高三数学选择填空题压轴专题5.4 解析几何中的定值与定点问题(教师版)
解析几何中的定值与定点问题-玩转压轴题(解析版)
专题5.4 解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。
(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A.B.C.2p D.【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫⎪⎝⎭ B .11,42⎛⎫⎪⎝⎭ C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+, 取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭.【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k-+=,2122b x x k =; 又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== ,则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( ) A .充分非必要条件 B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =,直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。
高考数学二轮复习 专题五 解析几何 第四讲 大题考法——圆锥曲线中的定点、定值、存在性问题课件 理
12/8/2021
第二十五页,共四十八页。
[审题定向] (一)定知识
主要考查直线的方程,抛物线方程、直线与抛物线的位置 关系.
(二)定能力 1.考查直观想象:点与点的对称关系,直线与抛物线的位置关系. 2.考查数学运算:对称点的求解,方程根的求解.
12/8/2021
第二十六页,共四十八页。
(三)定思路 第(1)问利用坐标关系求解: 先求出 N,H 的坐标,再求||OOHN||; 第(2)问利用方程思想求解: 将直线 MH 的方程与抛物线 C 的方程联立,根据方程的解
的个数进行判断.
12/8/2021
第二十七页,共四十八页。
[解] (1)如图,由已知得 M(0,t),P2t2p,t. 又 N 为 M 关于点 P 的对称点,故 Ntp2,t, 故直线 ON 的方程为 y=pt x, 将其代入 y2=2px 整理得 px2-2t2x=0, 解得 x1=0,x2=2pt2.因此 H2pt2,2t. 所以 N 为 OH 的中点,即||OOHN||=2.
12/8/2021
第十九页,共四十八页。
[对点训练]
(2019 届高三·益阳、湘潭联考)已知动圆 P 经过点 N(1,0),并且 与圆 M:(x+1)2+y2=16 相切. (1)求点 P 的轨迹 C 的方程; (2)设 G(m,0)为轨迹 C 内的一个动点,过点 G 且斜率为 k 的直 线 l 交轨迹 C 于 A,B 两点,当 k 为何值时,ω=|GA|2+|GB|2 是与 m 无关的定值?并求出该定值.
直线 PB 的方程为 y=y0x-0 1x+1. 令 y=0,得 xN=-y0x-0 1,从而|AN|=2-xN=2+y0x-0 1. 所以四边形 ABNM 的面积 S=12|AN|·|BM| =122+y0x-0 11+x02-y02 =x02+42y20x+0y04-x0xy00--42xy00+-28y0+4 =2xx00yy00--2xx0-0-24y0y+0+24=2. 从而四边形 ABNM 的面积为定值.
解析几何中的定点,定值问答(含答案解析)
分析几何中的定点和定值问题【教课目的】学会集理选择参数(坐标、斜率等)表示动向图形中的几何对象,研究、证明其不变性质 ( 定点、定值等 ),领会“设而不求” 、“整体代换”在简化运算中的作用.【教课难、要点】解题思路的优化.【教课方法】议论式【教课过程】一、基础练习1 、过直线x 4 上动点 P 作圆O:x2y2 4 的切线PA、PB,则两切点所在直线AB 恒过必定点.此定点的坐标为.【答案】(1,0)yPB4xA【分析】设动点坐标为P(4,t),则以OP直径的圆C方程为:x(x 4)y( y t ) 0 ,故 AB 是两圆的公共弦,其方程为4x ty 4 .注:部分优异学生可由x0 x y0 y r 2公式直接得出.4x40令0得定点 (1,0) .y2 、已知 PQ 是过椭圆 C : 2 x2y21中心的任一弦, A 是椭圆 C 上异于P、Q的随意一点.若AP、AQ分别有斜率 k1、 k2,则 k1k2=______________.【答案】 -2【分析】设P( x, y), A( x0 , y0 ) ,则Q(x,y) y0y y0y y02y 2k1 k2x x0x 2x2,x0x02x2y 21又由 A 、 P 均在椭圆上,故有:00,2x2y21y02y2两式相减得 2( x02x 2 )( y02y2 ) 0, k1k2222x0x3 、椭圆x 2y 21,过右焦点F作不垂直于 x 轴的直线交椭圆于A、 B 两点,3627AB 的垂直均分线交x 轴于N e=1,则 NF : AB 等于_______.42【答案】1 4【分析】设直线 AB 斜率为 k ,则直线方程为y k x 3 ,与椭圆方程联立消去y 整理可得34k 2x224k2 x36k 2 1080 ,则 x1 x224k22, x1x236k 2108 34k34k2,所以 y1y218k, 34k2则 AB 中点为12k 2,9k. 34k24k23所以 AB 中垂线方程为 y9k21x12k22,34k k 3 4k令则 x3k 2即N 3k22 ,0y 0 ,34k2,34k,所以 NF33k 29(1k 2 ) 34k234k 2.AB1 k2x 1 236 1 k 2NF 1x 24x 1 x 24k 2,所以.3 AB44、已知椭圆 x 2y 2 1(a b 0) , A, F 是其左极点和左焦点,P是圆 x 2y 2b 2a 2b 2上的动点,若PA = 常数,则此椭圆的离心率是PF【答案】 e = 5 12【分析】PA常数,所以当点 P 分别在(± b ,0 )时比值相等,因为 PF即a b = a+b,整理得: b 2 ac ,b c b+c又因为 b 2 a 2 c 2 ,所以 a 2c 2ac同除以 a 2 可得 e 2 + e -1=0 ,解得离心率 e =5 1 .2二、典例议论例1、如图,在平面直角坐标系xOy 中,椭圆 C :x 2y 2 1的左极点为 A ,过原点 O 的直线(与42坐标轴不重合)与椭圆C 交于 P ,Q 两点,直线 PA ,QA 分别与 y 轴交于 M , N 两点.试问以 MN 为直径的圆能否经过定点(与直线 PQ 的斜率没关)?请证明你的结论.yMAPOQNx剖析一:设 PQ 的方程为 ykx ,设点 P x 0 , y 0 ( x 0 0 ),则点 Q x 0 , y 0 .联立方程组ykx,消去 y 得 x 24 2.22y 241x2k所以 x 02,则 y 02k.1 2k21 2 k2所以直线 AP 的方程为 ykx 2 .进而 M 0,2k1 1 2k 21 2k 21同理可得点 N0, 2k.112k 2所以以 MN 为直径的圆的方程为x 2( y12k 2k 2)( y 2k ) 01 11 2k 2整理得: x 2y 2 ( 2k2k ) y 2 011 2k 211 2k2 x 2 y 2 2 02, 0)由,可得定点 F (y剖析二 :设 P ( x 0, y 0 ),则 Q (﹣ x 0 ,﹣ y 0),代入椭圆方程可得 x 0 2 2 y 02 4 .由直线 PA 方程为:yy 0 ( x 2) ,可得 M 0,2y 02 y 0 x 0x 0,同原因直线 QA 方程可得 N 0,,可得以22x 02MN 为直径的圆为 x 2y2y 02y 2y 0 2 0 ,x 0x 0整理得: x 2y 22y 02 y 0 y 4 y 2 0x 0 2x 0 2 x 0 2 4242,代入整理即可得x 2y 24x 0 y 0 y 2 0因为 x 02y 0x 0 24此圆过定点 F (2, 0) .剖析三 :易证: k AP k AQb 2 1 a 2,2故可设直线AP 斜率为 k ,则直线 AQ 斜率为1 .2k直线 AP 方程为 y k( x2) ,进而得 M (0, 2k ) ,以1 1代 k 得 N 0,2kk故知以 MN 为直径的圆的方程为 x 2( y 2k)( y1 ) 0k整理得: x2y22 (12k ) y 0kx 2 y 22 02, 0) .由,可得定点 F (y剖析四、设 M (0, m), N (0, n) ,则 以 MN 为直径的圆的方程为x 2 ( y m)( yn) 0即 x 2y 2(m n) y mn再由k AP k AQ k AM k AN = b 21得 mn - 2 ,下略a22.例 2 、已知离心率为 e 的椭圆C :x2y2恰过两点,,a2b21(a b 0)(1 e) 和 20 .(1)求椭圆 C 的方程;(2) 已知AB、MN为椭圆C上的两动弦,此中M 、N 对于原点O对称,AB过点 E(1, 0) ,且 AB、MN 斜率互为相反数.试问:直线AM、BN的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea23B Ne (1)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(2)设 AB 方程为y k( x1) , A( x1 , y1) , B( x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 )k AM kBNy1kx3y2kx3k( x1 1) kx3k ( x21) kx3x1x3x2x3x1x3x2x3则整理得: k AM k BN k ( x1x3 1)(x2x3 ) (x2x3 1)(x1 x3 )( x1x3 )( x2x3 )k AM kBNk 2x1x22x32( x1x2 )①( x1x3 )( x2x3 )由y k( x1)消元整理得: (4 k 21)x28k2 x 4k 240 ,x2 4 y24.所以 x1 x28k 21 , x1 x24k4k24k224②1y kx又由消元整理得:x2 4 y2 4(4 k 2 1)x2 4 ,所以 x3241③4k 2将②、③代入①式得: k AM kBN0.例 2( 变式 ) 、已知离心率为 e 的椭圆Cx2y21(a b 0),,. :a2b2恰过两点 (1 e) 和 20(3)求椭圆 C 的方程;(4)已知 AB、MN 为椭圆C上的两动弦,此中 M、N 对于原点O对称,AB过定点E(m, 0), ( 2 m 2) ,且 AB、MN 斜率互为相反数. 