡数除以每天的食物量,得出每克食物的千卡数。

最后,将每克食物的千卡数乘以所给的食物量,就可以得出每个人每天所需要的千卡数。

4.答案:D解析:在一个方形中,对角线的长度等于边长的开方乘以2。

根据题目中给出的对角线长度是10,可以得到方形的边长是10除以开方2,即10/√2。

5.答案:B解析:根据题目所给出的条件,可以得出以下等式:x + y = 12 和2x + 4y = 32。

从第一个等式中解出x,得到 x = 12 - y。

将这个x 的值代入第二个等式中,可以得到 2(12 - y) + 4y = 32。

将这个等式化简后,得到 24 - 2y + 4y = 32。

合并同类项后求解方程,可以得到 y = 4。

将这个y值代入第一个等式中,可以求得 x = 8。

所以答案是(x, y) = (8, 4)。

第二部分:填空题6.答案:2解析:根据题目中给出的等式,可以得到一个由两个线段构成的等式。

其中,第一个线段的长度是2,第二个线段的长度是3。

所以答案是第一个线段的长度加上第二个线段的长度,即2 + 3 = 5。

7.答案:正方形解析:根据题目中给出的条件,可以得出一个正方形的特点:四条边的长度相等,且四个内角的度数都是90度。

2017中考真题分类汇编—圆(解答题部分)(1)(含解析)

2017中考真题分类汇编—圆(解答题部分)(1)(含解析)

2017 中考真题分类汇编—圆20.( 10 分)( 2017?安徽)如图,在四边形 ABCD 中, AD=BC ,∠ B=∠D,AD 不平行于 BC,过点 C 作 CE∥AD 交△ ABC 的外接圆 O 于点 E,连接 AE.(1)求证:四边形 AECD 为平行四边形;(2)连接 CO,求证: CO 平分∠ BCE.21 世纪教育网2.( 2017·福建)如图,四边形ABCD 内接于 e O ,AB是 e O 的直径,点P在 CA 的延长线上,CAD45o.[w^m#~*][ 来 @^源 ~: 中国教育 #出版网 %](Ⅰ)若AB 4 ,求弧CD的长;(Ⅱ)若弧BC弧AD,AD AP ,求证: PD 是e O的切线.3. (2017·兰州)如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC =∠AOD,∠D =∠BAF.(1) 求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE = 2,求EF的长.4.( 2017·天水)如图,△ABD 是⊙ O 的内接三角形, E 是弦 BD 的中点,点 C 是⊙ O 外一点且∠ DBC=∠A,连接OE延长与圆相交于点F,与 BC 相交于点C.( 1)求证: BC 是⊙O的切线;(2)若⊙ O的半径为6, BC=8 ,求弦 BD 的长..(·武威)如图,AN 是M 的直径,NB / / x轴,AB 交M于点C.5 2017(1) 若点A(0,6), N(0,2), ABN 30 ,求点B的坐标;(2) 若D为线段NB的中点,求证:直线CD 是 M 的切线.6.( 2017·深圳)如图,已知⊙ O 的半径为 2,AB 为直径, CD 为弦. AB 与 CD 交于点 M ,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙ O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点 F (F与B、C不重合).问GE?GF是否为定值?如果是,求出该定值;如果不是,请说明理由.7.( 2017·广东)如图,AB 是⊙ O 的直径, AB=4,点E为线段OB上一点(不与O,B 重合),作CE⊥OB ,交⊙ O 于点 C,垂足为点E,作直径CD ,过点 C 的切线交DB 的延长线于点P, AF ⊥ PC 于点 F,连接 CB .(1)求证:CB是∠ ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25. 如图,是的直径,,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使,所在的直线与所在的直线相交于点,连接.①试探究与之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.16.(2017·黄冈)已知:如图,MN 为O 的直径,ME是O 的弦,MD垂直于过点的直线DE,垂足为点 D ,且 ME 平分DMN .[来 #源 :中国教 ~︿育出版 & 网 @]求证:(1)DE是O 的切线;(2)ME2MD MN .9. (2017·六盘水)如图,MN 是⊙O的直径,MN = 4,点A在⊙O上,∠ AMN,B= 30 °为AN的中点,P是直径MN上一动点.(1) 利用尺规作图,确定当PA + PB 最小时P点的位置(不写作法,但要保留作图痕迹).(2) 求PA + PB的最小值. [来~源#:中国教育&出*版网%][来源 %:^* 中国 ~教育 #出版10. ( 2017·河北)如图,AB 16 ,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270 后得到扇形COD,AP,BQ分别切优弧CD于点P,Q ,且点P, Q 在AB异侧,连接 OP .(1) 求证:AP BQ;(2) 当BQ 4 3时,求QD的长(结果保留) ;(3) 若APO的外心在扇形COD 的内部,求 OC 的取值范围.11. (2017·菏泽)如图,AB 是⊙O的直径, PB 与⊙O相切于点 B ,连接 PA 交⊙O于点C.连接BC.(1)求证:BAC CBP ;(2)求证:PB2PC PA ;(3)当AC6, CP 3 时,求 sin PAB 的值.12.( 2017·怀化)如图,已知BC 是⊙ O 的直径,点 D 为 BC 延长线上的一点,点 A 为圆上一点,且AB=AD ,AC=CD .【来源: 21·世纪·教育·网】(1)求证:△ ACD∽△BAD;(2)求证:AD是⊙ O的切线.13.( 2017·随州)如图,在Rt△ ABC中,∠ C=90°,AC=BC,点 O 在 AB 上,经过点A 的⊙O 与 BC相切于点D,交 AB 于点 E.(1)求证:AD平分∠ BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).21.( 2017·武汉)如图,ABC 内接于O ,AB AC ,CO 的延长线交AB 于点 D .[来源^:*&@中~教网][ 中国 #教*&育出版 ^@网 ](1)求证AO平分BAC ;(2)若BC 6,sin BAC3,求AC和CD的长.514.( 2017·张家界)在等腰△ABC中, AC=BC,以 BC 为直径的⊙ O 分别与 AB, AC 相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙ O的切线;(2)分别延长CB, FD,相交于点G,∠ A=60°,⊙ O 的半径为6,求阴影部分的面积.17. ( 2017·济宁)如图,已知⊙ O 的直径?AB=12,弦 AC=10, D 是BC的中点,过点 D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙ O的切线;(2)求AE的长.18. ( 2017 ·江西)如图 1,O 的直径AB12, P 是弦BC上一动点(与点 B,C 不重合),ABC300,过点P作PD OP 交O 于点 D .(1)如图2,当PD / / AB 时,求PD的长;(2)如图3,当DC AC 时,延长AB至点 E ,使BE 1 AB,连接DE.2①求证:DE是O 的切线;②求PC的长.19. 有两个内角分别是它们对角的一半的四边形叫做半对角四边形. [ww~.(1) 如图 1,在半对角四边形 ABCD 中, ∠B = 1 ∠ D , ∠ C = 1∠ A ,求 ∠ B 与 ∠ C 的度数之2 2 和;(2) 如图 2,锐角 △ ABC 内接于 ⊙O ,若边 AB 上存在一点 D ,使得 BD = BO , ∠ OBA 的平 分线交 OA 于点 E ,连结DE 并延长交 AC 于点 ,. 求证:四边形 DBCF 是F ∠AFE = 2∠EAF半对角四边形; [w#w@w.zzstep.&%com*](3) 如图 3,在 (2) 的条件下,过点D 作 DG ^ OB 于点 H ,交 BC 于点 G ,当 DH = BG 时,求 △ BGH 与 △ ABC 的面积之比 .20 PT 与⊙ O 相切于点 T PO 与⊙ O 相交于 A , B .( 2017·黔东南)如图,已知直线 ,直线两点.( 1)求证: PT 2=PA?PB ;(2)若 PT=TB=,求图中阴影部分的面积.21.( 2017·德州) 如图,已知 Rt ABC, C 90 , D 为 BC 的中点 . 以AC为直径的圆O交 AB 于点 E . ( 1)求证: DE 是圆O的切线 .(2) 若AE : EB 1: 2, BC 6,求 AE 的长 .23.(10 分)如图,在⊙ O 中,直径 AB 经过弦 CD 的中点 E,点 M 在 OD 上,AM 的延长线交⊙ O 于点 G,交过 D 的直线于 F,∠ 1=∠2,连结 BD 与 CG 交于点N.(1)求证:DF是⊙ O的切线;(2)若点M是OD的中点,⊙ O的半径为3,tan∠BOD=2,求BN的长.20.如图,在△ ABC 中, AB=AC ,以 AB 为直径作圆 O,分别交 BC 于点 D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.25.( 10 分)如图,⊙ O 是△ ABC 的外接圆, AB 为直径,∠ BAC 的平分线交⊙ O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙ O的半径.22.( 8 分)如图,△ ABC 中,以 BC 为直径的⊙ O 交 AB 于点 D, AE 平分∠BAC 交 BC 于点 E,交 CD 于点 F.且 CE=CF.(1)求证:直线CA是⊙ O的切线;(2)若BD=DC,求的值.24.( 12 分)如图,已知在 Rt△ABC 中,∠ ABC=90°,以 AB 为直径的⊙ O 与AC 交于点 D,点 E 是 BC 的中点,连接 BD, DE.(1)若=,求sinC;(2)求证:DE是⊙ O的切线.23.( 9 分)如图, AB 是⊙ O 的直径, AC 是上半圆的弦,过点 C 作⊙ O 的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙ O 交于点F,设∠ DAC,∠ CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接 OF 与 AC 交于点 O′,当点 O′是 AC 的中点时,求α,β的值.18. 如图,在ABC中,AB AC,以AB为直径的⊙O交AC边于点D,过点C作CF / /AB ,与过点 B 的切线交于点 F ,连接 BD .(1)求证:BD BF ;(2)若AB10 , CD4,求 BC 的长.23.( 2017 四川省德阳市,第23 题, 11 分)如图,已知AB 、 CD 为⊙O的两条直线,DF 为切线,过AO 上一点 N 作 NM ⊥ DF 于 M ,连结 DN 并延长交⊙ O 于点E,连结CE .(1)求证:DMN ≌CED ;(2)设G为点E关于AB 对称点,连结GD. GN,如果∠ DNO =45°,⊙ O 的半径为3,求DN2GN 2的值.22.如图,△ABC中,以BC为直径的⊙ O交AB于点D,AE平分∠ BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA 是⊙ O 的切线;(2)若BD=4DC,求DF的值.3CF24.( 2017 四川省遂宁市,第24 题, 10 分)如图, CD 是⊙ O 的直径,点 B 在⊙ O 上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2AD gAC ,OE∥BD交直线AB 于点E,OE与BC相交于点F.(1)求证:直线AE 是⊙ O 的切线;(2)若⊙ O的半径为3, cosA= 4,求 OF 的长.523.(本小题满分10分)如图,AB是⊙ O的直径,点D,E在⊙ O上,∠ A=2∠BDE,点C在AB的延长线上,∠C=∠ABD .(1)求证:CE是⊙ O的切线;(2)若BF=2,EF=13 ,求⊙O的半径长.21.( 8 分)( 2017?黄石)如图,⊙O 是△ ABC 的外接圆, BC 为⊙ O 的直径,点 E 为△ABC 的内心,连接 AE 并延长交⊙ O 于 D 点,连接 BD 并延长至 F,使得 BD=DF ,连接 CF、BE .(1)求证:DB=DE;(2)求证:直线CF 为⊙ O 的切线.。

