(完整版)毕业设计浮钳盘式制动器

合集下载

盘式制动器-毕业设计

盘式制动器-毕业设计

1.课题研究的目的及意义汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。

汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。

随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。

其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。

汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。

汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。

汽车的制动性能直接影响汽车的行驶安全性。

随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。

车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。

现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改良制动器机构、解决制约其性能的突出问题具有非常重要的意义。

2.汽车制动器的国内外现状及发展趋势对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。

目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。

盘式制动器被普遍使用。

但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。

汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。

高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。

毕业设计浮钳盘式制动器

毕业设计浮钳盘式制动器

原始数据原始数据: :整车质量:空载:整车质量:空载:1550kg 1550kg 1550kg;满载:;满载:;满载:2000kg 2000kg 质心位置:质心位置:a=L a=L 1=1.35m =1.35m;;b=L 2=1.25m质心高度:空载:质心高度:空载:hg=0.95m hg=0.95m hg=0.95m;满载:;满载:;满载:hg=0.85m hg=0.85m 轴 距:距:L=2.6m L=2.6m 轮 距: L 0=1.8m最高车速:最高车速:160km/h 160km/h 车轮工作半径:车轮工作半径:370mm 370mm 轮毂直径:轮毂直径:140mm 140mm 轮缸直径:轮缸直径:54mm 54mm轮 胎:胎:195/60R14 85H 195/60R14 85H 1.1.同步附着系数的分析同步附着系数的分析同步附着系数的分析(1)当0f f <时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;能力;(2)(2)当当0f f >时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性;方向稳定性;(3)(3)当当0f f =时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。

转向能力。

分析表明,汽车在同步附着系数为0f 的路面上制动的路面上制动((前、后车轮同时抱死前、后车轮同时抱死))时,其制动减速度为gqgdt du0f ==,即0f =q ,q 为制动强度。

而在其他附着系数f 的路面上制动时,达到前轮或后轮即将抱死的制动强度f <q ,这表明只有在0f f =的路面上,地面的附着条件才可以得到充分利用。

的路面上,地面的附着条件才可以得到充分利用。

根据相关资料查出轿车³0f 0.60.6,故取,故取600=f . 同步附着系数:=0f 0.62.2.确定前后轴制动力矩分配系数确定前后轴制动力矩分配系数b常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动力分配系数,用b 表示,即:uFFu 1=b ,21u u u F F F +=式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。

毕业论文-经济型轿车浮钳式制动器制动钳体三维建模及强度计算

毕业论文-经济型轿车浮钳式制动器制动钳体三维建模及强度计算

摘要
汽车的安全性是汽车设计和制造的第一指标, 汽车的制动性能可 靠性更是衡量汽车安全标准的重要因素。本文基于汽车制动理论,通 过 ANSYS Workbench 软件平台对影响汽车盘式制动器制动性能的主 要因素进行研究和分析, 利用有限元方法来验证盘式制动器主要零部 件的强度、制动等问题。 首先,概述了当前国内外汽车盘式制动器的发展现状、研究水平 以及未来新技术的发展趋势,确定论文研究方向和实现方法;介绍了 有限元法等基本理论和软件平台;通过 CATIA 软件建立盘式制动器 主要零部件和总成的三维模型。 然后,通过对盘式制动器的结构进行分析,研究制动过程中零部 件间力的传递关系;从制动效能、制动效能恒定性和制动时汽车行驶 方向的稳定性三个性能评价指标,分析了汽车制动性能的影响因素。 通过对制动时车轮的受力分析、地面制动力、制动力矩等力的分 析,以及地面制动力、制动器制动力、与附着力之间的关系,探讨制 动效能对汽车制动器整体制动性能的影响机理。 通过 Workbench 平台中的 Mechanical 模块,对制动器的ห้องสมุดไป่ตู้要零 部件的有限元模型进行结构静力学分析,得到其应力集中和变形情 况,验证其强度是否满足工作要求。 关键词:盘式制动器;有限元法;结构静力分析
经济型轿车浮钳式制动器制动钳体三维建模及强度计算
目录
摘要................................................................................................................................1 ABSTRACT................................................................................................................... 2 第 1 章 绪论..................................................................................................................4 1.1 研究目的与意义.......................................................................................... 4 1.2 国内外研究现状.......................................................................................... 5 1.2.1 国外研究概况........................................................................................5 1.2.2 国内研究概况........................................................................................7 1.3 主要研究内容............................................................................................ 10 1.4 浮钳盘式制动器概述.................................................................................11 1.4.1 浮钳盘式制动器的结构及其原理...................................................... 11 1.4.2 浮钳盘式制动器的优点......................................................................13 1.5 本章小结.................................................................................................... 14 第 2 章 浮钳盘式制动器的设计计算........................................................................15 2.1 汽车液压制动系统概述........................................................................... 15 2.2 汽车液压制动系统设计分解模型........................................................... 17 2.3 制动器设计计算....................................................................................... 18 2.4 汽车最大减速度下制动力矩设计计算................................................... 22 2.5 盘式制动器参数设计基本原理................................................................ 24 2.6 盘式制动器校核计算............................................................................... 27 2.7 本章小结................................................................................................... 29 第 3 章 浮钳盘式制动器三维模型建立....................................................................30 3.1 软件介绍................................................................................................... 30 3.2 浮钳盘式制动器零部件三维建模........................................................... 30 3.2.1 活塞.....................................................................................................30