试问:直线 AM 、 BN 的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea2B N e3(3)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(4)设 AB 方程为y k( x m) , A(x1, y1 ) , B(x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 ).kAM kBNy1kx3y2kx3x1x3x2x3k( x1m)kx3k (x2m)kx3 x1x3x2x3则整理得: k AM kBNk ( x1x3m)( x2x3 ) ( x2x3m)( x1x3 )(x1x3 )( x2x3 )kAMkBNk 2x1x22x32m( x1x2 )①( x1x3 )( x2x3 )y k( x m)消元整理得: (4 k21)x28k 2mx4k 2 m240 ,由4 y24x2所以 x1x28k2m, x1 x24k 2m24②4k214k21又由y kx消元整理得:x2 4 y24(4 k 21)x2 4 ,所以 x3241③4k 2将②、③代入①式得:kAMkBN0.三、课外作业1 、已知椭圆x2y2A、B是其左、右极点,动点M知足MB⊥AB,连接AM交椭圆于点P1 ,,42在 x 轴上有异于点A、B 的定点 Q,以 MP 为直径的圆经过直线BP、MQ 的交点,则点 Q 的坐标为.【答案】(0,0 )【分析】试题剖析:设M (2,t ), 则AM : y t( x 2) ,与椭圆方程联立消y 得(t28) x24t 2 x 4t 232 0,4.28t t 28t162t,所以 k BP 82,即 k BP k OM1,点Q的坐 O所以 x P28, y P22t2tt t 816t 282(0,0 )x2y21上不一样于左点A、右点 B 的随意一点,直PA, PB 的斜率2 、已知 P 是412分 k1 , k2 ,则 k1k2的.1【答案】3【分析】P( x, y) , A(23,0), B(23,0)y, k2yk1x2,x 2 33y y y2 k1k2x2,⋯⋯①x 2 3 x 2 312因 P 在上,所以x2y2 1 ,即 y212x2⋯⋯②1243把②代入①,得k1k2y21 x2123x2y21(a b0) 的离心率e=1, A,B 是的左右点,P 上不一样于3 、已知b2a22AB 的点,直PA,PB 的斜角分,, cos() =.cos()【答案】 7【分析】.试题剖析:因为A,B 是椭圆的左右极点,P 为椭圆上不一样于 AB 的动点,kPAkPBb 2 Q e1 c 1 a2 b 21 b23 kPA b 2 3 a 22 a 2a 24 a 24,k PB,a 24cos( ) cos cos sin sin 1 tan tan 1 34 7cos() cos cossinsin1 tantan1 344 、以下图,已知椭圆x 2 y 21,在椭圆 C 上任取不一样两点A ,B ,点 A 对于 x 轴的对称C :4点为 A ' ,当 A , B 变化时,假如直线 AB 经过 x 轴上的定点 T (1 , 0) ,则直线 A 'B 经过 x 轴上的定点为 ________.【答案】 (4 , 0)AB 的方程为 x = my + 1 ,由 x 2 y 2 1得 (my + 1) 2 + 4 y 2 =4 ,即 (m 2 + 4) y 2+ 【分析】设直线 4x my 12 my -3 = 0.记 A (x 1, y 1 ), B (x 2, y 2),则 A ′(x 1 ,- y 1),且 y 1+ y 2=- 2m, y 1 y 2=-3 ,m 24m 2 4当 m ≠0 时,经过点 A ′(x 1,- y 1 ),B( x 2, y 2 )的直线方程为yy 1 = x x 1.令 y = 0 ,得 x =y 2y 1 x 2x 1x 2 x 1 y 1 + x 1my 2 my 1 y 1 + my 1 + 1 = my 1 y 2-my 12+my 1 y 2+ my 12+ 1 =2my 1 y 2 + 1 =y 2y 1 =y 1y 2+ y 1y 2+ y 1y 2.-2m3m24+ 1 = 4 ,所以y= 0 时,x=4.2mm24当 m =0时,直线AB的方程为 x=1,此时A′,B重合,经过A′,B的直线有无数条,自然能够有一条经过点 (4 ,0) 的直线.当直线 AB 为 x 轴时,直线A′B就是直线 AB ,即x轴,这条直线也经过点 (4 , 0) .综上所述,当点A,B 变化时,直线A′B 经过 x 轴上的定点(4,0).x2y21的右焦点 F2的直线交椭圆于于M ,N 两点,令F2 M m, F2 N n ,则5、过椭圆34mn____ .m n【答案】34【分析】x2y 21,得 M 试题剖析:不失一般性,不如取MN垂直 x 轴的状况,此时 MN :x=1, 联立43x1(1,3),N (1,-3),∴m=n= 3 ,∴ mn3 222m n46 、已知椭圆C的中心在座标原点,焦点在 x 轴上,左极点为A,左焦点为F12,0,点B 2,2在椭圆 C 上,直线y kx k0与椭圆 C 交于E F两点,直线AE AF分别与y轴交于点M,,,N .(Ⅰ)求椭圆 C 的方程;(Ⅱ)以 MN 为直径的圆能否经过定点?若经过,求出定点的坐标;若不经过,请说明原因.x2y21(a b 0) ,分析:(Ⅰ)解法一:设椭圆 C 的方程为b2a2因为椭圆的左焦点为 F12,0 ,所以a2b2 4 .设椭圆的右焦点为F2 2,0,已知点 B2,2在椭圆 C 上,由椭圆的定义知 BF1BF22a ,所以 2a3224 2 .所以 a22,进而 b2.所以椭圆 C 的方程为x2y 2 1 .84解法二:设椭圆C 的方程为x2y 2a2b21(a b0) ,因为椭圆的左焦点为F12,0 ,所以a2b2 4 .①因为点 B 2,2421.②在椭圆 C 上,所以b2a2由①②解得, a2 2 ,b 2.所以椭圆 C 的方程为x2y 21 .84(Ⅱ)解法一:因为椭圆 C 的左极点为 A ,则点 A 的坐标为22,0.因为直线 y kx ( k0) 与椭圆x2y21交于两点E,F,84设点 E x, y(不如设 x00 ),则点 F x0 ,y0.00y kx,28联立方程组x2y2消去 y 得x2.84112k所以 x022,则 y022k.12k122 k2所以直线 AE 的方程为ykx22.112k 2因为直线 AE , AF 分别与 y 轴交于点M,N,令 x22k22k0 得 y12k2,即点 M 0,1.112k2同理可得点22kN 0,.1 1 2k222k22k2 2 12k 2.所以 MN12k 2112k2k1设 MN 的中点为P,则点P的坐标为P 0,2k.22 22 12k 2则以 MN 为直径的圆的方程为x2yk ,k即 x2y 22 2 y 4 .k令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法二:因为椭圆 C 的左端点为 A ,则点 A 的坐标为22,0 .因为直线 y kx (k0) 与椭圆x2y21交于两点 E,F,84设点 E( x0 , y0 ) ,则点 F (x0 ,y0 ) .所以直线 AE 的方程为yy0x22.x022因为直线 AE 与 y 轴交于点M,令 x2 2 y0,即点 M2 2 y0.0 得 y220,x0x022同理可得点 N 0,2 2 y0.x0222 2 y0 2 2 y016 y0.所以 MN2 2 x0x028x0 2 2因为点 E(x0 , y0 ) 在椭圆C上,所以x02y021 .84.所以 MN 8.y0设 MN 的中点为P,则点P的坐标为P2x0.0,y02则以 MN 为直径的圆的方程为x2y 2x016.y02y0即 x2y2 +2 2x0 y4 .y0令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法三:因为椭圆 C 的左极点为 A ,则点 A 的坐标为 2 2,0.因为直线 y kx ( k 0) 与椭圆x2y21交于两点E,F,84设点 E2 2 cos,2sin( 0),则点 F2 2 cos ,2sin .所以直线 AE 的方程为y2sin x22.22 cos 2 2因为直线 AE 与 y 轴交于点M,令 x 0 得 y2sin,即点 M0,2sin.cos1cos1同理可得点 N0, 2sin.cos1所以 MN2sin2sin41cos1.cos sin设 MN 的中点为P,则点P的坐标为P 0,2cos.sin2则以 MN 为直径的圆的方程为x2y2cos4,sin sin2.即 x 2y 24cosy 4 .sin令 y0 ,得 x 24 ,即 x 2或 x 2 .故以 MN 为直径的圆经过两定点P 1 2,0 ,P 2 2,0 .、已知椭圆x 2y 2(a, b)的离心率为 3 A (1 ,3在椭圆 C 上.7C: a2b 2=1>0>0,点2 )2(I) 求椭圆 C 的方程;(Ⅱ )设动直线 l 与椭圆 C 有且仅有一个公共点,判断能否存在以原点O 为圆心的圆,满足此圆与 l 订交于两点 P 1, P 2 (两点均不在座标轴上) ,且使得直线 OP 1 , OP 2 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明原因.(Ⅰ)解:由题意,得c 3 , a 2 b 2 c 2 ,又因为点 A(1, 3 )在椭圆 C 上,a22所以13 1 , 解得a2 , b 1, c3 ,a 24b 2所以椭圆 C 的方程为x 2y 21.4(Ⅱ) 结论:存在切合条件的圆,且此圆的方程为x 2y 25 .证明以下:假定存在切合条件的圆,并设此圆的方程为 x 2y 2 r 2 (r0) .当直线 l 的斜率存在时,设l的方程为ykx m .y kxm,222由方程组x 2得 (4k1) x8kmx 4m40 ,y21,4因为直线 l 与椭圆 C 有且仅有一个公共点,所以 1 (8km) 24(4k21)(4m24) 0 ,即 m 24k 2 1 ..y kx m,得 (k 222kmxm 2r 20 ,由方程组y 2r 2 ,1)xx 2则2(2km)24(k21)(m2r 2 ) 0 .设 P 1 (x 1, y 1 ) , P 2 (x 2 , y 2 ) ,则x 1x 2 2km , y2xb ,k 2 1设直线 OP 1 , OP 2 的斜率分别为 k 1 , k 2 ,y y2 (kxm)(kx 2m) k 2 x x2km( xx ) m 2k 1k 211112x 1x 2x 1 x 2x 1 x 2所以k 2 m 2 r 2 km k 2km m 2 m 2 2 2k 21 2 1r k2 r 22 r 2mmk 2 1,k 1 k 2(4 r 2 )k 2124k 214k 2(1r 2) .将m代入上式,得要使得k 1k2为定值,则4 r 21241 r2 ,即 r 5 ,考证切合题意 .