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆(含详细解析)

FhseFhee2017中考数学全国试题汇编-■■■■■圆24 (2017.北京)如图,AB是LI O的一条弦,LI O的切线交CE的延长线于点D .(1)求证:DB 二DE ;(2)若AB =12, BD =5,求LI O 的半径.【解析】E是AB的中点,过点E作EC_OA于点C ,过点B作试题分析:(1)由切线性质及等量代换推出/ 4=7 5,再利用等角对等边可得出结论;(2)由已知条件得出sin7 DEF和sin7 AOE的值,禾用对应角的三角函数值相等推出结论.试题解析:(1)证明:T DC 丄OA, A / 1 + 7 3=90°, v BD 为切线,二OB 丄BD, /-Z 2+7 5=90°, v OA=OB, •••7 1=7 2,v/ 3=7 4,A/ 4=7 5,在厶DEB中, 7 4=7 5,A DE=DB.⑵作DF丄AB 于F,连接OE, ・,.EF^-EE=3/在RTADEF中,EA3, DE=BD=5J EQ3 , J.f~nj jQ-F* 4Y彗一3 =斗——=-3「.在irrAAOE 中rDE5TAEh,二曲二二■ ■考点:圆的性质,切线定理,三角形相似,三角函数27 (2017甘肃白银)•如图,AN是L M的直径,NB//X轴, ~A OAB交L M于点C .(1)若点A 0,6 , N 0,2厂ABN =30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是L M的切线.解:(1)v A 的坐标为(0, 6), N (0, 2)••• AN=4, .............................................................................................................. 1 分vZ ABN=30°, / ANB=90°,••• AB=2AN=8, ...................................................................................................... 2分•••由勾股定理可知:NB=4..3 ,••• B ( 4 3 , 2) ....................................................... 3 分(2)连接MC , NC ........................................................................................... 4 分v AN是O M的直径,•••Z ACN=90°°•••Z NCB=90° ° ................................................................................................... 5 分在Rt A NCB中,D为NB的中点,1•CD= = N B=ND ,2•Z CND=Z NCD, .............................. 6 分v MC=MN ,•Z MCN=Z MNC.vZ MNC+Z CND=90°°• Z MCN+Z NCD=90° ° ...................... 7 分即MC I CD.•直线CD是。

2017年中考数学真题汇编:圆(带答案)

2017年中考数学真题汇编:圆(带答案)

2017年浙江中考真题分类汇编(数学):专题11 圆一、单选题1、(2017·金华)如图,在半径为13的圆形铁片上切下一块高为8的弓形铁片,则弓形弦的长为()A、10B、16C、24D、262、(2017•宁波)如图,在△中,∠A=90°,=.以的中点O为圆心的圆分别与、相切于D、E两点,则的长为()A、B、C、D、3、(2017·丽水)如图,点C是以为直径的半圆O的三等分点,2,则图中阴影部分的面积是()A、B、C、D、4、(2017·衢州)运用图形变化的方法研究下列问题:如图,是⊙O的直径,,是⊙O的弦,且∥∥,10,6,8。

则图中阴影部分的面积是()A、B、C、D、二、填空题5、(2017•杭州)如图,切⊙O于点A,是⊙O的直径.若∠40°,则∠.6、(2017•湖州)如图,已知在中,.以为直径作半圆,交于点.若,则的度数是度.7、(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条,的夹角为120°,长为30,则弧的长为(结果保留)8、(2017•绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边,分别与⊙O交于点D,E.则∠的度数为.9、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形(阴影部分)粘贴胶皮,则胶皮面积为.10、(2017•湖州)如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是.11、(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作⊙A的切线,切点为Q,则切线长的最小值是三、解答题12、(2017•湖州)如图,为的直角边上一点,以为半径的与斜边相切于点,交于点.已知,.(1)求的长;(2)求图中阴影部分的面积.13、(2017·台州)如图,已知等腰直角△,点P是斜边上一点(不与B,C重合),是△的外接圆⊙O的直径(1)求证:△是等腰直角三角形;(2)若⊙O的直径为2,求的值14、(2017·衢州)如图,为半圆O的直径,C为延长线上一点,切半圆O 于点D。

2017中考数学试卷汇编——圆(带答案)

2017中考数学试卷汇编——圆(带答案)

•••CB 平分Z ABD ,圆的有关性质一、选择题1. ( 2016 •山东省滨州市•分)如图,AB 是O O 的直径,C , D 是O O 上的点,且OC //BD , AD 分别与BC , OC 相交于点E , F ,则下列结论:①AD 丄 BD ;②/AOC = /AEC ;③CB 平分Z ABD :④ AF =DF ;⑤ BD =2 OF ; ©△CEF ^z BED ,其中一定成立 的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,② 由于/AOC 是O O 的圆心角,/ AEC 是O O 的圆内部的角角,③ 由平行线得到/ OCB = Z DBC ,再由圆的性质得到结论判断出/ OBC = ZDBC ;④ 用半径垂直于不是直径的弦,必平分弦;⑤ 用三角形的中位线得到结论;⑥ 得不到厶CEF 和Z BED 中对应相等的边,所以不一定全等.【解答】解:①、••• AB 是O O 的直径,•••ZADB=90 ° ,•••AD 丄 BD ,② 、T /AOC 是O O 的圆心角,/ AEC 是O O 的圆内部的角角,•••ZAOC MZAEC ,③ 、T OC //BD ,•••/OCB = Z DBC ,••OC = OB ,•••ZOCB = Z OBC ,•••ZOBC = Z DBC,④、T AB是O O的直径,•••/ADB=9 0° ,•••AD 丄BD,••OC//BD,•••ZAFO=90 ° ,•••点O为圆心,•••AF= DF,⑤、由④有,AF= DF ,•••点O为AB中点,•••OF是△ABD的中位线,•••BD=2 OF,△:EF和A BED中,没有相等的边,• dCEF 与ABED 不全等,故选D【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.2 .(2016 •山东省德州市•分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A. 3步B. 5步C. 6步D . 8步【考点】三角形的内切圆与内心.【专题】圆的有关概念及性质.【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.【解答】解:根据勾股定理得:斜边为膚1尹=17 ,8+15-17则该直角三角形能容纳的圆形(内切圆)半径r= -------------- ------- =3 (步),即直径为6步,故选C【点评】此题考查了三角形的内切圆与内心,Rt AABC ,三边长为a ,b , c (斜边),其内切圆半径r=一㊁一3 .(2016 •山东省济宁市•分)如图,在O O中,―AOB=40。

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。

2017辽宁数学中考圆试题集萃

2017辽宁数学中考圆试题集萃

2017辽宁数学中考圆试题集萃1 . ( 12分)(2017?葫芦岛)如图,△ ABC内接于O O, AC是直径,BC=BA 在/ ACB的内部作/ ACF=30 ,且CF=CA过点F作FH丄AC于点H,连接BF.(1 )若CF交O O于点G,O O的半径是4,求亠的长;(2)请判断直线BF与O O的位置关系,并说明理由.【答案】(1) AG=4岛-4逅.;(2) BF是O O的切线.【解析】试题分析:(1)连接OB首先证明四边形BOHF是矩形,求出AB BF的长,由BF// AC可BG空硒马預“岳1池得'■='■='= ~' ,可得:= = ,由此即可解决问题;(2)结论:BF是O O的切线.只要证明OBL BF即可;试题解析:(1)v AC是直径,•••/ CBA=90 ,•/ BC=BA OC=OA•OB丄AC,•/ FH丄AC,•OB// FH,在Rt△ CFH中,•••/ FCH=30 ,丄•FH=;CF ,•/ CA=CF丄•FH=; AC=OC=OA=OB•四边形BOHF是平行四边形,•••/ FHO=90 ,•••四边形BOHF是矩形,••• BF=OH在Rt△ ABC中,T AC=8• AB=BC=4 ?, •/ CF=AC=8• CH=4 二BF=0H=4 — 4, •/ BF// AC,BG BF_ 硒-4 韻7 .•AG = AC =8=2[BG也G= _!AG=4 「—4 ",(2)结论;^100的切线.理由:由⑴ 可知四边牯OBHF杲矩形,二心氐初,.'XB 丄BF,考点:切线的判定、矩形的判定.等腰三角形的性质,直角三角形30度角的性质、平行线分线段成比例定理&2. (10分)(2017?大连)如图,AB是。