盘式制动器毕业设计

盘式制动器毕业设计

毕业设计(论文、作业)毕业设计(论文、作业)题目:盘式制动器设计分校(点):浦东分校年级、专业:12 机电一体化教育层次:大学专科学生姓名:乔倪杰学号:128041103指导教师:诸杭完成日期:目录Abstract (II)1 绪论 (1)1.1 制动器的作用 (1)1.2 制动器的种类 (1)1.3 制动器的组成 (1)1.4 对制动器的要求 (3)1.5 制动器的新发展 (4)2 制动器的结构形式及选择 (5)2.1 制动器的种类 (5)2.2 盘式制动器的结构型式及选择 (6)3 盘式制动器的设计 (7)3.1 盘式制动器的结构参数与摩擦系数的确定 (8)3.2 制动衬块的设计计算 (9)3.3 摩擦衬块磨损特性的计算 (10)3.4 制动器主要零件的结构设计 (11)4 制动驱动机构的结构型式选择与设计计算 (12)4.1 制动驱动机构的结构型式选择 (13)4.2制动管路的选择 (14)4.3 液压制动驱动机构的设计计算 (15)5 盘式制动器的优化设计 (17)5.1 优化设计概述 (17)5.2 解决优化设计问题的一般步骤及几何解释 (17)5.3 常用优化方法 (18)5.4 制动系参数的优化 (18)6 结论 (19)致谢 (21)参考文献 (22)附录................................................. 错误!未定义书签。

摘要汽车的制动系是汽车行车安全的保证,许多制动法规对制动系提出了许多详细而具体的要求,这是我们设计的出发点。

从制动器的功用及设计的要求出发,依据给定的设计参数,进行了方案论证。

对各种形式的制动器的优缺点进行了比较后,选择了前盘的形式。

这样,制动系有较高的制动效能和较高的效能因素稳定性。

随后,对盘式制动器的具体结构的设计过程进行了详尽的阐述。

选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置。

在设计计算部分,选择了几个结构参数,计算了制动系的主要参数,盘式制动器相关零件以及驱动机构的设计计算。

盘式制动器_毕业设计说明书参考

盘式制动器_毕业设计说明书参考

盘式制动器_毕业设计说明书参考(以下是机械设计专业的毕业设计说明书范例,供参考)毕业设计题目:盘式制动器设计一、题目来源及背景盘式制动器是用于汽车、摩托车等机动车辆的制动装置之一,具有制动力矩大、耐磨损、散热快等优点。

本毕业设计项目充分利用机械设计、材料学等方面知识,对盘式制动器的制动器件进行设计。

二、设计要求1. 主要技术指标:(1)制动力矩:大于100 N·m(2)使用寿命:大于2×10⁴次(3)材料:盘式制动器盘采用GCr15;制动蹄采用40Cr;制动片采用半金属材料。

2. 设计思路(1)整体结构设计:盘式制动器的整体结构以制动盘、制动蹄、制动片、制动器液压缸等组成。

其中,制动盘为主动件,制动蹄和制动片为被动件,液压缸提供制动力。

(2)制动盘设计:制动盘是盘式制动器的核心部件,由于需要承受制动力矩,因此采用GCr15高强度材料。

制动盘的直径和厚度由制动力矩、车辆重量等因素决定。

(3)制动片设计:制动片采用半金属材料,能够在制动过程中承受高温、高压。

制动片的表面采用刻花纹路,以增加摩擦面积和摩擦系数。

(4)制动蹄设计:制动蹄采用40Cr合金钢,具有足够的强度和硬度。

制动蹄的设计应考虑制动片与制动盘之间的间隙,以确保能够实现完整制动。

(5)液压缸设计:液压缸的设计应考虑到制动盘的直径和轮轴间隙,能够提供足够的制动力矩。

液压缸的设计也应考虑到防泄漏、稳定等因素。

三、设计过程1. 制动盘设计(1)根据制动力矩、车辆重量等因素确定制动盘的直径和厚度。

(2)采用CAD软件进行3D建模,并进行有限元分析,得出制动盘在制动力矩作用下的应力分布情况和变形情况。

(3)结合分析结果,调整制动盘的厚度和结构。

(4)根据制动盘的设计尺寸和结构参数,进行加工和表面处理,确保制动片和制动盘之间具有充分的接触面积和摩擦力。

2. 制动片设计(1)选择半金属材料作为制动片材料。

根据制动盘的直径和表面处理情况,设计制动片的形状和尺寸。

本科毕业设计_盘式制动器设计说明

本科毕业设计_盘式制动器设计说明

本科毕业设计SQR6468轻型客车前制动器设计某某某燕山大学2015年 6 月22日本科毕业设计SQR6468轻型客车前制动器设计学院:专业:车辆工程学生:某某某学号: 3指导教师:某某某答辩日期: 2015.6.22燕山大学毕业设计任务书摘要本文首先对汽车制动器原理和对各种各样的制动器进行分析,详细地阐述了各类制动器的结构,工作原理和优缺点.再根据轻型客车的车型和结构选择了适合的方案.根据市场上同系列车型的车大多数是滑钳盘式制动器,而且滑动钳式盘式制动器结构简单,性能居中,设计规,所以我选择滑动钳式盘式制动器.本文探讨的是一种结构简单的滑动钳式盘式制动器,对这种制动器的制动力,制动力分配系数,制动器因数等进行计算.对制动器的主要零件如制动盘、制动钳、支架、摩擦衬片、活塞等进行结构设计和设计计算,从而比较设计出一种比较精确的制动器.本文所采用的设计计算公式均来自参考资料。