所以当圆的方程为x 2 y 25 时,圆与 l 的交点 P 1, P 2 知足 k 1k 2 为定值 1 .4 当直线 l 的斜率不存在时,由题意知 l的方程为 x2 ,此时,圆 x 2 y 25 与 l 的交点 P 1 , P 2 也知足 k 1k 21 .4y 2 2228、已知椭圆 C 1 :x1( a b0) 的离心率为,且过定点 M (1 , ). a 222 2b(1) 求椭圆 C 的方程;(2) 已知直线 l : y kx1(k R) 与椭圆 C 交于 A 、 B 两点,试问在 y 轴上能否存在定点P ,使得3以弦 AB 为直径的圆恒过 P 点?若存在,求出 P 点的坐标,若不存在,说明原因.ec25a2a 222a 22(1) 解:由已知 b cb251 112a 224b∴椭圆 C 的方程为2 y24x21 55y kx 1322(2) 解:由得:9(2k4) x12kx 43 02y24x215 5设 A(x1, y1), B(x2, y 2),则 x1、 x2是方程①的两根∴x1x212k,x1 x2439(2k24)9(2k24)uuur,uuur,设 P(0, p ),则PA ( x1,p)y1p) PB ( x2y2uuur uuurp 21PA PB x1 x2y1 y2p( y1y2 )x1 x2(kx1)( kx2(18p 245)k236 p23 24 p39uuur uuur uuur 9(2k24) uuur若 PA PB ,则 PA PB即 (18 p245)k 236 p224 p39 0对随意 k∈R恒建立18p 245 0∴24 p39036 p2此方程组无解,∴不存在定点知足条件.①1) pk ( x1 x2 ) 2 p p233。
解析几何题型2——《解析几何中的定值定点问题》
解析几何题型2——《解析几何中的定值定点问题》题型特点:定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。
解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
这类试题考查的是在运动变化过程中寻找不变量的方法。
典例 1 如图,已知双曲线)0(1:222>=-a y ax C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。
(1)求双曲线C 的方程;(2)过C 上一点),(00y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF恒为定值,并求此定值。
典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。
(1)求动圆圆心的轨迹C 的方程; (2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。
典例3 已知直线6:+=x y l ,圆5:22=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。
(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。
典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(-。
(1)求椭圆方程;(2)过点)0,56(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。
解析几何中的定点和定值问题
解析几何中的定点定值问题之迟辟智美创作考纲解读:定点定值问题是解析几何解答题的考查重点.此类问题定中有动,动中有定,而且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识.考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法.一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.例1、已知A 、B 是抛物线y 2=2p x (p >0)上异于原点点,直线OA 和OB 的倾斜角分别为α和β,当α=4π时,证明直线AB 恒过定点,并求出该定点的坐标.例2.已知椭圆C :22221(0)xya b a b +=>>椭圆的短半轴长为半径的圆与直线0x y -=相切.⑴程; ⑵设(4,0)P ,M 、N是椭圆C 上关于x 轴对称的任意两个分歧的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.【针对性练习1】 在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不外点A 的直线:l y kx b =+与轨迹C 交于分歧的两点P 和Q .⑴求轨迹C 的方程;⑵那时0AP AQ ⋅=,求k 与b 的关系,并证明直线l 过定点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右极点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标;(3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【针对性练习3】已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为23.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于分歧的两点M N 、(M N 、不是椭圆的左、右极点),且以MN 为直径的圆经过椭圆的右极点A .求证:直线l 过定点,并求出定点的坐标.例3、已知椭圆的焦点在x 轴上,它的一个极点恰好是抛物线24x y =的焦点,离心率25e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.(I )求椭圆的标准方程;(Ⅱ)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(Ⅲ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.二、 定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量暗示题中所涉及的界说,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果,;另一种思路是通过考查极端位置,探索出“定值”是几多,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不单能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式呈现,特珠化方法往往比力奏效. 例4、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+a OB OA 与共线.(1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλμλ,证明22μλ+为定值.例5、已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值. 将第二问的结论进行如下推广:结论1.过椭圆22221(0,0)x y a ba b 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值202b x a y (常数). 结论2.过双曲线22221(0,0)x y abab 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值2020b x a y (常数).结论 3.过抛物线22(0)y px p上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值0p y (常数).例6、已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最年夜值是6.(Ⅰ)求椭圆的标准方程和离心率e ;(Ⅱ)若F '为焦点F 关于直线32y =的对称点,动点M 满足MF e MF ||='||,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.例7、已知抛物线C 的极点在坐标原点,焦点在x 轴上,P(2,0)为定点.(Ⅰ)若点P 为抛物线的焦点,求抛物线C 的方程;(Ⅱ)若动圆M 过点P ,且圆心M 在抛物线C 上运动,点A 、B 是圆M 与y 轴的两交点,试推断是否存在一条抛物线C ,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.例8、已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为1,离心率为e =﹒(Ⅰ)求椭圆E 的方程;(Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒三、定直线问题例9、设椭圆2222:1(0)x y C a b a b+=>>过点M ,且焦点为1(F (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两分歧点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB=,证明:点Q 总在某定直线上例10、已知椭圆C 的离心率e =()1A 2,0-,()2A 2,0.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S.试问:当m 变动时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.四、其它定值问题例11、已知双曲线2222:1(0,0)x y C a b a b-=>>x =C 的方程;(Ⅱ)设直线l 是圆22:2O x y +=上动点0000(,)(0)P x y x y ≠处的切线,l 与双曲线C 交于分歧的两点,A B ,证明AOB∠的年夜小为定值. 例12、己知椭圆12222=+by a x (a >b >0),过其中心O 的任意两条互相垂直的直径是P 1P 2、Q 1Q 2,求证:以两条直径的四个端点所成的四边形P 1Q 1P 2Q 2与一定圆相切.探索定圆1=+bya x ,原点O 到直线22B A 的距离为r =则与菱形2211B A B A 内切的圆方程为222222ba b a y x +=+.例13、已知P ),(00y x 是双曲线)0(2≠=a a xy 上的一个定点,过点P 作两条互相垂直的直线分别交双曲线于P 1、P 2两点(异于P 点),求证:直线P 1P 2的方向不变.