O直径,点C在。

O 上, AD平分/ CAB BD是。

O的切线,AD与BC相交于点E.(1) 求证:BD=BE(2) 若 DE=2 BD= ■,求 CE 的长.【分析】(1))设/ BAD a ,由于AD 平分/ BAC,所以/ CAD=Z BAD a ,进而求 出/D=Z BED=90 - a 从而可知 BD=BE(2)设 CE=x 由于 AB 是O O 的直径,/ AFB=90,又因为 BD=BE DE=2 FE=FD=1 由于BD=,所以tan a=,从而可求出AB= -------------- =2 ,利用勾股定理列出方程 即可求出x 的值.【解答】解:(1)设/ BAD a , ••• AD 平分/ BAC•••/ CAD=Z BAD a ,••• AB 是O O 的直径,•••/ ACB=90,• ••/ ABC=90 - 2 a ,••• BD 是O O 的切线,••• BD 丄 AB ,•••/ DBE=a ,/ BED W BAD+Z ABC=90 - a ,•••/ D=180 -Z DBE-Z BED=90 - a ,•••Z D=Z BED••• BD=BE(2)设 AD 交O O 于点 F ,CE=x 则 AC=2x,连接 BF,T7:解直角三角形.KQ 勾股定理;••• AB是O O的直径,•Z AFB=90,••• BD=BE DE=2••• FE=FD=1••• BD= _, 二tan a=,••• AB=---- =2 —在Rt A ABC 中,由勾股定理可知:(2x)2+ (x+ 一)2= (2 一)2,•解得:x=-—或x=【点评】本题考查圆的综合问题,涉及切线的性质,圆周角定理,勾股定理,解方程等知识,综合程度较高,属于中等题型.3. (8分)(2017锦州)已知:四边形OABC是菱形,以O为圆心作。