本设计主要针对轻型客车前制动器设计,首先计算数据,完成二维装配图和二维零件图绘制,然后利用CATIA软件进行三维建模。

以更清楚的表达盘式制动器结构。

关键词盘式制动器;制动力;制动力分配系数;制动器因数;CATIA软件AbstractThis paper first principle of the car brake and brake on a wide range of analysis,a detailed exposition of the structure of various types of brake, and the advantages and disadvantages of working principle. Accordance with Minibus models and structure chosen for the program Under series models on the market with most of the cars leading trailing, and leading trailing simple structure, performance, middling, design specifications, so I chose to receive from the Sliding Disc brake. This paper is a simple structure recipients from the Disc brake, the brake system of this power, braking force distribution coefficient, such as brake factor calculation. brake on the main parts such as brake pan, brake caliper, bracket, friction linings, piston for structural design and design, design and comparison A more precise brake used in the design of this formula are calculated from the reference.This design mainly in view of the light bus front brake design, calculation data first, finish 2 d assembly drawing and 2 d part drawing, And then using CATIA software for 3 d modeling, to more clearly express the structure of disc brake.Key words Disc brakes;Power system;Power distribution coefficient systemBrake factor CATIA software目录摘要 (II)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.2 研究目的及意义 (1)1.3 盘式制动器结构形式及其选择 (3)1.3.1 盘式制动器的结构形式 (3)1.3.2 盘式制动器的优缺点 (4)1.3.3 本设计盘式制动器的选择 (5)1.4 浮钳盘式制动器 (5)1.4.1 浮钳盘式制动器的结构 (5)1.4.2 浮钳盘式制动器的工作原理 (6)1.4.3 制动间隙调整原理 (7)1.5 本文研究容 (8)第2章制动系的主要参数及其选择 (9)2.1 任务书给定设计基本参数 (9)2.2 受力分析 (9)2.3 同步附着系数的确定及计算 (13)2.4 制动力、制动强度、附着系数利用率的计算 (15)2.4.1 满载时的情况 (15)2.4.2 空载的情况 (17)2.5 制动器最大制动力矩的计算 (19)2.6 本章小结 (19)第3章盘式制动器的结构设计 (20)3.1 盘式制动器结构设计的任务和步骤 (20)3.2 盘式制动器的主要零部件设计和三维造型 (20)3.2.1 制动盘 (21)3.2.2 制动衬块 (22)3.2.3 制动钳 (23)3.2.4 制动钳支架 (24)3.2.5 盘式制动器总成装配图 (26)3.3 本章小结 (26)第4章盘式制动器的校核计算 (27)4.1 摩擦衬块的磨损特性计算 (27)4.2制动器的热容量和温升的核算 (28)4.3 盘式制动器制动力矩的校核 (29)4.4 本章小结 (32)结论 (33)参考文献 (34)致 (36)附录1 (38)附录2 (364)附录3 (48)第1章绪论1.1 课题背景对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。

盘式制动器毕业设计

盘式制动器毕业设计

摘要国内汽车市场迅速发展,然而随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。

汽车制动系使行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。

随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。

也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。

本说明书主要介绍了雅力士轿车前制动器的设计。

首先介绍了汽车制动系统的结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。

最终确定方案采用液压双回路前盘后鼓式制动器。

关键词:制动、盘式制动器、设计参数、制动性能。

ABSTRACTDomestic automobile market developing quickly, however, with the increase of the auto possession, bring security is more and more attention, and brake system is the important car active safety system one. The brake is a moving car slow down or stop, make the downhill cars speed stability and make already in place of the car they offend (including in slope) stay fixed institution. With the rapid development of the highway speed and the improvement of traffic density and increases day by day, in order to guarantee safety, car brake system reliability of work appear increasingly important. Also only brake performance is good, brake system reliable car and fully play its dynamic performance this manual mainly introduces the designof the car brake system yaris.First this paper reviewed the automobile braking system structure, classification, and through to the drum brake disc brake and the structure and the advantages and disadvantages are analyzed. Ultimately determine the scheme adopts hydraulic double circuit with disk and drum brake system.Key words: brake、disk brake 、design parameters、braking performance目录摘要 (1)ABSTRACT (2)第一章绪论 (5)1.1制动系统概述 (5)1.1.1 汽车制动系统的功用及其组成: (5)1.1.2 制动系的一般工作原理 (5)1.1.3 制动系的类型 (7)1.1.4 汽车制动器设计要求 (8)1.2 汽车制动系统的研究现状及发展趋势 (11)第二章 制动器的结构型式方案分析与选择 (13)2.1 汽车制动器形式方案分析 (13)2.1.1 盘式制动器 (13)2.1.2 鼓式制动器 (17)2.2 制动驱动机构的结构型式选择 (18)2.2.1 简单制动系 (18)2.2.2 动力制动系 (18)2.2.3 伺服制动系 (19)2.3 制动主缸型式 (20)2.4 制动管路型式选择 (21)2.4 .1 II 型回路 (22)2.4 .2 X 型回路 (22)2.4 .3其他类型回路 (23)2.5 制动系统布置型式 (23)第三章 制动系统主要参数及其设计计算 (24)3.1 参考车型制动系相关主要参数数值 (24)3.2 同步附着系数分析 (24)3.3 法向力及制动力矩分配系数 (25)3.4 制动强度和附着系数利用率 (28)3.5附着力的计算 (29)3.6 制动器制动力及制动力矩的计算 (30)3.7 前轮盘式制动器制动因数 (30)3.8 前轮盘式制动器参数设计计算 (31)3.9 制动器磨损特性热容量及温升计算 (32)3.9.1盘式制动器磨损特性计算 (32)3.9.2 制动器的热容量和温升的核算 (33)3.9.3 盘式制动器制动力矩的校 (34)第四章 制动器主要零部件的结构设计 (37)4.1 制动盘 (37)4.2 制动钳 (37)4.3 制动块 (38)4.4 摩擦材料 (38)第五章 液压制动驱动机构的设计计算 (40)5.1前轮制动轮缸直径与工作容积的设计计算 (40)5.2制动主缸与工作容积设计计算: (41)5.3制动踏板力与踏板行程 (42)5.3.1制动踏板力p F (42)5.3.2制动踏板工作行程x p (42)第六章 制动性能分析计算 (44)6.1 制动性能评价指标 (44)6.2制动器制动力分配曲线分析 (45)6.3制动减速度的计算 (47)6.4驻车制动计算 (47)结论 (49)致谢 (50)参考文献 (51)附录 (52)第一章绪论1.1制动系统概述汽车制动器是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停止的汽车在原地(包括在斜坡上)驻留不动的机构。