探索定值:取P ),(020x a x ,过P 点且互相垂直的直线中有一条过原点,则这一条直线与曲线的另一个交点),(0201x a x P --,其斜率1k PP ∴2202axk PP -= PP 2的方程为)(02200x x ax y y --=-把xa y 2=代入解得),(2303042ax x a P 22021a x k P P =∴ 证明:设PP 1的斜率为k ,则PP 2的斜率为-k1,∴PP 1的方程为)(00x x k y y -=-PP 2的方程为)(100x x ky y --=-,与抛物2a xy =联立解得),(0201y k a k y P --、 ),(0202ky a ky P ,从而2220221ax y a k P P ==(定值)EX :过抛物线y 2=2px (P>0)上一定点(x 0,y 0)作两条直线分别交抛物线于A ,B 两点,满足直线PA 、PB 斜率存在且倾斜角互补,则AB 的斜率为定值.推广:抛物线推广到椭圆或双双曲线均可. 五、练习1、椭圆中心在原点,焦点在x 轴上,离心率为2,三角形ABM 的三个极点都在椭圆上,其中M 点为(1,1),且直线MA 、MB 的斜率之和为0.(1)求椭圆的方程.(2)求证:直线AB 的斜率是定值.分析:(1)x 2+2y 2=3 (2)122、已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点.(Ⅰ)若线段AB中点的横坐标是12-,求直线AB 的方程;(Ⅱ)在x 轴上是否存在点M ,使MB MA ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由. 分析:M (73-,0) 493、已知不垂直于x 轴的动直线l 交抛物线y2=2mx (m>0)于A 、B 两点,若A 、B 两点满足∠AQP=∠BQP ,若其中Q 点坐标为(-4,0),原点O 为PQ 中点.(1)证明:A 、P 、B 三点线;(2)当m=2时,是否存在垂直于x 轴的直线l ‘,使得l ‘被以PA 为直径的圆所截得的弦长为定值?如果存在求出l ’的方程. 分析:设点AB 的坐标(2)l :x=3.4、 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F1,F2,短轴的两个端点为A 、B ,且四边形F1AF2B 是边长为2的正方形.(1)求椭圆的方程.(2)若C 、D 分别是椭圆长轴的左、右端点,动点M满足MD ⊥CD,连结CM 交椭圆于点P ,证明:OM OP 为值.(3)在(2)的条件下,试问x 轴上是否存在异于C 的定点Q ,使得以MP 为直径的圆过直线DP ,MQ 的交点,若存在,求出点Q 的坐标.分析:(1)22142x y +=(2)由O 、M 、P 三点共线,得42p mp y y x =+,所以OM OP =4 (3)设Q 点(a ,0),由0QM DP =,得a=0.5、设P 为双曲线22221(,0)x y a b a b-=>上任意一点,F1,F2是双曲线的左右焦点,若12PF PF 的最小值是-1.(1)求双曲线C 的方程;(2)过双曲线C 的右焦点F2的直线交双曲线于A 、B 两点,过作右准线的垂线,垂足为C ,求证:直线AC 恒过定点.分析:(1)2213x y -= (2)先猜再证:(74,0)1217144y y x =--换失落x1代入韦达定理得证.方法二:设AB :x=my+2代入方程得:(m2-3)y2+4my+1=0故1221224313m y y m y y m -⎧+=⎪⎪-⎨⎪=⎪-⎩AC :12213()322y y y x y x -=-+-=1212122113()21212y y y y my y y x my my -----++又2my 1y 2=-12(y1+y2)然后代入韦达定理得.6、在平面直角坐标系xOy 中,Rt △ABC 的斜边BC 恰在x 轴上,点B(-2,0),C (2,0),且AD 为BC 边上的高.(I)求AD 中点G 的轨迹方程; (II)若过点(1,0)的直线l 与(I)中G 的轨迹交于两分歧点P 、Q ,试问在x 轴上是否存在定点E(m,0),使PE ·QE 恒为定值λ?若存在,求出点E 的坐标及实数λ的值;若不存在,请说明理由.分析:(1)221(0)4x y y +=≠ (2)m=178 定值为3364 不容易先猜出,只能是化简求出.7、已知直线l 过椭圆E :2222x y +=的右焦点F,且与E 相交于P ,Q 两点.(1)设1()2OR OP OQ =+,求点R 的轨迹方程.(2)若直线l 的倾斜角为60︒,求11||||PF QF +的值.(当l 的倾斜角不按时,可证11||||PF QF +是定值.) 分析:2220x y x +-= (2)可先猜再证:解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点.此类问题定中有动,动中有定,而且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识.考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法.四、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.例1、已知A 、B 是抛物线y 2=2p x (p >0)上异于原点O 的两个分歧点,直线OA 和OB 的倾斜角分别为α和β+β=4π时,证明直线AB 解析: 设A (121,2y py),B (222,2y py212tan ,2tan y py p==βα,代入1)tan(=+βα 得221214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 ∴kpy y kpb y y 2,22121=+=,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p说明:本题在特殊条件下很难探索出定点,因此要从已知动身,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点.例2.【2010·东城一模】已知椭圆C :22221(0)x y a b a b+=>>的离心率为0x y -=相切.⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N是椭圆C 上关于x 轴对称的任意两个分歧的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a==,所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =-①联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0kk k ∆=-+->得21210k -<,又0k =分歧题意,所以直线PN的斜率的取值范围是0k <<或0k << ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x xy y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-.②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =,所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不外点A 的直线:l y kx b =+与轨迹C 交于分歧的两点P 和Q . ⑴求轨迹C 的方程;⑵那时0AP AQ ⋅=,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为2214x y +=. ⑵将y kx b =+,代入曲线C的方程,整理得22(14)40kx +++=,因为直线l 与曲线C交于分歧的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+>①设()11,P xy ,()22,Q x y,则12x x +=,122414x xk =+②且2212121212()()()()y ykx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ xy =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650kkb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,那时2b k =,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.那时65b k =,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭. 显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不外点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右极点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标;(3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识.考查运算求解能力和探究问题的能力.解:(1)设点P (x ,y ),则:F (2,0)、B (3,0)、A (-3,0).由422=-PB PF ,得2222(2)[(3)]4,x y x y -+--+= 化简得92x =.故所求点P 的轨迹为直线92x =.(2)将31,221==x x 分别代入椭圆方程,以及0,021<>y y 得:M (2,53)、N (13,209-) 直线MTA 方程为:0352303y x -+=+-,即113y x =+,直线NTB 方程为:032010393y x --=---,即5562y x =-.联立方程组,解得:7103x y =⎧⎪⎨=⎪⎩, 所以点T 的坐标为10(7,)3.(3)点T 的坐标为(9,)m 直线MTA 方程为:03093y x m -+=-+,即(3)12m y x =+, 直线NTB 方程为:03093y x m --=--,即(3)6m y x =-.分别与椭圆15922=+y x 联立方程组,同时考虑到123,3x x ≠-≠,解得:2223(80)40(,)8080m m M m m -++、2223(20)20(,)2020m mN m m --++. (方法一)那时12x x ≠,直线MN 方程为:222222222203(20)202040203(80)3(20)80208020m m y x m m m m m m m m m m -+-++=--+-++++ 令0y =,解得:1x =.