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆24(2017.北京)如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.(1)求证:;(2)若,求的半径.【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC ⊥OA, ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数27(2017甘肃白银).如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线. 解:(1)∵A 的坐标为(0,6),N (0,2)AB O E AB E EC OA ⊥C B O CE D DB DE =12,5AB BD ==O∴AN =4, 1分 ∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8, 2分 ∴由勾股定理可知:NB=∴B(2) 3分 (2)连接MC ,NC 4分 ∵AN 是⊙M 的直径, ∴∠ACN =90°,∴∠NCB =90°在Rt △NCB ∴CD =12NB =ND ,∴∠CND =∠NCD , 6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°, 7分 即MC ⊥CD .∴直线CD 是⊙M 的切线. 8分25(2017广东广州).如图14,是的直径,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使所在的直线与所在的直线相交于点,连接.AB O ,2AC BC AB ==AC 045CAB ∠=l O C l D ,BD AB BD =AC E AD①试探究与之间的数量关系,并证明你的结论; ②是否为定值?若是,请求出这个定值;若不是,请说明理由.【解析】试题分析:(1)直径所对的圆周角是圆心角的一半,等弧所对的圆周角是圆心角的一半;(2)①等角对等边;②(2)①如图所示,作 于F 由(1)可得, 为等腰直角三角形.是 的中点. 为等腰直角三角形. 又 是 的切线,四边形 为矩形②当 为钝角时,如图所示,同样,(3)当D 在C 左侧时,由(2)知,AE AD EBCDBF l ⊥ACB ∆O AB CO AO BO ∴==ACB ∴∆l O OC lBF l ∴⊥⊥∴OBEC 22AB BFBD BF ∴=∴=303075BDF DBA BDA BAD ∴∠=︒∴∠=︒∠=∠=︒,15901575CBE CEB DEA ∴∠=︒∠=︒-︒=︒=∠,,ADE AED AD AE ∴∠=∠∴=ABD ∠1,302BF BD BDC =∴∠=︒1801501509015152ABD AEB CBE ADB ︒-︒∴∠=︒∠=︒-∠=︒∠==︒,,AE AD ∴=CD AB ,30ACD BAE DAC EBA ∠=∠∠=∠=︒,在 中,当D 在C 右侧时,过E 作 于在 中, 考点:圆的相关知识的综合运用25(2017贵州六盘水).如图,MN 是O ⊙的直径,4MN =,点A 在O ⊙上,30AMN =∠°,B 为AN 的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA PB +最小时P 点的位置 (2)(不写作法,但要保留作图痕迹). (2)求PA PB +的最小值. 【考点】圆,最短路线问题.【分析】(1)画出A 点关于MN 的称点A ',连接A 'B ,就可以得到P 点(2)利用30AMN =∠°得∠AON =∠ON A '=60°,又B 为弧AN 的中点,∴∠BON =30°,所以∠A 'ON =90°,再求最小值22. 【解答】解:,AC CD CAD BAE AB AE ∴∆∆∴==,,15AE BA BD BAD BDA ∴==∠=∠=︒30IBE ∴∠=︒Rt IBE∆222BE EI AE CD ====2BECD∴=EI AB ⊥I Rt IBE∆222BE EI AE CD ====2BECD∴=20(2017湖北黄冈).已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.【分析】(1)求出OE∥DM,求出OE⊥DE,根据切线的判定得出即可;(2)连接EN,求出∠MDE=∠MEN,求出△MDE∽△MEN,根据相似三角形的判定得出即可.【解答】证明:(1)∵ME平分∠DMN,∵OM=OE,∴∠OME=∠OEM,∴∠DME=∠OEM,∴OE ∥DM , ∵DM ⊥DE , ∴OE ⊥DE , ∵OE 过O , ∴DE 是⊙O 的切线; (2) 连接EN ,∵DM ⊥DE ,MN 为⊙O 的半径, ∴∠MDE=∠MEN=90°, ∵∠NME=∠DME , ∴△MDE ∽△MEN , ∴=,∴ME 2=MD •MN23. (2017湖北十堰)已知AB 为半⊙O 的直径,BC ⊥AB 于B ,且BC =AB ,D 为半⊙O 上的一点,连接BD 并延长交半⊙O 的切线AE 于E . (1) 如图1,若CD =CB ,求证:CD 是⊙O 的切线; (2) 如图2,若F 点在OB 上,且CD ⊥DF ,求AEAF的值.(1)证明:略;(此问简单) (2)连接AD . ∵DF ⊥DC ∴∠1+∠BDF =90° ∵AB 是⊙O 的直径CEC∵∠3+∠EAD =90°,∠E+∠EAD =90° ∴∠3=∠E又∵∠ADE=∠ADB=90° ∴△AD E ~△ABD∴AE ADAB BD =∴AE AF =∴∠2+∠BDF =90° ∴∠1=∠2又∵∠3+∠ABD =90°, ∠4+∠ABD =90° ∴∠3=∠4 ∴△ADF ~△BCDAF ADBC BD=21.(2017湖北武汉)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D (1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长【答案】(1)证明见解析;(2);.(2)过点C 作CE ⊥AB 于E∵sin ∠BAC =,设AC =5m ,则CE =3m ∴AE =4m ,BE =m在Rt ΔCBE 中,m 2+(3m )2=36 ∴m =, ∴AC =延长AO 交BC 于点H ,则AH ⊥BC ,且BH =CH =3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例.21. (2017湖北咸宁)如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F . ⑴求证:DF 是⊙O 的切线;⑵若52cos ,4==A AE ,求DF 的长【考点】ME :切线的判定与性质;KH :等腰三角形的性质;T7:解直角三角形.【分析】(1)证明:如图,连接OD ,作OG ⊥AC 于点G ,推出∠ODB=∠C ;然后根据DF ⊥AC ,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF 是⊙O 的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD 为矩形,即可求出DF 的值是多少. 【解答】(1)证明:如图,连接OD ,作OG ⊥AC 于点G , ∵OB=OD ,∴∠ODB=∠B , 又∵AB=AC , ∴∠C=∠B , ∴∠ODB=∠C , ∵DF ⊥AC , ∴∠DFC=90°, ∴∠ODF=∠DFC=90°, ∴DF 是⊙O 的切线.(2)解:AG=AE=2, ∵cosA=, ∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°, ∴四边形OGFD 为矩形, ∴DF=OG=.23(2017湖北孝感). 如图,O 的直径10,AB =弦6,AC ACB=∠的平分线交O于,D过点D作DE AB交CA延长线于点E,连接,.AD BD(1)由AB,BD,AD围成的曲边三角形的面积是;(2)求证:DE是O的切线;(3)求线段DE的长.【分析】(1)连接OD,由AB是直径知∠ACB=90°,结合CD平分∠ACB知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD +S△BOD可得答案;(2)由∠AOD=90°,即OD⊥AB,根据DE∥AB可得OD⊥DE,即可得证;(3)勾股定理求得BC=8,作AF⊥DE知四边形AODF是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC知tan∠EAF=tan∠CBA,即=,求得EF的长即可得.【解答】解:(1)如图,连接OD,∵AB是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD平分∠ACB,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S扇形AOD +S△BOD=+×5×5=+,故答案为: +;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.25(2017湖北荆州).如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)只要证明△PAQ∽△BAO,即可推出∠APQ=∠AOB=90°,推出QP⊥AB,推出AB是⊙O的切线;(2)分两种情形求解即可:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM 是正方形.分别列出方程即可解决问题.(3)分两种情形讨论即可,一共有四个点满足条件.【解答】(1)证明:如图1中,连接QP.在Rt△AOB中,OA=4,OB=3,∴AB==5,∵AP=4t,AQ=5t,∴==,∵∠PAQ=∠BAO,∴△PAQ∽△BAO,∴∠APQ=∠AOB=90°,∴QP⊥AB,∴AB是⊙O的切线.(2)解:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.易知PQ=DQ=3t,CQ=•3t=,∵OC+CQ+AQ=4,∴m+t+5t=4,∴m=4﹣t.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.∵OC+AQ﹣CQ=4,∴m+5t﹣t=4,∴m=4﹣t.(3)解:存在.理由如下:如图4中,当⊙Q 在y 则的右侧与y 轴相切时, 3t+5t=4,t=, 由(2)可知,m=﹣或.如图5中,当⊙Q 在y 则的左侧与y 轴相切时,5t ﹣3t=4,t=2,由(2)可知,m=﹣或.综上所述,满足条件的点C 的坐标为(﹣,0)或(,0)或(﹣,0)或(,0).22.(2017湖北鄂州)如图,已知BF 是⊙O 的直径,A 为 ⊙O 上(异于B 、F )一点. ⊙O 的切线MA与FB 的延长线交于点M ;P 为AM 上一点,PB 的延长线交⊙O 于点C ,D 为BC 上一点且PA =PD ,AD 的延长线交⊙O 于点E . (1)求证:BE = CE ;(2)若ED 、EA 的长是一元二次方程x 2-5x +5=0的两根,求BE 的长;(3)若MA ,1sin 3AMF ∠= , 求AB 的长.(1)∵PA =PD ∴∠PAD=∠PDA∴∠BAD+∠PAB=∠DBE+∠E ∵⊙O 的切线MA ∴∠PAB=∠DBE∴∠BAD=∠CBE ∴BE = CE(2)∵ED、EA的长是一元二次方程x2-5x+5=0的两根、∴ED·EA=5∵∠BAD=∠CBE,∠E=∠E∴△BDE∽△ABE∴BE2=ED·EA=5 ∴BE=521.(2017湖北黄石)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.【考点】MI:三角形的内切圆与内心;MD:切线的判定.