盘式制动器毕业设计

盘式制动器毕业设计

盘式制动器毕业设计一、选题背景盘式制动器是现代汽车制动系统中最常用的一种制动器,其优点包括制动效果好、散热能力强、使用寿命长等。

因此,本人选择盘式制动器作为毕业设计的研究对象。

二、研究目的本次毕业设计旨在通过对盘式制动器的设计和分析,掌握盘式制动器的工作原理和设计方法,并进一步提高自己的工程实践能力。

三、研究内容1. 盘式制动器原理分析通过对盘式制动器的结构和工作原理进行分析,了解盘式制动器的基本工作原理和特点。

2. 盘式制动器设计要点根据盘式制动器的工作原理和特点,探讨盘式制动器设计中需要考虑的因素,包括材料选择、摩擦系数计算、刹车片形状等。

3. 盘式制动器性能测试与优化通过对已经设计好的盘式制动器进行性能测试,了解其刹车效果和散热情况,并根据测试结果进行优化。

四、研究方法1. 理论分析法:通过文献资料和相关标准,了解盘式制动器的基本原理和设计要点。

2. 数值模拟法:通过使用有限元分析软件对盘式制动器进行模拟分析,了解其在不同工况下的受力情况和散热情况。

3. 实验测试法:通过对已经设计好的盘式制动器进行实验测试,了解其刹车效果和散热情况,并根据测试结果进行优化。

五、研究成果1. 盘式制动器设计图纸和材料清单根据所学知识和研究结果,完成盘式制动器的设计图纸,并列出所需材料清单。

2. 盘式制动器性能测试报告根据实验测试结果,撰写盘式制动器性能测试报告,包括刹车效果、散热情况等方面的数据分析和优化建议。

3. 相关论文发表将研究成果整理成论文,并提交相关期刊或会议进行发表。

六、进度安排1. 第一阶段(1周):文献资料查找和整理。

2. 第二阶段(2周):盘式制动器原理分析。

3. 第三阶段(3周):盘式制动器设计要点探讨。

4. 第四阶段(4周):盘式制动器数值模拟分析。

5. 第五阶段(5周):盘式制动器实验测试和性能优化。

6. 第六阶段(2周):论文撰写和修改。

七、预期效果通过本次毕业设计,我将深入了解盘式制动器的工作原理和设计方法,掌握有限元分析软件的使用技巧,提高自己的工程实践能力。

毕业论文盘式制动器的参数化设计

毕业论文盘式制动器的参数化设计

前言 (2)1 制动系概述 (3)1.1 制动系的功能 (3)1.2车轮制动时的工作原理 (3)1.3 制动系的要求 (4)1.4 车轮制动器类型 (4)置等组成。

(4)③鼓式制动器的带式制动器只用作中央制动器。

(5)1.5 盘式制动器 (5)加速通风散热提高制动效率。

(5)1.5.2盘式制动器的主要类型 (6)( 1 ) 固定钳式盘式制动器 (6)( 2 ) 浮动钳式盘式制动器 (7)( 3 ) 全盘式制动器 (7)1.5.3盘式制动器的优缺点 (8)( 1 )盘式制动器的优点 (8)2 基于Pro/E设计方法 (11)3 制动器参数化设计计算 (14)3.2 主要零部件的结构设计 (15)3.2.1制动盘 (15)图3.2 制动盘尺寸 (17)(2)参数输入 (17)3.2.2制动块 (18)(1)尺寸设计 (18)(2)参数输入 (19)结论 (27)致谢 (28)参考文献 (28)前言国内汽车市场迅速发展,随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。