此时必过点D (1,0);那时12x x =,直线MN 方程为:1x =,与x 轴交点为D (1,0). 所以直线MN 必过x 轴上的一定点D (1,0).(方法二)若12x x =,则由222224033608020m m m m --=++及0m >,得210m =,此时直线MN 的方程为1x =,过点D (1,0).若12x x ≠,则m ≠,直线MD 的斜率2222401080240340180MDmm m k m m m+==---+,直线ND 的斜率222220102036040120ND mm m k m m m -+==---+,得MD ND k k =,所以直线MN 过D点.因此,直线MN 必过x 轴上的点(1,0).【针对性练习3】(2011年石景山期末理18)已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于分歧的两点M N 、(M N 、不是椭圆的左、右极点),且以MN 为直径的圆经过椭圆的右极点A .求证:直线l 过定点,并求出定点的坐标.解: (Ⅰ)设椭圆的长半轴为a ,短半轴长为b ,半焦距为c ,则22222,2,c b a b c =⎧⎪=⎨⎪=+⎩解得2,a b =⎧⎪⎨=⎪⎩ ∴椭圆C 的标准方程为 22143x y +=.…… 4分(Ⅱ)由方程组22143x yy kx m ⎧⎪+=⎨⎪=+⎩消去y ,得 ()2223484120k xkmx m +++-=.…… 6分由题意△()()()22284344120km k m =-+->, 整理得:22340k m +->①………7分 设()()1122,,M x y N x y 、,则122834kmx x k +=-+, 212241234m x x k -=+.……… 8分由已知,AM AN ⊥, 且椭圆的右极点为A (2,0), ∴()()1212220x x y y --+=.…… 10分 即 ()()()2212121240k x x km x x m ++-+++=,也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++, 整理得2271640m mk k ++=.解得2m k =- 或 27k m =-,均满足①……… 11分那时2m k =-,直线l 的方程为 2y kx k =-,过定点(2,0),不符合题意舍去;那时27k m =-,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7, 故直线l 过定点,且定点的坐标为2(,0)7.………… 13分例3、已知椭圆的焦点在x 轴上,它的一个极点恰好是抛物线24x y =的焦点,离心率e =F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点. (I )求椭圆的标准方程;(Ⅱ)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(Ⅲ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.解法一: (I )设椭圆方程为22221(0)x y a b a b +=>>,由题意知1b =25a =⇒=故椭圆方程为2215x y += (Ⅱ)由(I )得(2,0)F ,所以02m ≤≤,设l 的方程为(2)y k x =-(0k ≠)代入2215x y +=,得2222(51)202050k x k x k +-+-= 设1122(,),(,),A x y B x y则2212122220205,5151k k x x x x k k -+==++,12121212(4),()y y k x x y y k x x ∴+=+--=-2222220420,(85)05151∴--=∴--=++k k m m k m k k 由280,0855m k m m =>∴<<-, ∴那时805m <<,有()MA MB AB +⊥成立.(Ⅲ)在x 轴上存在定点5(,0)2N ,使得C 、B 、N 三点共线.依题意知11(,)C x y -,直线BC 的方程为211121()y y y y x x x x ++=--, 令0y =,则121122112121()y x x y x y x x x y y y y -+=+=++l 的方程为(2),y k x A =-、B 在直线l 上,222222205202255151202451k k k k k k k k k k -⋅-⋅++==-+∴在x 轴上存在定点5(,0)2N ,使得C B N 三点共线.解法二:(Ⅱ)由(I )得(2,0)F ,所以02m ≤≤.设l 的方程为(2)(0),y k x k =-≠代入2215x y +=,得2222(51)202050k x k k +-+-=设1122(,),(,),A x y B x y 则2212122220205,5151k k x x x x k k -+==++1212121224(4),()51ky y k x x y y k x x k ∴+=+-=--=-+∴那时805m <<,有()MA MB AB +⊥成立.(Ⅲ)在x 轴上存在定点5(,0)2N ,使得C 、B 、N 三点共线.设存在(,0),N t 使得C 、B 、N 三点共线,则//CB CN ,122111(,),(,)CB x x y y CN t x y =-+=-, 211112()()()0x x y t x y y ∴---+=即211112()(2)()(4)0x x k x t x k x x ----+-=12122(2)()40x x t x x t ∴-+++=2222205202(2)405151k k t t k k -∴-++=++,52t ∴=∴存在5(,0)2N ,使得C B N 三点共线.五、定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量暗示题中所涉及的界说,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果,;另一种思路是通过考查极端位置,探索出“定值”是几多,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不单能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式呈现,特珠化方法往往比力奏效.例4、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+a OB OA 与共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλμλ,证明22μλ+为定值.解析:(1)设椭圆方程为12222=+b y a x (a >b >0),A(x 1,y 1),B(x 2,y 2) ,AB 的中点为N(x 0,y 0),∴⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x b y a x ,两式相减及11212=--x x y y 获得0220x a b y -=,所以直线ON 的方向向量为),1(22ab ON -=,∵a ON //,∴2231a b =,即223b a =,从而得36=e (2)探索定值因为M 是椭圆上任意一点,若M 与A 重合,则OA OM =,此时0,1==μλ,∴122=+μλ证明 ∵223b a =,∴椭圆方程为22233b y x =+,又直线方程为c x y -=又设M (x ,y ),则由OB OA OM μλ+=得⎩⎨⎧+=+=2121y y y x x x μλμλ,代入椭圆方程整理得2222122222212123)3(2)3()3(b y y x x y x y x =+++++λμμλ又∵2212133b y x =+,2222233b y x =+,例5、已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1) 求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解析:(1)由题意,c=1,可设椭圆方程为2219114b b+=+,解得23b =,234b =-(舍去) 所以椭圆方程为22143x y +=.(2)设直线AE 方程为:3(1)2y k x =-+,代入22143x y +=得设(x ,y )E E E ,(x ,y )F F F ,因为点3(1,)2A 在椭圆上,所以2234()122x 34F k k --=+,32E E y kx k =+- 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以—K 代K ,可得2234()122x 34F k k+-=+, 32E E y kx k =-++ 所以直线EF 的斜率()212F E F E EFF E F E y y k x x k K x x x x --++===--即直线EF 的斜率为定值,其值为12.将第二问的结论进行如下推广: 结论1.过椭圆22221(0,0)x y abab 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值202b x a y (常数).证明:直线AE 的方程为0()yy k xx ,则直线AF 的方程为0()yy k xx , 联立00()y y k xx 和22221x y ab ,消去y 可得结论2.过双曲线22221(0,0)x y a bab 上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值2020b x a y (常数).结论 3.过抛物线22(0)y px p上任一点00(,)A x y 任意作两条斜率互为相反数的直线交椭圆于E 、F 两点,则直线EF 的斜率为定值0p y (常数).例6、【2010·巢湖市第一学期期末质检】已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最年夜值是6.(Ⅰ)求椭圆的标准方程和离心率e ;(Ⅱ)若F '为焦点F 关于直线32y =的对称点,动点M 满足MF e MF ||='||,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.解析:(Ⅰ)设椭圆长半轴长及半焦距分别为a c ,,由已知得44,26a a c a c =⎧==⎨+=⎩,解得,.所以椭圆的标准方程为2211612y x +=. 