【分析】(1)欲证明DB=DE,只要证明∠DBE=∠DEB;(2)欲证明直线CF为⊙O的切线,只要证明BC⊥CF即可;【解答】(1)证明:∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)连接CD.∵DA平分∠BAC,∴∠DAB=∠DAC,∴=,∴BD=CD,∵BD=DF,∴CD=DB=DF,∴∠BCF=90°,∴BC⊥CF,∴CF是⊙O的切线.23(2017湖北恩施).如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB 的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【考点】MC:切线的性质;KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2;(2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可;(3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF ≌Rt△BCP得DF=BP=2,据此得出CD的长即可.【解答】解:(1)∵BE ∥CD , ∴∠1=∠3, 又∵OB=OC , ∴∠2=∠3,∴∠1=∠2,即BC 平分∠ABP ; (2)如图,连接EC 、AC , ∵PC 是⊙O 的切线, ∴∠PCD=90°, 又∵BE ∥DC , ∴∠P=90°, ∴∠1+∠4=90°,[ ∵AB 为⊙O 直径, ∴∠A+∠2=90°, 又∠A=∠5, ∴∠5+∠2=90°, ∵∠1=∠2, ∴∠5=∠4, ∵∠P=∠P , ∴△PBC ∽△PCE , 即PC 2=PB •PE ; (3)∵BE ﹣BP=PC=4, ∴BE=4+BP ,∵PC 2=PB •PE=PB •(PB+BE ),∴42=PB •(PB+4+PB ),即PB 2+2PB ﹣8=0, 解得:PB=2, 则BE=4+PB=6, ∴PE=PB+BE=8, 作EF ⊥CD 于点F , ∵∠P=∠PCF=90°, ∴四边形PCFE 为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°, ∵BE ∥CD , ∴DE=BC ,在Rt △DEF 和Rt △BCP 中, ∴Rt △DEF ≌Rt △BCP (HL ), ∴DF=BP=2, 则CD=DF+CF=10, ∴⊙O 的半径为5.22(2017湖北随州).如图,在Rt △ABC 中,∠C=90°,AC=BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E . (1)求证:AD 平分∠BAC ;(2)若CD=1,求图中阴影部分的面积(结果保留π).【考点】MC :切线的性质;KF :角平分线的性质;KW :等腰直角三角形;MO :扇形面积的计算. 【分析】(1)连接DE ,OD .利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO=∠CAD ,进而得出结论;(2)根据等腰三角形的性质得到∠B=∠BAC=45°,由BC 相切⊙O 于点D ,得到∠ODB=90°,求得OD=BD ,∠BOD=45°,设BD=x ,则OD=OA=x ,OB=x ,根据勾股定理得到BD=OD=,于是得到结论.【解答】(1)证明:连接DE ,OD . ∵BC 相切⊙O 于点D , ∴∠CDA=∠AED , ∵AE 为直径, ∴∠ADE=90°, ∵AC ⊥BC , ∴∠ACD=90°, ∴∠DAO=∠CAD , ∴AD 平分∠BAC ;(2)∵在Rt △ABC 中,∠C=90°,AC=BC , ∴∠B=∠BAC=45°,∵BC 相切⊙O 于点D , ∴∠ODB=90°,∴OD=BD ,∴∠BOD=45°, 设BD=x ,则OD=OA=x ,OB=x ,∴BC=AC=x+1, ∵AC 2+BC 2=AB 2, ∴2(x+1)2=(x+x )2,∴x=,∴BD=OD=,∴图中阴影部分的面积=S △BOD ﹣S 扇形DOE=﹣=1﹣.22(2017湖北襄阳).如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点,∠BAC=∠DAC ,过点C 做直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【考点】ME:切线的判定与性质;MN:弧长的计算.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.21(2017湖北宜昌).已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD 即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.24(2017江苏南通).如图,Rt △ABC 中,∠C=90°,BC=3,点O 在AB 上,OB=2,以OB 为半径的⊙O 与AC 相切于点D ,交BC 于点E ,求弦BE 的长.【考点】MC :切线的性质;KQ :勾股定理.【分析】连接OD ,首先证明四边形OECD 是矩形,从而得到BE 的长,然后利用垂径定理求得BF 的长即可.【解答】解:连接OD ,作OE ⊥BF 于点E . ∴BE=BF , ∵AC 是圆的切线, ∴OD ⊥AC ,∴∠ODC=∠C=∠OFC=90°, ∴四边形ODCF 是矩形, ∵OD=OB=EC=2,BC=3, ∴BE=BC ﹣EC=BC ﹣OD=3﹣2=1, ∴BF=2BE=2.26(2017江苏镇江).如图,ACB Rt ∆中,090=∠C ,点D 在AC 上,A CBD ∠=∠,过D A ,两点的圆的圆心O 在AB 上.(1)利用直尺和圆规在图1中画出⊙O (不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);(2)判断BD 所在直线与(1)中所作的⊙O 的位置关系,并证明你的结论;(3)设⊙O 交AB 于点E ,连接DE ,过点E 作BC EF ⊥,F 为垂足.若点D 是线段AC 的黄金分割点(即ACADAD DC =,)如图2,试说明四边形DEFC 是正方形.25(2017江苏扬州).如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF . (1)判断直线DE 与半圆O 的位置关系,并说明理由; (2)①求证:CF=OC ;②若半圆O 的半径为12,求阴影部分的周长.【考点】MB :直线与圆的位置关系;L5:平行四边形的性质;MN :弧长的计算.【分析】(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)①只要证明△OCF 是等边三角形即可解决问题; ②求出EC 、EF 、弧长CF 即可解决问题. 【解答】解:(1)结论:DE 是⊙O 的切线. 理由:∵四边形OABC 是平行四边形, 又∵OA=OC ,∴四边形OABC 是菱形, ∴OA=OB=AB=OC=BC ,∴△ABO ,△BCO 都是等边三角形, ∴∠AOB=∠BOC=∠COF=60°, ∵OB=OF ,∴OG ⊥BF ,∵AF 是直径,CD ⊥AD ,∴∠ABF=∠DBG=∠D=∠BGC=90°, ∴四边形BDCG 是矩形, ∴∠OCD=90°, ∴DE 是⊙O 的切线.(2)①由(1)可知:∠COF=60°,OC=OF ,∴△OCF 是等边三角形, ∴CF=OC .②在Rt △OCE 中,∵OC=12,∠COE=60°,∠OCE=90°, ∴OE=2OC=24,EC=12,∵OF=12, ∴EF=12, ∴的长==4π,∴阴影部分的周长为4π+12+12.24(2017江苏盐城).如图,△ABC 是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1) 如图①,当圆形纸片与两直角边AC 、BC 都相切时, (2) 试用直尺与圆规作出射线CO ; (3) (不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周, 回到起点位置时停止,若BC=9,圆形纸片的半径为2, 求圆心O 运动的路径长.【考点】O4:轨迹;MC :切线的性质;N3:作图—复杂作图.【分析】(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 【解答】解:(1)如图①所示,射线OC 即为所求;(2)如图,圆心O 的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C△ABC=9+9+18=27+9,∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.25(2017江苏盐城).如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【考点】MR:圆的综合题.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.27、(2017•苏州)如图,已知内接于,是直径,点在上,,过点作,垂足为,连接交边于点.(1)求证:∽;(2)求证:;(3)连接,设的面积为,四边形的面积为,若,求的值.(1)证明:∵AB是圆O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD//BC,∴∠DOE=∠ABC,∴△DOE~△ABC,(2)证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是弧BC所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE。

2017全国中考数学真题 与圆的有关计算(选择题+填空题+解答题)解析版

2017全国中考数学真题 与圆的有关计算(选择题+填空题+解答题)解析版
(cm2).
15. 7.(2017 湖北咸宁,7,3 分)如图,⊙O 的半径为 3,四边形 ABCD 内接于⊙O,连接 OB、OD,若∠ BOD=∠ BCD,
则 BD 的长为( )
A.
B. 3 2
C. 2
D. 3
答案:C
解析:∵∠ BAD= 1 ∠ BOD= 1 ∠ BCD,∠ BAD+∠ BCD=180°,
转动五次 A 的路线长是:错误!未找到引用源。,
以此类推,每四次循环,
5
2017 全国中考数学真题(精品文档)
故顶点 A 转动四次经过的路线长为: 2 5 3 6 , 22
∵2017÷4=504……1
∴这样连续旋转 2016 次后,顶点 A 在整个旋转过程中所经过的路程之和是:6π×504+2π=3026π.故选:D.
18. (2017 江苏宿迁,3 分)若将半径为 12cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是
A.2cm
B.3cm
C.4cm
D.6cm
答案:D,解析:根据圆锥底面圆周长=扇形弧长,即 l=C 得 12π=2πr,所以 r=6.
19. (2017 甘肃天水.9.4 分)如图所示,AB 是圆 O 的直径,弦 CD⊥AB.垂足为 E,∠BCD=30°,CD=4 3 ,则
A.68πcm2
B.74πcm2
C.84πcm2
答案:C 解析:圆锥的表面积加上圆柱的侧面积即可求得其表面积.
D.100πcm2
5. 2. (2017 重庆,9,4 分)如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC,交 AD 于点 E,若点 E 是 AD 的中点,
以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F,则图中阴影部分的面积是(