因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。

另外,随着汽车市场竞争的加剧,如何缩短产品开发周期,提高设计效率,降低成本,提高产品的市场竞争力,已经成为企业成功的关键。

制动器是车辆的关键部件之一, 其性能的好坏直接影响整车性能的优劣, 因此, 制动器的设计在整车设计中显得相当重要。

本文详细地阐述了各类制动器的结构、工作原理、优缺点和发展前景,探讨了一种结构简单的盘式制动器。

对制动器的主要零件如制动盘、制动钳、制动块、摩擦衬片、活塞等进行了结构设计和计算,从而设计出一种比较精确的制动器。

根据设计与计算用Pro/E绘制出了该制动器的制动盘、制动钳、活塞、摩擦衬块等零件图和装配图。

本课题主要完成基于Pro/E三维造型技术进行盘式制动器参数化设计。

通过引入基于Pro/E特征的参数化造型思想,建立制动器典型的零部件模板库,模型设计计算完成后,通过参数化驱动从而得到所需的制动器模型。

浮钳盘式制动器结构和工作原理

浮钳盘式制动器结构和工作原理

一、浮钳盘式制动器结构:
二、浮钳盘式制动器工作原理:
1.制动的实现
制动时,油路系统向钳体输入油压,以制动盘工作面为参照物,油压推动活塞向内侧制动块加压,顶压在制动盘右侧面,由反作用力将制动钳体向相反方向推,拉动外制动块压向制动盘左侧面,内外制动块形成对制动盘的夹紧力。

通过制动盘与轮毂的固连(车轮与轮毂连接),从而实现车辆的制动,如图所示:
2.解除制动
解除制动时,油路系统卸压,“绷紧”的制动系统都向恢复到初始原位而回弹,恢复原位的动力来源是受压缩、拉伸和弯曲变形零部件的恢复回弹力。

首先是刚性值大的零部件进行回弹,如活塞、内外制动块背板、制动钳体和制动盘。

其次是在回弹刚度降至与内外制动块摩擦材料层相等时,内外制动块摩擦材料层也开始进行回弹。

与此同时,活塞密封圈与活塞同步恢复到原始状态,移动量为制动时变形量值Δ。

由于制动盘工作面与旋转轴线不垂直,端面全跳动值不等于零,造成制动盘的局部工作扇区与制动块的“碰撞”,迫使制动块退离原位而躲避制动盘,完成制动解除过程。

盘式制动器毕业设计说明书

盘式制动器毕业设计说明书

盘式制动器毕业设计说明书盘式制动器毕业设计说明书目录摘要 (I)Abstract ............................................................. II 1 绪论. (1)1.1 制动器的作用 (1)1.2 制动器的种类 (1)1.3 制动器的组成 (1)1.4 对制动器的要求 (3)1.5 制动器的新发展 (4)2 制动器的结构形式及选择 (4)2.1 制动器的种类 (4)2.2 盘式制动器的结构型式及选择 (6)3 汽车整车基本参数计算 (8)4 制动系的主要参数及其选择 (9)4.1 制动力与制动力分配系数 (9)4.2 同步附着系数 (9)4.3 制动强度和附着系数利用率 (10)4.4 制动器最大制动力矩 (10)4.5 制动器因数 (11)5 盘式制动器的设计 (11)5.1 盘式制动器的结构参数与摩擦系数的确定 (11)5.2 制动衬块的设计计算 (12)5.3 摩擦衬块磨损特性的计算 (13)5.4 制动器主要零件的结构设计 (14)6 制动驱动机构的结构型式选择与设计计算 (15)6.1 制动驱动机构的结构型式选择 (15)6.2制动管路的选择 (15)6.3 液压制动驱动机构的设计计算 (16)7 盘式制动器的优化设计 (18)7.2 解决优化设计问题的一般步骤及几何解释 (18)7.3 常用优化方法 (19)7.4 制动系参数的优化 (19)8 结论 (21)致谢 (22)参考文献 (23)附录 (24)摘要汽车的制动系是汽车行车安全的保证,许多制动法规对制动系提出了许多详细而具体的要求,这是我们设计的出发点。