离心率21.42e ==(Ⅱ)(0,2),(0,1)F F ',设(,),M x y 由MF e MF ||='||得 化简得223314150xy y +-+=,即22272)()33xy +-=(故存在一个定点7(0,)3A ,使M 到A 点的距离为定值,其定值为2.3例7、【2010·湖南师年夜附中第二次月考】已知抛物线C 的极点在坐标原点,焦点在x 轴上,P(2,0)为定点. (Ⅰ)若点P 为抛物线的焦点,求抛物线C 的方程;(Ⅱ)若动圆M 过点P ,且圆心M 在抛物线C 上运动,点A 、B 是圆M 与y 轴的两交点,试推断是否存在一条抛物线C ,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.解析:(Ⅰ) 设抛物线方程为22(0)y px p =≠,则抛物线的焦点坐标为(,0)2p .由已知,22p=,即4p =,故抛物线C 的方程是28y x =.(Ⅱ)设圆心(,)M a b (0a ≥),点A 1(0,)y ,B 2(0,)y . 因为圆M 过点P(2,0),则可设圆M 的方程为2222()()(2)x a y b a b -+-=-+. 令0x =,得22440y by a -+-=.则122y y b +=,1244y y a ⋅=-. 所以||AB ===,设抛物线C 的方程为2(0)y mx m =≠,因为圆心M 在抛物线C 上,则2b ma =. 所以||AB =由此可得,那时4m =,||4AB =为定值.故存在一条抛物线24y x =,使|AB|为定值4.例8、已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为1,离心率为e =(Ⅰ)求椭圆E 的方程;(Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒解析:(I )设椭圆E 的方程为2222x y 1a b +=,由已知得:a c 1c a⎧-=⎪⎨⎪⎩.....2分a c 1⎧⎪∴⎨=⎪⎩222b a c 1=-=∴椭圆E的方程为22x y 12+=....3分(Ⅱ)法一:假设存在符合条件的点M(m,0),又设1122P(x ,y ),Q(x ,y ),则:2121212x x m(x x )m y y =-+++.....5分 ①当直线l 的斜率存在时,设直线l 的方程为:y k(x 1)=-,则由22x y 12y k(x 1)⎧+=⎪⎨⎪=-⎩得222x 2k (x 1)20+--=2222(2k 1)x 4k x (2k 2)0+-+-=221212224k 2k 2x x ,x x 2k 12k 1-+=⋅=++ 7分 所以22222222k 24k k MP MQ m m 2k 12k 12k 1-⋅=-⋅+-+++2222(2m 4m 1)k (m 2)2k 1-++-=+ 9分对任意的k 值,MP MQ ⋅为定值,所以222m 4m 12(m 2)-+=-,得5m 4=, 所以57M(,0),MP MQ 416⋅=-;11分②当直线l 的斜率不存在时,直线1212121l:x 1,x x 2,x x 1,y y 2=+===- 由5m 4=得7MP MQ 16⋅=-综上述①②知,符合条件的点M 存在,起坐标为5(,0)4﹒ 13分法二:假设存在点M(m,0),又设1122P(x ,y ),Q(x ,y ),则:1122MP (x m,y ),MQ (x m,y )=-=-1212MP MQ (x m)(x m)y y ⋅=-⋅-+=2121212x x m(x x )m y y -+++…. 5分①当直线l 的斜率不为0时,设直线l 的方程为x ty 1=+,由22x y 12x ty 1⎧+=⎪⎨⎪=+⎩得22(t 2)y 2ty 10++-=1212222t 1y y ,y y t 2t 2--∴+=⋅=++ 7分222222t 24m 1MP MQ m t 2t 2t 2-+∴⋅=-+-+++2222(m 2)t 2m 4m 1t 2-+-+=+ 9分 设MP MQ ⋅=λ则2222(m 2)t 2m 4m 1t 2-+-+=λ+2222222(m 2)t 2m 4m 1(t 2)(m 2)t 2m 4m 120∴-+-+=λ+∴--λ+-+-λ=22m 202m 4m 120⎧--λ=⎪∴⎨-+-λ=⎪⎩5m 4716⎧=⎪⎪∴⎨⎪λ=-⎪⎩5M(,0)4∴ 11分②当直线l 的斜率为0时,直线l :y 0=,由5M(,0)4得:综上述①②知,符合条件的点M 存在,其坐标为5(,0)4 (13)分六、定直线问题 例9、设椭圆2222:1(0)x y C a b a b+=>>过点M,且焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两分歧点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB=,证明:点Q 总在某定直线上解析:(1)由题意:2222222211c a b c a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为 22142x y += (2)设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB 均不为零.且PA PB AQQB=又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±,于是1141,11x yx y λλλλ--==--(1) 2241,11x y x y λλλλ++==++(2)由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2224,x y +=整理得222(24)4(22)140x y x y λλ+--+-+= (3)222(24)4(22)140x y x y λλ+-++-+= (4)(4)-(3) 得 8(22)0x y λ+-=0,220x y λ≠+-=∵∴,即点(,)Q x y 总在定直线220x y +-=上例10、已知椭圆C的离心率e =()1A 2,0-,()2A 2,0.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S.试问:当m 变动时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.解法一:(Ⅰ)设椭圆C 的方程为()2222x y 1a b 0a b+=>>. (1)分∵a 2=,c e a ==c =,222b a c 1=-=. ………………4分∴椭圆C 的方程为222x y 14+=. (5)分(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y = 直线2A Q的方程是y -交点为(1S .…………7分,若P 1,,Q ⎛⎛ ⎝⎭⎝⎭,由对称性可知交点为(2S 4,. 若点S 在同一条直线上,则直线只能为:x 4=.…………………8分以下证明对任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上.事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=,记()()1122P x ,y ,Q x ,y ,则1212222m 3yy ,y y m 4m 4--+==++.…………9分设1A P 与交于点00S (4,y ),由011yy ,42x 2=++得116y y .x 2=+ 设2A Q 与交于点00S (4,y ),''由022y y ,42x 2'=--得2022y y .x 2'=-………10 ()()221212m 12mm 4m 40x 2x 2---++==+-,……12分∴00yy '=,即0S 与0S '重合,这说明,当m 变动时,点S 恒在定直线:x 4=上.13分解法二:(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y =直线2A Q的方程是y =交点为(1S (7)分取m 1,=得()83P ,,Q 0,155⎛⎫- ⎪⎝⎭,直线1A P 的方程是11y x ,63=+直线2A Q 的方程是1y x 1,2=-交点为()2S 4,1.∴若交点S 在同一条直线上,则直线只能为:x 4=. ……………8分以下证明对任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上.事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=,记()()1122P x ,y ,Q x ,y ,则1212222m 3yy ,y y m 4m 4--+==++.………………9分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22y y x 2,x 2=--消去y,得()()1212y yx 2x 2x 2x 2+=-+-…①以下用分析法证明x 4=时,①式恒成立.要证明①式恒成立,只需证明12126y 2y ,x 2x 2=+-即证()()12213y my 1y my 3,-=+即证()12122my y 3y y .=+………………②∵()1212226m 6m2my y 3y y 0,m 4m 4---+=-=++∴②式恒成立.这说明,当m 变动时,点S 恒在定直线:x 4=上.解法三:(Ⅱ)由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=.记()()1122P x ,y ,Q x ,y ,则1212222m 3yy ,y y m 4m 4--+==++.……………6分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22y y x 2,x 2=--……7分 由()()1122y y x 2,x 2y y x 2,x 2⎧=+⎪+⎪⎨⎪=-⎪-⎩得()()1212y y x 2x 2,x 2x 2+=-+-…………………9分即()()()()21122112y x2y x 2x 2y x 2y x 2++-=+--()()()()21122112y my 3y my 12y my 3y my 1++-=+--1221212my y 3y y 23y y +-=+ 112211232m 2m 3y y m 4m 424.2m 3y y m 4--⎛⎫+-- ⎪++⎝⎭==-⎛⎫-+ ⎪+⎝⎭………………………………12分这说明,当m 变动时,点S 恒在定直线:x 4=上 (13)分五、其它定值问题 例11、已知双曲线2222:1(0,0)x y C a b a b -=>>程为x =(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线l 是圆22:2O x y +=上动点0000(,)(0)P x y x y ≠处的切线,l 与双曲线C 交于分歧的两点,AB ,证明AOB ∠的年夜小为定值.解析:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.