2017年中考数学100份试卷分类汇编:圆的综合题

2017年中考数学100份试卷分类汇编:圆的综合题

2017年中考数学100份试卷分类汇编:圆的综合题D点评:本题以改造矩形桌面为载体,让学生在问题解决过程中,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用价值.4、(2013四川宜宾)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足=,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF ∽△AED ;②FG =2;③tan ∠E =;④S △DEF =4.其中正确的是 ①②④ (写出所有正确结论的序号).考点:相似三角形的判定与性质;垂径定理;圆周角定理.分析:①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:=,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=;④首先求得△ADF的面积,由相似三角形面积的比等于相似比,即可求得△ADE的面=4.积,继而求得S△DEF解答:解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF =3,FG =2, ∴AG ==,∴在Rt △AGD 中,tan ∠ADG ==, ∴tan ∠E =;故③错误;④∵DF =DG +FG =6,AD ==,∴S △ADF =DF •AG =×6×=3,∵△ADF ∽△AED ,∴=()2, ∴=, ∴S △AED =7,∴S △DEF =S △AED ﹣S △ADF =4;故④正确.故答案为:①②④.点评:此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.5、(2013年武汉)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接PA ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=;(2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.解析:(1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E第22题图①第22题图②作EG ⊥AC 于G ,连接OC .∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF .∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524. 设FC =24a ,则OC =OA =∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2=40a . 在Rt △AGE 和Rt △AFC 中,sin ∠FAC=ACFC AE EG =, ∴aa EG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .6、(2013•常州)在平面直角坐标系xOy 中,已知点A (6,0),点B (0,6),动点C 在以半径为3的⊙O 上,连接OC ,过O 点作OD ⊥OC ,OD 与⊙O 相交于点D (其中点C 、O 、D 按逆时针方向排列),连接AB .(1)当OC ∥AB 时,∠BOC 的度数为 45°或135° ;第22(2)题图(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC 的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.考点:圆的综合题.专题:综合题.分析:(1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;(2)由△OAB为等腰直角三角形得AB=OA=6,根据三角形面积公式得到当点C 到AB 的距离最大时,△ABC 的面积最大,过O 点作OE ⊥AB 于E ,OE 的反向延长线交⊙O 于C ,此时C 点到AB 的距离的最大值为CE 的长然后利用等腰直角三角形的性质计算出OE ,然后计算△ABC 的面积;(3)①过C 点作CF ⊥x 轴于F ,易证Rt △OCF ∽Rt △AOD ,则=,即=,解得CF=,再利用勾股定理计算出OF=,则可得到C 点坐标;②由于OC=3,OF=,所以∠COF=30°,则可得到∴BOC=60°,∠AOD=60°,然后根据“SAS ”判断△BOC ≌△AOD ,所以∠BCO=∠ADC=90°,再根据切线的判定定理可确定直线BC 为⊙O 的切线.解答: 解:(1)∵点A (6,0),点B (0,6),∴OA=OB=6,∴△OAB 为等腰直角三角形,∴∠OBA=45°,∵OC ∥AB ,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∵△OAB为等腰直角三角形,∴AB=OA=6,∴OE=AB=3,∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠ADO=∠COD=90°,∴∠DOA+∠DAO=90°而∠DOA+∠COF=90°,∴∠COF=∠DAO,∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,OF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADC=90°,∴OC⊥BC,∴直线BC为⊙O的切线.点评: 本题考查了圆的综合题:掌握切线的判定定理、平行线的性质和等腰直角三角形的判定与性质;熟练运用勾股定理和相似比进行几何计算.7、(2013•宜昌)半径为2cm 的与⊙O 边长为2cm 的正方形ABCD 在水平直线l 的同侧,⊙O 与l 相切于点F ,DC 在l 上.(1)过点B 作的一条切线BE ,E 为切点. ①填空:如图1,当点A 在⊙O 上时,∠EBA 的度数是 30° ;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC ,AD与⊙O的公共点,求扇形MON的面积的范围.考点:圆的综合题.分析:(1)①根据切线的性质以及直角三角形的性质得出∠EBA的度数即可;②利用切线的性质以及矩形的性质和相似三角形的判定和性质得出=,进而求出OA即可;(2)设∠MON=n°,得出S扇形MON=×22=n进而利用函数增减性分析①当N,M,A分别与D,B,O重合时,MN最大,②当MN=DC=2时,MN 最小,分别求出即可. 解答: 解:(1)①∵半径为2cm 的与⊙O 边长为2cm 的正方形ABCD 在水平直线l 的同侧,当点A 在⊙O 上时,过点B 作的一条切线BE ,E 为切点,∴OB=4,EO=2,∠OEB=90°,∴∠EBA 的度数是:30°;②如图2,∵直线l 与⊙O 相切于点F ,∴∠OFD=90°,∵正方形ADCB 中,∠ADC=90°,∴OF ∥AD ,∵OF=AD=2,∴四边形OFDA 为平行四边形,∵∠OFD=90°,∴平行四边形OFDA 为矩形,∴DA ⊥AO ,∵正方形ABCD 中,DA ⊥AB ,∴O ,A ,B 三点在同一条直线上;∴EA ⊥OB ,∵∠OEB=∠AOE ,∴△EOA∽△BOE,∴=,∴OE2=OA•OB,∴OA(2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法二:在Rt△OAE中,cos∠EOA==,在Rt△EOB中,cos∠EOB==,∴=,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法三:∵OE⊥EB,EA⊥OB,∴由射影定理,得OE2=OA•OB,∴OA(2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;(2)如图3,设∠MON=n°,S扇形×22=n(cm2),MON=S随n的增大而增大,∠MON取最大值时,S扇形MON最大,当∠MON取最小值时,S扇形MON最小,过O点作OK⊥MN于K,∴∠MON=2∠NOK,MN=2NK,在Rt△ONK中,sin∠NOK==,∴∠NOK随NK的增大而增大,∴∠MON 随MN的增大而增大,∴当MN最大时∠MON最大,当MN最小时∠MON最小,①当N,M,A分别与D,B,O重合时,MN最大,MN=BD,∠MON=∠BOD=90°,S扇形MON最大=π(cm2),②当MN=DC=2时,MN最小,∴ON=MN=OM,∴∠NOM=60°,S扇形MON最小=π(cm2),∴π≤S扇形MON≤π.故答案为:30°.点评: 此题主要考查了圆的综合应用以及相似三角形的判定与性质和函数增减性等知识,得出扇形MON 的面积的最大值与最小值是解题关键.8、(2013•包头)如图,已知在△ABP 中,C 是BP 边上一点,∠PAC=∠PBA ,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且交BP 于点E .(1)求证:PA 是⊙O 的切线;(2)过点C 作CF ⊥AD ,垂足为点F ,延长CF 交AB 于点G ,若AG •AB=12,求AC 的长;(3)在满足(2)的条件下,若AF :FD=1:2,GF=1,求⊙O 的半径及sin ∠ACE 的值.考点: 圆的综合题. 分析: (1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA 得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG ∽△BAC ,进而得出AC 2=AG •AB ,求出AC 即可;(3)先求出AF 的长,根据勾股定理得:AG=,即可得出sin ∠ADB=,利用∠ACE=∠ACB=∠ADB ,求出即可.解答: (1)证明:连接CD ,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°,又∵∠PAC=∠PBA ,∠ADC=∠PBA ,∴∠PAC=∠ADC ,∴∠CAD+∠PAC=90°,∴PA ⊥OA ,而AD 是⊙O 的直径,∴PA 是⊙O 的切线;(2)解:由(1)知,PA ⊥AD ,又∵CF ⊥AD ,∴CF ∥PA ,∴∠GCA=∠PAC,又∵∠PAC=∠PBA,∴∠GCA=∠PBA,而∠CAG=∠BAC,∴△CAG∽△BAC,∴=,即AC2=AG•AB,∵AG•AB=12,∴AC2=12,∴AC=2;(3)解:设AF=x,∵AF:FD=1:2,∴FD=2x,∴AD=AF+FD=3x,在Rt△ACD中,∵CF⊥AD,∴AC2=AF•AD,即3x2=12,解得;x=2,∴AF=2,AD=6,∴⊙O半径为3,在Rt△AFG中,∵AF=2,GF=1,根据勾股定理得:AG===,由(2)知,AG•AB=12,∴AB==,连接BD,∵AD是⊙O的直径,∴∠ABD=90°,在Rt △ABD 中,∵sin ∠ADB=,AD=6, ∴sin∠ADB=,∵∠ACE=∠ACB=∠ADB ,∴sin ∠ACE=.点评: 此题主要考查了圆的综合应用以及勾股定理和锐角三角函数关系等知识,根据已知得出AG 的长以及AB 的长是解题关键.9、(2013•荆门)如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E .(1)求证:OF ∥BE ;(2)设BP=x ,AF=y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P ,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.考点:圆的综合题.分析:(1)首先证明Rt△FAO≌Rt△FEO进而得出∠AOF=∠ABE,即可得出答案;(2)过F作FQ⊥BC于Q,利用勾股定理求出y与x之间的函数关系,根据M是BC中点以及BC=2,即可得出BP的取值范围;(3)首先得出当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFO∽Rt△EHG,求出y=AF=OA•tan30°=,即可得出答案.解(1)证明:连接OE答:F E、FA是⊙O的两条切线∴∠FAO=∠FEO=90°在Rt△OAF和Rt△OEF中,∴Rt△FAO≌Rt△FEO(HL),∴∠AOF=∠EOF=∠AOE,∴∠AOF=∠ABE,∴OF∥BE,(2)解:过F作FQ⊥BC于Q∴PQ=BP﹣BQ=x﹣yPF=EF+EP=FA+BP=x+y∵在Rt△PFQ中∴FQ2+QP2=PF2∴22+(x﹣y)2=(x+y)2化简得:,(1<x<2);(3)存在这样的P点,理由:∵∠EOF=∠AOF,∴∠EHG=∠EOA=2∠EOF,当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFO∽Rt△EHG,此时Rt△AFO中,y=AF=OA•tan30°=,∴∴当时,△EFO∽△EHG.点评:此题主要考查了圆的综合应用以及全等三角形的判定和性质以及相似三角形的判定与性质等知识,得出FQ2+QP2=PF2是解题关键.10、(2013•莱芜)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D 的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN 与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.考点:圆的综合题.分析:(1)根据切线的判定得出∠PNO=∠PNM+∠ONA=∠AMO+∠ONA进而求出即可;(2)根据已知得出∠PNM+∠ONA=90°,进而得出∠PNO=180°﹣90°=90°即可得出答案;(3)首先根据外角的性质得出∠AON=30°进而利用扇形面积公式得出即可.解答:(1)PN与⊙O相切.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠ON A=90°.即PN与⊙O相切.(2)成立.证明:连接ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∴∠OMA+∠OAM=90°,∴∠PNM+∠ONA=90°.∴∠PNO=180°﹣90°=90°.即PN与⊙O相切.(3)解:连接ON,由(2)可知∠ONP=90°.∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∵∠PON=60°,∠AON=30°.作NE⊥OD,垂足为点E,则NE=ON•sin60°=1×=.S 阴影=S △AOC +S 扇形AON ﹣S △CON =OC•OA+CO •NE=×1×1+π﹣×1×=+π﹣.点评: 此题主要考查了扇形面积公式以及切线的判定等知识,熟练根据切线的判定得出对应角的度数是解题关键.11、(2013•遂宁)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .(1)求证:CF 是⊙O 的切线;(2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,求BN 的长.考点: 圆的综合题. 分析: (1)根据切线的判定定理得出∠1+∠BCO=90°,即可得出答案; (2)利用已知得出∠3=∠2,∠4=∠D ,再利用相似三角形的判定方法得出即可;(3)根据已知得出OE 的长,进而利用勾股定理得出EC ,AC ,BC 的长,即可得出CD ,利用(2)中相似三角形的性质得出NB 的长即可.解答: (1)证明:∵△BCO 中,BO=CO ,∴∠B=∠BCO ,在Rt △BCE 中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF 是⊙O 的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB﹣∠BCO=∠FCO﹣∠BCO,即∠3=∠1,∴∠3=∠2,∵∠4=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,1,在Rt△COE中,cos∠BOC=41=1,∴OE=CO•cos∠BOC=4×4由此可得:BE=3,AE=5,由勾股定理可得:CE===,AC===2,BC===2,∵AB是⊙O直径,AB⊥CD,∴由垂径定理得:CD=2CE=2,∵△ACM∽△DCN,∴=,∵点M是CO的中点,CM=AO=×4=2,∴CN===,∴BN=BC ﹣CN=2﹣=.点评:此题主要考查了相似三角形的判定与性质以及切线的判定和勾股定理的应用等知识,根据已知得出△ACM ∽△DCN 是解题关键.12、(2013济宁)如图1,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y=(x >0)图象上任意一点,以P 为圆心,PO 为半径的圆与坐标轴分别交于点A 、B .(1)求证:线段AB 为⊙P 的直径;(2)求△AOB 的面积;(3)如图2,Q 是反比例函数y=(x >0)图象上异于点P 的另一点,以Q 为圆心,QO 为半径画圆与坐标轴分别交于点C 、D .求证:DO •OC=BO •OA .考点:反比例函数综合题.分析:(1)∠AOB=90°,由圆周角定理的推论,可以证明AB是⊙P的直径;(2)将△AOB的面积用含点P坐标的表达式表示出来,容易计算出结果;(3)对于反比例函数上另外一点Q,⊙Q与坐标轴所形成的△COD的面积,依然不变,与△AOB的面积相等.解答:(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,∴AB是⊙P的直径.(2)解:设点P坐标为(m,n)(m>0,n>0),∵点P是反比例函数y=(x>0)图象上一点,∴mn=12.如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.由垂径定理可知,点M为OA中点,点N为OB 中点,∴OA=2OM=2m,OB=2ON=2n,∴S△AOB=BO•OA=×2n×2m=2mn=2×12=24.(3)证明:若点Q为反比例函数y=(x>0)图象上异于点P的另一点,参照(2),同理可得:S△COD=DO•CO=24,则有:S△COD=S△AOB=24,即BO•OA=DO•CO,∴DO•OC=BO•OA.点评:本题考查了反比例函数的图象与性质、圆周角定理、垂径定理等知识,难度不大.试题的核心是考查反比例函数系数的几何意义.对本题而言,若反比例函数系数为k,则可以证明⊙P 在坐标轴上所截的两条线段的乘积等于4k;对于另外一点Q所形成的⊙Q,此结论依然成立.13、(2013•攀枝花)如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.考点:圆的综合题.分析:(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O 的切线;(2)由一对直角相等,一对公共角,得出三角形AOD 与三角形OAP 相似,由相似得比例,列出关系式,由OA 为EF 的一半,等量代换即可得证.(3)连接BE ,构建直角△BEF .在该直角三角形中利用锐角三角函数的定义、勾股定理可设BE=x ,BF=2x ,进而可得EF=x ;然后由面积法求得BD=x ,所以根据垂径定理求得AB 的长度,在Rt △ABC 中,根据勾股定理易求BC 的长;最后由余弦三角函数的定义求解.解答: (1)证明:连接OA ,∵PA 与圆O 相切,∴PA ⊥OA ,即∠OAP=90°,∵OP ⊥AB ,∴D 为AB 中点,即OP 垂直平分AB ,∴PA=PB ,∵在△OAP 和△OBP 中,,∴△OAP ≌△OBP (SSS ),∴∠OAP=∠OBP=90°,∴BP⊥OB,则直线PB为圆O的切线;(2)答:EF2=4DO•PO.证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,即OA 2=OD•OP,∵EF为圆的直径,即EF=2OA,∴EF 2=OD•OP,即EF2=4OD•OP;(3)解:连接BE,则∠FBE=90°.∵tan∠F=,∴=,∴可设BE=x,BF=2x,则由勾股定理,得EF==x,∵BE•BF=EF•BD,∴BD=x.又∵AB⊥EF,∴AB=2BD=x,∴Rt △ABC 中,BC=x ,AC 2+AB 2=BC 2,∴122+(x )2=(x )2,解得:x=4,∴BC=4×=20,∴cos ∠ACB===.点评:此题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.14、(2013年南京)如图,AD 是圆O 的切线,切点为A ,AB 是圆O的弦。