从制动器的功用及设计的要求出发,依据给定的设计参数,进行了方案论证。

对各种形式的制动器的优缺点进行了比较后,选择了前盘的形式。

这样,制动系有较高的制动效能和较高的效能因素稳定性。

随后,对盘式制动器的具体结构的设计过程进行了详尽的阐述。

盘式制动器毕业设计

盘式制动器毕业设计

盘式制动器毕业设计盘式制动器毕业设计引言:盘式制动器是现代汽车制动系统中的重要组成部分,它通过摩擦力将车轮减速或停止,保证了行车的安全性。

在汽车工程领域,盘式制动器的设计和优化是一个重要的研究方向。

本文将探讨盘式制动器的毕业设计,包括设计的基本原理、材料选择、结构设计和性能评估等方面。

一、设计的基本原理盘式制动器的基本原理是利用摩擦力将车轮减速或停止。

当驾驶员踩下制动踏板时,制动液通过液压系统传递到制动器,使制动器的制动钳夹紧刹车盘,产生摩擦力。

刹车盘与车轮相连,当刹车盘受到摩擦力作用时,车轮减速或停止。

设计盘式制动器时,需要考虑制动力的大小、传递的稳定性以及制动器的磨损等因素。

二、材料选择盘式制动器的材料选择对其性能和寿命有着重要影响。

常见的刹车盘材料包括铸铁、钢铁和复合材料等。

铸铁刹车盘具有良好的制动性能和耐磨性,但重量较大。

钢铁刹车盘重量相对较轻,但制动性能略逊于铸铁刹车盘。

复合材料刹车盘由碳纤维和树脂复合而成,具有轻量化、耐高温和制动性能优越等特点。

在设计盘式制动器时,需要根据车辆类型、使用环境和经济成本等因素选择合适的材料。

三、结构设计盘式制动器的结构设计包括制动钳、刹车盘和制动片等部分。

制动钳是盘式制动器的核心部件,通过夹紧刹车盘产生制动力。

制动钳的结构设计需要考虑夹紧力的大小、传递的稳定性和制动片的磨损等因素。

刹车盘的结构设计需要考虑其散热性能和制动片的接触面积等因素。

制动片的结构设计需要考虑其材料和形状,以提高制动性能和寿命。

四、性能评估盘式制动器的性能评估是毕业设计中的重要环节。

常用的性能评估指标包括制动力、制动距离、制动稳定性和磨损等。

制动力是盘式制动器的重要性能指标,需要根据车辆类型和使用需求确定。

制动距离是指车辆从刹车开始到完全停止所需的距离,需要通过实验和仿真等方法进行评估。

制动稳定性是指制动过程中制动力的稳定性和传递的稳定性,需要通过试验和分析等方法进行评估。

磨损是盘式制动器寿命的重要指标,需要通过试验和监测等方法进行评估。

毕业设计盘式制动器设计说明书

毕业设计盘式制动器设计说明书

汽车盘式制动器设计摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。

在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。

关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率Automobile disc brake designAbstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile.Key words: Disc brake,Braking forcedistribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency目录第1章绪论 (4)制动器的作用 (4)制动器的种类 (4)制动器的组成 (5)制动器的新发展 (5)对制动器的要求 (6)工作任务及要求 (8)制动器研究方案 (9)第2章制动器机构形式的选择 (10)方案选择的依据 (10)制动器的种类 (10)盘式制动器的结构型式及选择 (11)盘式制动器与鼓式制动器优缺点比较 (13)雅阁六代车型制动器结构的最终方案 (14)第3章制动器主要参数及其选择 (15)雅阁六代基本参数确定 (15)轮滚动半径er (15)空、满载时的轴荷分配 (15)空、满载时的质心高度 (16)制动力与制动力分配系数 (16)同步附着系数计算 (19)制动器最大制动力矩 (22)利用附着系数和制动效率 (24)利用附着系数 (24)制动效率Ef 、Er (25)制动器制动性能核算 (26)第4章制动器主要零件的设计计算与校核 (27)制动盘主要参数确定 (27)制动盘直径D (27)制动盘厚度h (27)摩擦衬块主要参数的确定 (27)摩擦衬块内半径和外半径 (27)摩擦衬块有效半径 (28)摩擦衬块的面积和磨损特性计算 (29)摩擦衬块参数设计校核 (31)驻车制动计算与校核 (32)液压制动驱动机构的设计计算 (33)制动轮缸直径d与工作容积V (33)制动主缸直径与工作容积 (35)制动踏板力 (36)S (36)踏板工作行程P第5章制动器主要零件的结构设计 (37)制动盘 (37)制动盘材料及要求 (37)制动盘分类及比较 (37)制动钳 (38)制动块 (38)摩擦材料 (39)盘式制动器工作间隙的调整 (40)总结 (42)致谢 (43)参考文献 (44)第1章绪论制动器的作用汽车制动系是用于使行驶中的汽车减速或停车,使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。

(完整版)轻型货车盘式制动器总成设计毕业设计

(完整版)轻型货车盘式制动器总成设计毕业设计
1.2
制动器的发展有着很悠久的历史,制动装置其实是人们发明车轮后的一种延伸。制动器是汽车上一个非常重要的组成部分,制动器的发展经过了一个漫长的过程:1889年德国人戴姆勒把制动鼓装在汽车后轮上,再绕上钢缆而成为制动装置;1898年美国埃· 安· 斯佩里设计汽车采用了第一个前轮盘式制动器。即用圆盘分别与个车轮的轮毅连成一体而旋转, 再另用个镶有摩擦片的小圆盘,通过电磁铁作用, 使其紧贴于转动圆盘以实现制动;1902年美国人奥尔兹在纽约沿河大道上作了一次重要的制动试验, 所用的是抱闸带式制动器。他将柔性的不锈钢制动带包在奥兹莫比尔汽车的后轴轮毅上,当踩下制动踏板时, 制动带把车轮箍紧而使汽车停住。近年来,几乎所有厂家都在其新车的后轮上都安装了此种抱闸带式制动器;1902年法国的雷诺发明鼓式制动器;1903年美闰人廷切尔在汽车上首次使用了空气制动器;1907年英国人弗罗特提出用石棉板作制动片的设想, 随后被用于解决制动产生的噪声问题;1911年法国人别儒设计出第一个四轮制动器;1918年英国人洛克希德制造出了液压制动器, 它是利用液压主缸和油管把压力油传递到制动轮缸,使制动系压紧制动鼓;1921年美国人杜森贝克才第一个在汽车的个轮子上都装上了液压制动器, 组成了完整的汽车液压制动系统;1925年可尔型汽车最早采用了能自动调节制动间隙的制动器;1955年英国道路研究所实验室研制出第一个实用的防抱死制动装置;1973年电子式摩擦片磨损警报装置开始使用;1985年通用汽车公司首先在汽车上采用电动助力制动器, 它是一种全液压装置。
Keyword: Disc brakes Structural parameters Cylinder diameters
Check calculation
第一章
1.1
汽车制动系统是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使以停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系统的工作可靠性显得日益重要。也只有制统动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。