(Ⅰ)由题意,得2a c c a⎧=⎪⎪⎨⎪=⎪⎩,解得1,a c ==∴2222b c a =-=,∴所求双曲线C 的方程为2212y x -=.(Ⅱ)点()()0000,0P x y x y ≠在圆222x y +=上,圆在点()00,P x y 处的切线方程为()0000x y y x x y -=--,化简得002x x y y +=.由2200122y x x x y y ⎧-=⎪⎨⎪+=⎩及22002x y +=得 ()222000344820xx x x x --+-=① ()222000348820xy y x x ---+=②∵切线l 与双曲线C 交于分歧的两点A 、B ,且2002x <<, ∴20340x -≠,设A 、B 两点的坐标分别为()()1122,,,x y x y ,则2200121222008228,3434x x x x y y x x --==--,∴12120OA OB x x y y ⋅=+=,∴AOB ∠的年夜小为90︒. 例12、己知椭圆12222=+by a x (a >b >0),过其中心O 的任意两条互相垂直的直径是P 1P 2、Q 1Q 2,求证:以两条直径的四个端点所成的四边形P 1Q 1P 2Q 2与一定圆相切.探索定圆1=+bya x ,原点O 到直线22B A 的距离为r =则与菱形2211B A B A 内切的圆方程为222222ba b a y x +=+.证明:设直径P 1P 2的方程为,kx y =则Q 1Q 2的方程为x ky 1-=∴⎪⎩⎪⎨⎧=+=12222b y a x kx y 解得⎪⎪⎩⎪⎪⎨⎧+=+=2222222222222k a b b a k y k a b b a x ∴22222222)1(ka b b a k OP ++=同理OQ 22=222222)1(kb a b a k ++,作OH ⊥P 2Q 2则22222222ba ab OQ OP OQ OP OH+=+⋅=又四边形P 1Q 1P 2Q 2是菱形,∴菱形P 1Q 1P 2Q 2必外切于圆222222ba b a y x +=+. 例13、已知P ),(00y x 是双曲线)0(2≠=a a xy 上的一个定点,过点P 作两条互相垂直的直线分别交双曲线于P 1、P 2两点(异于P 点),求证:直线P 1P 2的方向不变.探索定值:取P ),(020x a x ,过P 点且互相垂直的直线中有一条过原点,则这一条直线与曲线的另一个交点),(0201x a x P --,其斜率1k PP ∴2202axk PP -= PP 2的方程为)(02200x x ax y y --=-把xa y 2=代入解得),(2303042ax x a P 22021a x k P P =∴ 证明:设PP 1的斜率为k ,则PP 2的斜率为-k1,∴PP 1的方程为)(00x x k y y -=-PP 2的方程为)(100x x ky y --=-,与抛物2a xy =联立解得),(0201y k a k y P --、 ),(0202ky a ky P ,从而2220221ax y a k P P ==(定值)EX :过抛物线y 2=2px (P>0)上一定点(x 0,y 0)作两条直线分别交抛物线于A ,B 两点,满足直线PA 、PB 斜率存在且倾斜角互补,则AB 的斜率为定值.推广:抛物线推广到椭圆或双双曲线均可.五、练习1、(2008唐山三模)椭圆中心在原点,焦点在x 轴上,离心率为ABM 的三个极点都在椭圆上,其中M 点为(1,1),且直线MA 、MB 的斜率之和为0.(1)求椭圆的方程.(2)求证:直线AB 的斜率是定值.分析:(1)x 2+2y 2=3 (2)122、(2008年西城一模)已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点.(Ⅰ)若线段AB 中点的横坐标是12-,求直线AB 的方程;(Ⅱ)在x 轴上是否存在点M ,使MB MA ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由. 分析:M (73-,0) 493、已知不垂直于x 轴的动直线l 交抛物线y2=2mx (m>0)于A 、B 两点,若A 、B 两点满足∠AQP=∠BQP ,若其中Q 点坐标为(-4,0),原点O 为PQ 中点.(1)证明:A 、P 、B 三点线;(2)当m=2时,是否存在垂直于x 轴的直线l ‘,使得l ‘被以PA 为直径的圆所截得的弦长为定值?如果存在求出l ’的方程. 分析:设点AB 的坐标 (2)l :x=3.4、(2009年保定统测)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F1,F2,短轴的两个端点为A 、B ,且四边形F1AF2B 是边长为2的正方形.。
高考解析几何定点、定值问题例题以及答案详解
解析几何定点、定值问题1、已知椭圆C :(22221>>0)y x a b a b +=的离心率为21,以原点为圆点,椭圆的短半轴为半径的圆与直线06=+-y x 相切。
(Ⅰ)求椭圆的标准方程;(Ⅱ)设P (4,0),A,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;2、斜率为1的直线l 过抛物线2:2(0)y px p Ω=>的焦点F ,与抛物线交于两点A ,B 。
(1)若|AB|=8,求抛物线Ω的方程;(2)设P 是抛物线Ω上异于A ,B 的任意一点,直线PA ,PB 分别交抛物线的准线于M ,N 两点,证明M ,N 两点的纵坐标之积为定值(仅与p 有关)。
3、在平面直角坐标系中,点(,)P x y 为动点,已知点A,(B ,直线PA 与PB的斜率之积为12-.(I )求动点P 轨迹E 的方程;(II )过点(1,0)F 的直线l 交曲线E 于,M N 两点,设点N 关于x 轴的对称点为Q (Q M 、不重合),求证:直线MQ 过定点.4、如图,曲线C 1是以原点O 为中心,F 1、F 2为焦点的椭圆的一部分,曲线C 2是以原点O为顶点,F 2为焦点的抛物线的一部分,3(2A 是曲线C 1和C 2的交点.(Ⅰ)求曲线C 1和C 2所在的椭圆和抛物线的方程;(Ⅱ)过F 2作一条与x 轴不垂直的直线,分别与曲线C 1、C 2依次交于B 、C 、D 、E 四点,若G 为CD 中点,H 为BE 中点,问22||||||||BE GF CD HF ⋅⋅是否为定值,若是,求出定值;若不是,请说明理由.5、已知抛物线)0(22>-=p px y 的焦点为F ,过F 的直线交y 轴正半轴于P 点,交抛物线于,A B 两点,其中A 在第二象限。
(1)求证:以线段FA 为直径的圆与y 轴相切; (2)若12FA AP,BF FA λλ==,求21λλ-的值.6、已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)过圆心M 的直线交抛物线C 于P 、Q 两点,求OP OQ ⋅的值。
解析几何题型2——《解析几何中的定值定点问题》
分析几何题型2——《分析几何中的定值定点问题》题型特色:定值、定点问题必定是在变化中所表现出来的不变的量,那么就能够用变化的量表示问题中的直线方程、数目积、比率关系等,这些直线方程、数目积、比率关系不受变化的量所影响的一个点,就是要求的定点。
解决这种问题的重点就是引进参数表示直线方程、数目积、比率关系等,依据等式的恒建立、数式变换等找寻不受参数影响的量。
这种试题考察的是在运动变化过程中找寻不变量的方法。
典例 1 如图,已知双曲线 C :x2 y 2 1(a 0) 的右焦点为 F ,点 A , B 分别在 C 的两条渐近线上,a2AF x 轴, AB OB , BF // OA ( O 为坐标原点)。
( 1)求双曲线C的方程;( 2)过C上一点P( x0, y0)的直线l :xxy0 y 1与直线 AF 订交于点 M ,与直线 x 3 订交于点 N ,a2 2MF恒为定值,并求此定值。
证明:当点 P 在 C 上挪动时,NF典例 2已知动圆过定点A(4,0) ,且在 y 轴上截得的弦MN 的长为8。
( 1)求动圆圆心的轨迹 C 的方程;( 2)已知点B(1,0) ,设不垂直于x 轴的直线l与轨迹C交于不一样的两点P , Q ,若x轴是PBQ 的角均分线,证明直线l 过定点。
典例 3 已知直线 l : y x 6 ,圆O : x2 y 2 5,椭圆 E :y2 x2 1(a b 0) 的离心率 e 3 ,a 2 b2 3 直线 l 被圆 O 截得的弦长与椭圆的短轴长相等。
(1)求椭圆E的方程;(2)过圆O上随意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。
典例 4 椭圆的两焦点坐标分别为F1 ( 3,0) 和 F2 ( 3,0) ,且椭圆过点(1, 3 ) 。
2( 1)求椭圆方程;( 2)过点(6 ,0) 作不与y轴垂直的直线l交该椭圆于M、N两点,A为椭圆的左极点,试判断5 MAN 的大小能否为定值,并说明原因。
解析几何中的定点、定值问题
解析几何中的定点、定值问题解析几何中的定点、定值问题[考情分析把握方向]解析几何中的定值、定点、定直线问题是近几年高考命题的热点,这类问题也是高考题中的一大难点。
此类问题动中有定,定中有动,并且常与轨迹问题、曲线系问题等问题相结合,深入考查直线与圆、圆锥曲线、直线与圆锥曲线的位置关系等相关知识。
考察数形结合、分类讨论、转化与化归、函数与方程等思想方法。
高考年份填空题解答题附加题2010年第9题点到直线的距离为定值第18题证明直线过定点2011年第18题证明直线垂直 2012年第19题证明定值问题[备考策略提升信心]高考中重点关注以下几方面的问题:1.直线方程、圆的方程、直线与圆及直线与圆锥曲线的位置关系,重点是直线与圆的位置关系;2.圆锥曲线的标准方程和几何性质,特别是椭圆的标准方程及几何性质,同时注意它们的图形特征;3.轨迹问题求解的常用方法;数形结合思想以及函数与方程思想的应用;4.求圆锥曲线的方程的运算的要求有所提高,考查趋于方程的变形运算。
[小题训练激活思维]1.已知椭圆2222:1x y E a b+=(0)a b >>过定点(1,1)P ,圆22:1C x y +=,直线l 与椭圆E 交于,M N 两点,且0OM ON ?=,则直线l 与圆C 的位置关系是。
相切2.若双曲线122=-y x 的右支上一点(,)P a b 到直线y x =的距离为2,则a b +的值是。
123.已知O 为坐标原点,定点(1,0)A ,动点M 是直线:2l x =上的点,过点A 作OM 的垂线与以OM 为直径的圆交于点N ,则线段ON 的长为。