2017年江苏省中考数学真题《圆》专题汇编(选择、填空)(含解析)

2017年江苏省中考数学真题《圆》专题汇编(选择、填空)(含解析)

2017年江苏省中考数学真题《圆》专题汇编(选择、填空)一、选择题1.(2017·南京第6题)过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,617)B .(4,3)C .(5,617) D .(5,3) 2.(2017·无锡第9题)如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A .5B .6C .52D .23第2题图 第3题图 第4题图3.(2017·徐州第6题)如图,点A ,B ,C 在⊙O 上,∠AOB=72°,则∠ACB 等于( )A .28°B .54°C .18°D .36°4.(2017·苏州第9题)如图,在Rt △ABC 中,∠ACB=90°,∠A=56°.以BC 为直径的⊙O 交AB 于点D .E 是⊙O 上一点,且CE ⌒=CD⌒,连接OE .过点E 作EF ⊥OE ,交AC的延长线于点F ,则∠F 的度数为( )A .92°B .108°C .112°D .124°5.(2017·南通第6题)如图,圆锥的底面半径为2,母线长为6,则侧面积为( )A .4πB .6πC .12πD .16π第5题图 第6题图 第7题图6.(2017·南通第9题)已知∠AOB ,作图.步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交OA 、OB 于点P 、Q ;步骤2:过点M 作PQ 的垂线交PQ ⌒于点C ;步骤3:画射线OC .则下列判断:①PC ⌒=CQ⌒;②MC ∥OA ;③OP=PQ ;④OC 平分∠AOB ,其中正确的个数为( )A .1B .2C .3D .47.(2017·连云港第8题)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A 4处;…按此规律运动到点A 2017处,则点A 2017与点A 0间的距离是( )A .4B .32C .2D .08.(2017·宿迁第6题)若将半径为12cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是( )A .2cmB .3cmC .4cmD .6cm二、填空题9.(2017·南京第15题)如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE ,若78D ∠=︒,则EAC ∠= °.第9题图第11题图第12题图10.(2017·无锡第16题)若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为 cm 2.11.(2017·无锡第17题)如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由AE ⌒,EF ,FB ⌒,AB 所围成图形(图中阴影部分)的面积等于 .12.(2017·徐州第17题)如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为D ,AB=BC=2,则∠AOB= °.13.(2017·苏州第16题)如图,AB 是⊙O 的直径,AC 是弦,AC=3,∠BOC=2∠AOC .若用扇形OAC (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是 .第13题图第15题图 第16题图14.(2017·南通第13题)四边形ABCD 内接于圆,若∠A=110°,则∠C= 度.15.(2017·连云港第14题)如图,线段AB 与⊙O 相切于点B ,线段AO 与⊙O 相交于点C ,AB=12,AC=8,则⊙O 的半径长为 .16.(2017·淮安第16题)如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4:3:5,则∠D 的度数是 °.17.(2017·盐城第14题)如图,将⊙O 沿弦AB 折叠,点C 在AmB ⌒上,点D 在AB ⌒上,若∠ACB=70°,则∠ADB= °.第17题图 第18题图 第21题图18.(2017·扬州第15题)如图,已知⊙O 是△ABC 的外接圆,连接AO ,若∠B=40°,则∠OAC= °.19.(2017·泰州第12题)扇形的半径为3cm ,弧长为2πcm ,则该扇形的面积为 cm 2.20.(2017•常州第14题)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是 .21.(2017•常州第16题)如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为BD ⌒的中点,若∠DAB=40°,则∠ABC= °.22.(2017•镇江第6题)圆锥底面圆的半径为2,母线长为5,它的侧面积等于 (结果保留π).23.(2017•镇江第9题)如图,AB 是⊙O 的直径,AC 与⊙O 相切,CO 交⊙O 于点D ,若∠CAD=30°,则∠BOD= °.第23题图参考答案与解析一、选择题1.【答案】A .【考点】坐标与图形性质.【分析】已知A (2,2),B (6,2),C (4,5),则过A 、B 、C 三点的圆的圆心,就是弦的垂直平分线的交点,故求得AB 的垂直平分线和BC 的垂直平分线的交点即可.【解答】解:已知A (2,2),B (6,2),C (4,5),∴AB 的垂直平分线是4262=+=x , 设直线BC 的解析式为)0(≠+=k b kx y ,把B (6,2),C (4,5)代入上式得:⎩⎨⎧=+=+5426b k b k ,解得⎪⎩⎪⎨⎧=-=1123b k ,1123+-=x y ,设BC 的垂直平分线为m x y +=32, 把线段BC 的中点坐标(5,27)代入得61=m ,∴BC 的垂直平分线是6132+=x y , 当4=x 时,617=y ,∴过A 、B 、C 三点的圆的圆心坐标为(4,617). 故选A .【点评】本题主要考查了待定系数法求一次函数的解析式,求两直线的交点,圆心是弦的垂直平分线的交点,理解圆心的作法是解决本题的关键.2.【答案】C .【考点】切线的性质;菱形的性质.【分析】如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得:BHOF BD OA =,即可解决问题.【解答】解:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB •DH=320,∴DH=16,在Rt △ADH 中,1222=-=DH AD AH , ∴HB=AB-AH=8,在Rt △BDH 中,5822=+=BH DH BH ,设⊙O 与AB 相切于F ,连接OF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH ,∴BHOF BD OA =, ∴85810OF =, ∴52=OF .故选C .【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.3.【答案】D .【考点】圆周角定理.【分析】根据圆周角定理:同弧所对的圆周角等于同弧所对圆心角的一半即可求解.【解答】解:根据圆周角定理可知,∠AOB=2∠ACB=72°,即∠ACB=36°,故选D .【点评】本题主要考查了圆周角定理,正确认识∠ACB 与∠AOB 的位置关系是解题关键.4.【答案】C .【考点】圆心角、弧、弦的关系;多边形内角与外角.【分析】直接利用互余的性质再结合圆周角定理得出∠COE 的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵CE ⌒=CD⌒, ∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°-90°-90°-68°=112°.故选:C .【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE 的度数是解题关键.5.【答案】C .【考点】圆锥的计算.【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【解答】解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故选C .【点评】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.6.【答案】C .【考点】作图—复杂作图;圆周角定理.【分析】由OQ 为直径可得出OA ⊥PQ ,结合MC ⊥PQ 可得出OA ∥MC ,结论②正确;根据平行线的性质可得出∠PAO=∠CMQ ,结合圆周角定理可得出∠COQ=21∠POQ=∠BOQ ,进而可得出PC ⌒=CQ⌒,OC 平分∠AOB ,结论①④正确;由∠AOB 的度数未知,不能得出OP=PQ ,即结论③错误.综上即可得出结论.【解答】解:∵OQ 为直径,∴∠OPQ=90°,OA ⊥PQ .∵MC ⊥PQ ,∴OA ∥MC ,结论②正确;①∵OA ∥MC ,∴∠PAO=∠CMQ .∵∠CMQ=2∠COQ ,∴∠COQ=21∠POQ=∠BOQ , ∴PC ⌒=CQ⌒,OC 平分∠AOB ,结论①④正确; ∵∠AOB 的度数未知,∠POQ 和∠PQO 互余,∴∠POQ 不一定等于∠PQO ,∴OP 不一定等于PQ ,结论③错误.综上所述:正确的结论有①②④.故选C .【点评】本题考查了作图中的复杂作图、角平分线的定义、圆周角定理以及平行线的判定及性质,根据作图的过程逐一分析四条结论的正误是解题的关键.7.【答案】A .【考点】规律型:图形的变化类.【分析】根据题意求得A 0A 1=4,A 0A 2=32,A 0A 3=2,A 0A 4=32,A 0A 5=2,A 0A 6=0,A 0A 7=4,…于是得到A 2017与A 1重合,即可得到结论.【解答】解:如图,∵⊙O 的半径=2,由题意得,A 0A 1=4,A 0A 2=32,A 0A 3=2,A 0A 4=32,A 0A 5=2,A 0A 6=0,A 0A 7=4,…∵2017÷6=336…1,∴按此规律运动到点A 2017处,A 2017与A 1重合,∴A 0A 2017=2R=4.故选A .【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.8.【答案】D .【考点】圆锥的计算.【分析】易得圆锥的母线长为12cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【解答】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm ),∴圆锥的底面半径为12π÷2π=6(cm ),故选:D .【点评】本题考查了圆锥的计算.用到的知识点为:圆锥的弧长等于底面周长.二、填空题9.【答案】27.【考点】圆周角定理;菱形的性质.【分析】根据菱形的性质得到∠ACB=21∠DCB=21(180°-∠D )=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD 是菱形,∠D=78°,∴∠ACB=21∠DCB=21(180°-∠D )=51°, ∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACE=27°,故答案为:27.【点评】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.10.【答案】15π.【考点】圆锥侧面积的计算.【分析】圆锥的侧面积=rl π.【解答】解:底面半径为3,母线为5,侧面面积=πππ1553=⨯⨯=rl【点评】本题利用圆锥侧面积公式求解.11.【答案】64353π--. 【考点】扇形面积的计算;矩形的性质.【分析】连接O 1O 2,O 1E ,O 2F ,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,得到四边形EGHF 是矩形,根据矩形的性质得到GH=EF=2,求得O 1G=21,得到∠O 1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结果.【解答】解:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过FH ⊥O 1O 2,∴四边形EGHF 是矩形,∴GH=EF=2,∴O 1G=21, ∵O 1E=1, ∴GE=23, ∴2111=E O G O ; ∴∠O 1EG=30°,∴∠AO 1E=30°,同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO 2O 1-2S 扇形AO 1E-S 梯形EFO 2O 1=3×1-2×3601302⨯⋅π-21(2+3)×23=3-435-6π. 故答案为:3-435-6π.【点评】本题考查了扇形面积的计算,矩形的性质,梯形的性质,正确的作出辅助线是解题的关键.12.【答案】60.【考点】切线的性质.【分析】由垂径定理易得BD=1,通过解直角三角形ABD 得到∠A=30°,然后由切线的性质和直角三角形的两个锐角互余的性质可以求得∠AOB 的度数.【解答】解:∵OA ⊥BC ,BC=2,∴根据垂径定理得:BD=21BC=1. 在Rt △ABD 中,sin ∠A=AB BD =21. ∴∠A=30°.∵AB 与⊙O 相切于点B ,∴∠ABO=90°.∴∠AOB=60°.故答案是:60.【点评】本题主要考查的圆的切线性质,垂径定理和一些特殊三角函数值,有一定的综合性.13.【答案】21. 【考点】圆锥的计算.【分析】根据平角的定义得到∠AOC=60°,推出△AOC 是等边三角形,得到OA=3,根据弧长的规定得到AC ⌒的长度=ππ=⨯⋅180360,于是得到结论. 【解答】解:∵∠BOC=2∠AOC ,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC ,∴△AOC 是等边三角形,∴OA=3,∴AC ⌒的长度=ππ=⨯⋅180360, ∴圆锥底面圆的半径=21, 故答案为:21. 【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】70.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质计算即可.【解答】解:∵四边形ABCD 内接于⊙O ,∴∠A+∠C=180°,∵∠A=110°,∴∠C=70°,故答案为:70.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.15.【答案】5.【考点】切线的性质.【分析】连接OB ,根据切线的性质求出∠ABO=90°,在△ABO 中,由勾股定理即可求出⊙O 的半径长.【解答】解:连接OB ,∵AB 切⊙O 于B ,∴OB ⊥AB ,∴∠ABO=90°,设⊙O 的半径长为r ,由勾股定理得:r 2+122=(8+r )2,解得r=5.故答案为:5.【点评】本题考查了切线的性质和勾股定理的应用,关键是得出直角三角形ABO ,主要培养了学生运用性质进行推理的能力.16.【答案】120.【考点】圆内接四边形的性质.【分析】设∠A=4x ,∠B=3x ,∠C=5x ,根据圆内接四边形的性质求出x 的值,进而可得出结论.【解答】解:∵∠A ,∠B ,∠C 的度数之比为4:3:5,∴设∠A=4x ,则∠B=3x ,∠C=5x .∵四边形ABCD 是圆内接四边形,∴∠A+∠C=180°,即4x +5x =180°,解得x =20°,∴∠B=3x =60°,∴∠D=180°-60°=120°.故答案为:120.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.17.【答案】110.【考点】圆周角定理.【分析】根据折叠的性质和圆内接四边形的性质即可得到结论.【解答】解:∵点C 在AmB ⌒上,点D 在AB ⌒上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.【点评】本题考查了折叠的性质和圆内接四边形的性质,熟练掌握折叠的直线是解题的关键.18.【答案】50.【考点】圆周角定理.【分析】连接CO ,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC 的度数.【解答】解:连接CO ,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°-80°)÷2=50°.故答案为:50.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.19.【答案】3π.【考点】扇形面积的计算;弧长的计算.【分析】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【解答】解:设扇形的圆心角为n ,则:18032⋅⋅=ππn ,得:n =120°. ∴S 扇形=36031202⋅⋅π=3π cm 2. 故答案为:3π.【点评】本题考查的是扇形面积的计算,根据题意先求出扇形的圆心角的度数,再计算扇形的面积.20.【答案】3π.【考点】圆锥侧面积的计算.【分析】圆锥的侧面积=rl π.【解答】解:底面半径为1,母线为3,侧面面积=πππ331=⨯⨯=rl【点评】本题利用圆锥侧面积公式求解.21.【答案】70.【考点】圆的内接四边形的性质、圆周角定理推论.【分析】连接BD ,根据AB 为直径,求出∠DBA=50°;再根据圆的内接四边形的性质可得:∠C=180°-40°=140°,又点C 为BD ⌒的中点,可得CD=BC ,求出∠CBD=20°,∠ABC=∠ABD+∠CBD=50°+20°=70°.【解答】解:连接BD ,∵AB 为直径,∴∠ADB=90°,又∵∠DAB=40°,∴∠DBA=50°,根据圆的内接四边形的性质可得:∠C=180°-40°=140°,又点C 为BD ⌒的中点, ∴CD=BC ,∴∠CDB=∠CBD=︒=︒-︒202140180, ∴∠ABC=∠ABD+∠CBD=50°+20°=70°【点评】本题利用圆的内接四边形的性质、圆周角定理推论求解.22.【答案】10π.【考点】圆锥侧面积的计算.【分析】圆锥的侧面积=rl π.【解答】解:底面半径为2,母线为5,侧面面积=πππ1052=⨯⨯=rl【点评】本题利用圆锥侧面积公式求解.23.【答案】120.【考点】切线的性质、等腰三角形的性质、外角定理.【分析】根据AC是切线,可得:∠OAC=90°,结合∠CAD=30°,可得∠OAD=60°,根据等腰三角形的性质和外角定理即可得到结果.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠CAD=30°,∴∠OAD=60°.∵OA=OD,∴∠ODA=∠OAD=60°.∴∠BOD=∠ODA+∠OAD =120°.【点评】本题利用切线的性质、等腰三角形的性质、外角定理求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年浙江中考真题分类汇编(数学):专题11 圆一、单选题1、(2017·金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )A、10cmB、16cmC、24cmD、26cm2、(2017•宁波)如图,在Rt△ABC中,∠A=90°,BC=.以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则的长为()A、B、C、D、3、(2017·丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A、B、C、D、4、(2017·衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。