浮钳盘式制动器结构分析

浮钳盘式制动器结构分析
本人声明,所呈交的论文是本人在导师指导下进行的研究工作 及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地 方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包 含为获得武汉理工大学或其他教育机构的学位或证书而使用过的材 料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作 了明确的说明并表示了谢意。
floating caliper disc brake braking process simulation and the brake disc and thermal
structure coupling analysis of lining the first one puts forward one method to simulate
IV
第3章制动盘与摩擦片热结构耦合分析………………………………………………..32 3.1热结构耦合分析的理论基础…………………………………………………….32 3.1.1摩擦热的产生机理………………………………………………………一32 3.1.2热传导理论……………………………………………………………….33 3.1.3热结构耦合方法…………………………………………………………..35 3.2热结构耦合模拟制动过程……………………………………………………….35 3.2。1单元类型的选取…………………………………………………………一35 3.2.2材料属性的定义…………………………………………………………..36 3.2.3有限元模型……………………………………………………………….36 3.2.4载荷及边界条件…………………………………………………………..37 3.3制动盘温度场分析………………………………………………………………38 3.3.1制动盘制动过程的温度场分布…………………………………………一38 3.3.2制动盘温度场分析………………………………………………………..41 3.4制动盘应力场分析………………………………………………………………46 3.4.1非热结构耦合下的制动盘应力场………………………………………..47 3.4.2热结构耦合下的制动盘应力场…………………………………………。51 3.5摩擦片温度场分析………………………………………………………………58 3.6摩擦片应力场分析………………………………………………………………6l 3.7本章小结…………………………………………………………………………63
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原始数据:整车质量:空载:1550kg ;满载:2000kg质心位置:a=L 1=1.35m ;b=L 2=1.25m质心高度:空载:hg=0.95m ;满载:hg=0.85m轴 距:L=2.6m轮 距: L 0=1.8m最高车速:160km/h车轮工作半径:370mm轮毂直径:140mm轮缸直径:54mm轮 胎:195/60R14 85H1.同步附着系数的分析(1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;(2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性;(3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。

分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。

而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ<q ,这表明只有在0φφ=的路面上,地面的附着条件才可以得到充分利用。

根据相关资料查出轿车≥0φ0.6,故取6.00=φ.同步附着系数:=0φ0.62.确定前后轴制动力矩分配系数β常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动力分配系数,用β表示,即:u F Fu 1=β,21u u u F F F +=式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。

由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g02φβ+= 得:68.06.285.06.025.1=⨯+=β 3.制动器制动力矩的确定为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。

根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ由轮胎与路面附着系数所决定的前后轴最大附着力矩:e g r qh L LG M ϕυ)(1max 2-= 式中:ϕ:该车所能遇到的最大附着系数;q :制动强度;e r :车轮有效半径;max 2μM :后轴最大制动力矩;G :汽车满载质量;L :汽车轴距;其中q=g h a a ⨯-+)(0ϕϕϕ=85.0)6.07.0(35.17.035.1⨯-+⨯=0.66 故后轴max 2μM =3707.0)85.066.035.1(6.220000⨯⨯⨯-=1.57610⨯Nmm 后轮的制动力矩为2/1057.16⨯=0.785610⨯Nmm前轴max 1μM = T max 1f =max 21f T ββ-=0.67/(1-0.67)⨯1.57610⨯=3.2610⨯Nmm前轮的制动力矩为3.2610⨯/2=1.6610⨯Nmm2.浮钳盘式制动器主要结构参数的确定2.1制动盘直径D制动盘直径D 希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。

但制动盘直径D 受轮毅直径的限制通常,制动盘的直径D 选择为轮毅直径的70%~90%,总质量大于2t 的车辆应取其上限。

通常,制造商在保持有效的制动性能的情况下,尽可能将零件做的小些,轻些。

轮辋直径为14英寸(1英寸=2.54cm),又因为M=2000kg ,取其上限。

在本设计中:032.2564.2514%72%72=⨯⨯==Dr D ,取D=256mm 。

2.2制动盘厚度h制动盘厚度h 直接影响着制动盘质量和工作时的温升。

为使质量不致太大,制动盘厚度应取得适当小些;为了降低制动工作时的温升,制动盘厚度又不宜过小。

制动盘可以制成实心的,而为了通风散热,可以在制动盘的两工作面之间铸出通风孔道。

通风的制动盘在两个制动表面之间铸有冷却叶片。

这种结构使制动盘铸件显著的增加了冷却面积。

车轮转动时,盘内扇形叶片的选择了空气循环,有效的冷却制动。

通常,实心制动盘厚度为l0mm~20mm ,具有通风孔道的制动盘厚度取为20mm~ 50mm ,但多采用20mm~30mm 。

在本设计中选用通风式制动盘,h 取20mm 。

2.3摩擦衬块外半径R 2与内半径R 1推荐摩擦衬块外半径R 2与内半径R 1的比值不大于1.5。

若比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,最终将导致制动力矩变化大。

在本设计中取外半径R 2=104mm ,3.112=R R ,则内半径R 1=80mm 。

2.4摩擦衬块工作面积A摩擦衬块单位面积占有的车辆质量在1.6kg/2cm ~3.5kg/2cm 范围内选取。

汽车空载质量为1550kg ,前轮空载时地载荷为852.5kg ,所以852.5/(3.5*4)2cm <A<852.5/(1.6*4)2cm ,即60.892cm <A<110.72cm 。

在本设计中取衬块的夹角θ为50°。

摩擦衬块的工作面积A :221225.76032360502)(mm R R A =⨯⨯⨯-=πA 取76㎝²。

经过计算最终确定前轮制动器的参数如下:制动盘直径D=256mm ;取制动盘厚度h=20mm ;摩擦衬片外半径R2=104mm ,内半径=80mm ;制动衬块工作面积A=76cm 2;活塞直径=轮缸直径=54mm3.制动效能分析3.1制动减速度j制动系的作用效果,可以用最大制动减速度及最小制动距离来评价。

假设汽车是在水平的,坚硬的道路上行驶,并且不考虑路面附着条件,因此制动力是由制动器产生。

此时m r M j ⨯=e /总式中 总M ——汽车前、后轮制动力矩的总合。

总M =21u u M M +=785+1600=2385Nme r =370mm=0.37mm ——汽车总重 m=2000kg代入数据得j =(785+1600)/0.37×2000=6.16m/s 2轿车制动减速度应在5.8~7m/s 2,所以符合要求。

3.2制动距离S在匀减速度制动时,制动距离S 为S=1/3.6(t 1+ t 2/2)V+ V 2/254ϕ式中,t 1——消除制动盘与衬块间隙时间,取0.1st 2——制动力增长过程所需时间,取0.2sV=30km/h故S=1/3.6(0.1+ 0.2/2)30+ 302/254×0.7=7.2m轿车的最大制动距离为:S T =0.1V+V 2/150S T =0.1⨯30+302/150=9mS<S T所以符合要求。

3.3摩擦衬片的磨损特性计算摩擦衬片的磨损与摩擦副的材质,表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。

但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。

汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。

在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。

此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。

此即所谓制动器的能量负荷。

能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。

双轴汽车的单个前轮制动器的比能量耗散率为:221211()122a m v v e tA δβ-=式中:δ:汽车回转质量换算系数,紧急制动时02=v ,1=δ;a m :汽车总质量;1v ,2v :汽车制动初速度与终速度(m /s );计算时轿车1v 取27.8m /s ;t :制动时间,s ;按下式计算 s j v v t 6.468.2721==-= j :制动减速度,2/s m , 2/6106.06.0s m g j =⨯=⨯=;1A :前轮制动器衬片的摩擦面积;1A =7600mm 2β:制动力分配系数。

则67.076006.4228.27155022121211⨯⨯⨯⨯⨯=⨯=βtA v m e a =5.72w/mm 轿车盘式制动器的比能量耗散率应不大于6.02/mm w ,故符合要求。

若摩擦衬片压力与制动盘面接触良好,且各处单位压力分布均匀,则在钳盘式制动器扇形摩擦衬面上任取一微小面积:dA = RdRd θ,在这微小面积上产生的微摩擦力矩为:dM=qRµdA=µqR²dRd θ,式中q 为摩擦片与制动盘之间的单位面积上的压力,µ为摩擦片的摩擦系数,则单侧摩擦片作用于制动盘上的制动力矩为可由下式积分求得:M'=⎰21R R ⎰-2/2/θθµpR²dRd θ=⎰21R R θµpR²dR=31µp θ(R 23-R 13)(N.m ) 则盘式制动器的总制动力矩为:M=32µq θ(R 23-R 13) 4.性能约束 (1)制动力矩约束:汽车制动器制动力矩应该小于地面的摩擦力矩,否则会发生车轮抱死现象而产生侧滑,从而失去稳定性 ,即:M ≤21G βe r ϕ 式中:ϕ:路面附着系数;G :整车重量(N); β:制动力分配系数;e r :车轮有效半径。

(2)摩擦片压力约束:摩擦片应达到要求的耐磨性或使用寿命,对于摩擦片最大许用单位压力[P],一般按经验取值,因此,摩擦片单位面积压力不得超过许用单位压力[P],即:p R R d p R R dθπθπ)(21)(2142122221222-=-<[P] (3)比能量耗散率约束:如果比能量耗散率过高,不仅会加快制动摩擦片的磨损,而且可能引起制动盘的龟裂,因此所施加的约束为:βθβ)(22212122211211R R t v m tA v m e a a -=⨯=≤[e](W/mm ) 式中:m :整车质量(kg);[e]:盘式制动器时,取6.0W/mm ;T :为制动时间。

(4)制动盘一次制动的温升:△T=GV 2β/254C 1M 1≤[△t] 式中M 1:制动盘的质量(Kg)M 1=ρπ42h D ,其中ρ为制动盘的密度7900㎏/m 3 C 1:制动盘的热容量J/(Kg ·K)对钢和铸铁取C=523J/(Kg.K);V :制动初速度(Km/h)取30Km/h[△t]一次制动最大允许温升,一般不大于15℃即288.15K(5)摩擦衬块面积:由于摩擦衬块单位面积占有的车辆质量在1.6kg/2cm ~-3.5kg/2cm 范围内选取。

汽车空载质量为1550kg ,前轮空载时地载荷为852.5kg ,所以852.5/(3.5*4)2cm <A<852.5/(1.6*4)2cm ,即60.892cm<A<110.72cm 于是60892mm <422122⨯-θR R <110702mm 。

相关文档
最新文档