则图中阴影部分的面积是()A、B、C、D、二、填空题5、(2017•杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.6、(2017•湖州)如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.7、(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30cm,则弧BC的长为________cm(结果保留)8、(2017•绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E.则∠DOE的度数为________.9、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形(阴影部分)粘贴胶皮,则胶皮面积为________.10、(2017•湖州)如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是________.11、(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________三、解答题12、(2017•湖州)如图,为的直角边上一点,以为半径的与斜边相切于点,交于点.已知,.(1)求的长;(2)求图中阴影部分的面积.13、(2017·台州)如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP 的外接圆⊙O的直径(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值14、(2017·衢州)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。

连结OD,作BE⊥CD于点E,交半圆O于点F。

已知CE=12,BE=9(1)求证:△COD∽△CBE;(2)求半圆O的半径的长15、(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC 于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.16、(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.17、(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C 两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.18、(2017•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.19、(2017•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.20、(2017·金华)(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数.②若⊙O的半径为2 ,求线段EF的长.答案解析部分一、单选题1、【答案】C【考点】勾股定理的应用,垂径定理的应用【解析】【解答】解:∵OB=13cm,CD=8cm;∴OD=5cm;在RT△BOD中,∴BD===12(cm)∴AB=2BD=24(cm)【分析】首先先作OC⊥AB交点为D,交圆于点C,根据垂径定理和勾股定理求AB的长。

2、【答案】B【考点】直角三角形斜边上的中线,勾股定理,正方形的判定,切线的性质,弧长的计算【解析】【解答】解:∵O为BC中点.BC=2.∴OA=OB=OC=.又∵AC、AB是⊙O的切线,∴OD=OE=r.OE⊥AC,OD⊥AB,∵∠A=90°.∴四边形ODAE为正方形.∴∠DOE=90°.∴(2r)2+(2r)2=.∴r=1.∴弧DE===.故答案为B.【分析】根据O为BC中点.BC=2.求出OA=OB=OC=;再根据AC、AB是⊙O的切线,得出四边形ODAE为正方形;由勾股定理求出r的值,再根据弧长公式得出弧DE的长度.3、【答案】A【考点】扇形面积的计算【解析】【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ABC=30°,∠BOC=120°,又∵AB为直径,∴∠ACB=90°,则AB=2AC=4,BC= ,则S阴=S扇形BOC-S△BOC= - = - .故选A.【分析】连接OC,S阴=S扇形BOC-S△BOC,则需要求出半圆的半径,及圆心角∠BOC;由点C是以AB 为直径的半圆O的三等分点,可得∠ABC=30°,∠BOC=120°,从而可解答.4、【答案】A【考点】垂径定理的应用,扇形面积的计算【解析】【解答】解:作GH⊥AB,交CD于G,交EF于H,连接OC、OD、OE、OF.∵⊙O的直径AB=10,CD=6,EF=8,且AB‖CD‖EF,∴OG⊥CD,OH⊥EF,∴∠COG=∠DOG,∠EOH=∠FOH,∴OE=OF=OC=OD=5,CG=3,EH=4,∴OG=4,OH=3,∵AB‖CD‖EF,∴S△OCD=S△BCD,S△OEF=S△BEF,∴S阴影=S扇形ODC+S扇形OEF=S半圆=π×52=π.故答案是:π.【分析】作GH⊥AB,交CD于G,交EF于H,连接OC、OD、OE、OF.由AB‖CD‖EF,可得OG⊥CD,OH ⊥EF,∠COG=∠DOG,∠EOH=∠FOH,S△OCD=S△BCD,S△OEF=S△BEF,所以S阴影=S扇形ODC+S扇形OEF=S半圆=π×52=π.二、填空题5、【答案】50°【考点】三角形内角和定理,切线的性质【解析】【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【分析】根据切线的性质和三角形内角和定理即可求出答案.6、【答案】140【考点】等腰三角形的性质,圆周角定理【解析】【解答】解:连接AD(如图),∵AB为⊙O的直径,∴AD⊥BC,又∵AB=AC,∠BAC=40°,∴∠BAD=20°,∠B=70°,∴弧AD度数为140°.故答案为140.【分析】连接AD,根据直径所对的圆周角为直角,可知AD⊥BC,然后根据等腰三角形三线合一的性质,可知AD平分∠BAC,可得∠BAD=20°,然后求得∠B=70°,再根据同弧所对的圆周角等于其所对圆心角的一半,从而得出答案.7、【答案】20【考点】弧长的计算【解析】【解答】解:依题可得:弧BC的长===20.【分析】根据弧长公式即可求得.8、【答案】90°【考点】圆心角、弧、弦的关系【解析】【解答】解:∠DAE与∠DOE在同一个圆中,且所对的弧都是,则∠DOE=2∠DAE=2×45°=90°.故答案为90°.【分析】运用圆周角与圆心角的关系即可解答.9、【答案】(32+48π)cm²【考点】扇形面积的计算【解析】【解答】解:连接OA,OB,因为弧AB的度数是90°,所以圆心角∠AOB=90°,则S 空白=S扇形AOB-S△AOB==(cm2),S 阴影=S圆-S空白=64-()=32+48(cm2)。

故答案为(32+48π)cm²【分析】先求出空白部分的面积,再用圆的面积减去空白的面积就是阴影部分的面积.连接OA,OB,则S 空白=S扇形AOB-S△AOB,由弧AB的度数是90°,可得圆心角∠AOB=90°,即可解答.10、【答案】512【考点】含30度角的直角三角形,切线的性质,探索数与式的规律【解析】【解答】解:如图,连接O1A1,O2A2,O3A3,∵⊙O1,⊙O2,⊙O3,……都与OB相切,∴O1A1⊥OB,又∵∠AOB=30°,O1A1=r1=1=20.∴OO1=2,在Rt△OO2A2中,∴OO1+O1O2=O2A2.∴2+O2A2=2O2A2.∴O2A2=r2=2=21.∴OO2=4=22,……依此类推可得O n A n=r n=2=2n-1.∴O10A10=r10=2=210-1=29=512.故答案为512.【分析】根据圆的切线性质,和Rt三角形中30°角所对的直角边等于斜边的一半;可知OO1=2;同样可知O1O2=2,OO2=2+2=22;……OO n=2n;O n A n=r n=2=2n-1;因此可得第10个⊙O10的半径.11、【答案】2【考点】点到直线的距离,勾股定理的应用,解直角三角形【解析】【解答】解:连接AP,依题可得:要使PQ最小,只要AP最小即可,即AP垂直直线,设直线与x轴交于C(4,0),与y轴交于B(0,3),在Rt△COB中,∵CO=4,BO=3,∴AB=5,∴sinA==,在Rt△CPA中,∵A(-1,0),∴sinA===∴PA=3,在Rt△QPA中,∵QA=1,PA=3,∴PQ===2【分析】要使PQ最小,只要AP最小即可,即AP垂直直线,求出直线与坐标轴的交点坐标,再根据锐角三角函数sinA====,从而求出PA,再根据勾股定理求出PQ即可。

相关文档
最新文档