4.已知椭圆2222:1x y E a b +=(0)a b >>的左顶点为A ,右焦点为F ,点M 在右准线l 上运动,记直线FM OM AM ,,的斜率分别为321,,k k k ,若椭圆E 的离心率为21,则=+231k kk5.已知直线032:=++-a y ax l 及点)4,3(P .当点P 到直线l 的距离最大时,直线l 的方程是 .变式1:0)()2(:=-++++b a y b a x b a l 变式2:032)2()3(:22=-++++a a y a x a l[核心问题聚焦突破]已知椭圆2222:1x y C a b+=经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 与椭圆交于,A B 两点,点,,A F B 在直线4x =上的射影依次为点,,D K E 。
第六讲 定点定值问题教师版
第六讲 圆锥曲线中得定点、定值问题一、定点问题1、直线过定点,关键求出直线方程若为常量,则直线恒过定点、2、求解(或证明)直线与曲线过定点得基本思路就是:把直线或曲线方程中得变量x ,y 视作常数,把方程一边化为零,既然就是过定点,那么这个方程就就是对任意参数都成立,这时参数得系数就要全部等于零,这样就得到一个关于x ,y 得方程组,这个方程组得解所确定得点就就是直线或曲线所过得定点.例1:若直线l :y =kx +m 与椭圆C :x 24+y 23=1相交于A ,B 两点(A ,B 不就是左、右顶点),且以AB 为直径得圆过椭圆C 得右顶点,求证:直线l 过定点,并求出该定点得坐标.证明:设椭圆C 得右顶点为A 1(2,0),A (x 1,y 1),B (x 2,y 2),则A 1A ⊥A 1B ,联立方程⎩⎨⎧ y =kx +mx 24+y 23=1得(4k 2+3)x 2+8kmx +4m 2-12=0,则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3, 所以A 1A ―→·A 1B ―→=(x 1-2)(x 2-2)+y 1y 2=(x 1-2)(x 2-2)+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+(km -2)(x 1+x 2)+4+m 2=(4m 2-12)(k 2+1)4k 2+3-8km (km -2)4k 2+3+4+m 2=0, 整理得7m 2+16mk +4k 24k 2+3=0,解得m =-27k 或-2k 、 当m =-27k 时,y =kx -27k =k ⎝⎛⎭⎫x -27,过定点⎝ ⎛⎭⎪⎪⎫270; 当m =-2k 时,y =kx -2k ,过定点(2,0),即过椭圆右顶点,与题意矛盾.所以直线l 过定点⎝ ⎛⎭⎪⎪⎫270、 此模型解题步骤:Step1:设AB 直线,联立曲线方程得根与系数关系,求出参数范围;Step2:由AP 与BP 关系(如),得一次函数;Step3:将代入,得.2、已知抛物线C :y 2=2px (p >0)得焦点F (1,0),O 为坐标原点,A ,B 就是抛物线C 上异于O 得两点.(1)求抛物线C 得方程;(2)若直线OA ,OB 得斜率之积为-12,求证:直线AB 过x 轴上一定点.解:(1)因为抛物线y 2=2px (p >0)得焦点坐标为(1,0),所以p 2=1,即p =2、所以抛物线C 得方程为y 2=4x 、 (2)证明:①当直线AB 得斜率不存在时,设A ⎝ ⎛⎭⎪⎪⎫t 24t ,B ⎝ ⎛⎭⎪⎪⎫t 24-t 、 因为直线OA ,OB 得斜率之积为-12, 所以t t 24·-t t 24=-12,化简得t 2=32、 所以A (8,t ),B (8,-t ),此时直线AB 得方程为x =8、②当直线AB 得斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立方程组⎩⎪⎨⎪⎧y 2=4x y =kx +b 消去x 得ky 2-4y +4b =0、 由根与系数得关系得y A y B =4b k, 因为直线OA ,OB 得斜率之积为-12, 所以y A x A ·y B x B =-12,即x A x B +2y A y B =0、 即y 2A 4·y 2B 4+2y A y B =0, 解得y A y B =0(舍去)或y A y B =-32、所以y A y B =4b k=-32,即b =-8k , 所以y =kx -8k ,即y =k (x -8).综合①②可知,直线AB 过定点(8,0).3、已知椭圆: 过点,且离心率.(Ⅰ)求椭圆得方程;(Ⅱ)椭圆长轴两端点分别为,点为椭圆上异于得动点,直线:与直线分别交于两点,又点,过三点得圆就是否过轴上不同于点得定点?若经过,求出定点坐标;若不存在,请说明理由.【思路引导】(1)运用椭圆得离心率公式与点代入椭圆方程,由a,b,c 得关系,即可得到椭圆方程;(2)设,由椭圆方程与直线得斜率公式,以及两直线垂直得条件,计算即可得证.试题解析:(Ⅰ)由,解得,故椭圆得方程为.(Ⅱ)设点,直线得斜率分别为,则.又:,令得,:,令得,则,过三点得圆得直径为,设圆过定点,则,解得或(舍).故过三点得圆就是以为直径得圆过轴上不同于点得定点.二、定值问题1、解析几何中得定值问题就是指某些几何量(线段得长度、图形得面积、角得度数、直线得斜率等)得大小或某些代数表达式得值等与题目中得参数无关,不依参数得变化而变化,而始终就是一个确定得值.解决圆锥曲线中得定值问题得基本思路就是:定值问题必然就是在变化中所表现出来得不变得量,那么就可以用变化得量表示问题中得直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化得量所影响得一个值.2、探索圆锥曲线得定值问题常见方法有两种:① 从特殊入手,先根据特殊位置与数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理得过程中消去变量,从而得到定值. 解答得关键就是认真审题,理清问题与题设得关系,建立合理得方程或函数,利用等量关系统一变量,最后消元得出定值.4、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)得左焦点F 1(-6,0),e =22、 (1)求椭圆C 得方程;(2)如图,设R (x 0,y 0)就是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 得斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(3)在(2)得条件下,试问|OP |2+|OQ |2就是否为定值?若就是,求出该值;若不就是,请说明理由.[思路演示]解:(1)由题意得,c =6,e =c a =22, 解得a =23,b =6,∴椭圆C 得方程为x 212+y 26=1、 (2)证明:由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切,∴|k 1x 0-y 0|1+k 21=2, 化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2就是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0得两个不相等得实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4、 ∵点R (x 0,y 0)在椭圆C 上,∴x 2012+y 206=1, 即y 20=6-12x 20,∴k 1k 2=2-12x 20x 20-4=-12(定值). (3)|OP |2+|OQ |2就是定值.设P (x 1,y 1),Q (x 2,y 2),联立⎩⎨⎧ y =k 1x x 212+y 26=1解得⎩⎪⎨⎪⎧ x 21=121+2k 21y 21=12k 211+2k 21 ∴x 21+y 21=12(1+k 21)1+2k 21、同理,可得x 22+y 22=12(1+k 22)1+2k 22、 由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22=12(1+k 21)1+2k 21+12(1+k 22)1+2k 22=12(1+k 21)1+2k 21+121+⎝⎛⎭⎫-12k 121+2-12k 12=18+36k 211+2k 21=18、 定值问题常见得2种求法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)引进变量法:其解题流程为5、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)得离心率为35,过左焦点F 且垂直于长轴得弦长为325、 (1)求椭圆C 得标准方程;(2)点P (m,0)为椭圆C 得长轴上得一个动点,过点P 且斜率为45得直线l 交椭圆C 于A ,B 两点,证明:|P A |2+|PB |2为定值.解:(1)由⎩⎪⎨⎪⎧ e =c a =352b 2a =325a 2=b 2+c 2可得⎩⎪⎨⎪⎧ a =5b =4c =3故椭圆C 得标准方程为x 225+y 216=1、 (2)证明:设直线l 得方程为x =54y +m ,代入x 225+y 216=1,消去x ,并整理得25y 2+20my +8(m 2-25)=0、设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-45m ,y 1y 2=8(m 2-25)25,又易得|P A |2=(x 1-m )2+y 21=4116y 21, 同理可得|PB |2=4116y 22、 则|P A |2+|PB |2=4116(y 21+y 22)=4116[(y 1+y 2)2-2y 1y 2]=4116-4m 52-16(m 2-25)25=41、 所以|P A |2+|PB |2就是定值.6. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)得离心率为32,短轴端点到焦点得距离为2、 (1)求椭圆C 得方程;(2)设A ,B 为椭圆C 上任意两点,O 为坐标原点,且OA ⊥OB 、求证:原点O 到直线AB 得距离为定值,并求出该定值.[解] (1)由题意知,e =c a =32,b 2+c 2=2,又a 2=b 2+c 2,所以a =2,c =3,b =1,所以椭圆C 得方程为x 24+y 2=1、 (2)证明:①当直线AB 得斜率不存在时,直线AB 得方程为x =±255,此时,原点O 到直线AB 得距离为255、 ②当直线AB 得斜率存在时,设直线AB 得方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m得(1+4k 2)x 2+8kmx +4m 2-4=0、则Δ=(8km )2-4(1+4k 2)(4m 2-4)=16(1+4k 2-m 2)>0,x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2, 则y 1y 2=(kx 1+m )(kx 2+m )=m 2-4k 21+4k 2, 由OA ⊥OB 得k OA ·k OB =-1,即y 1x 1·y 2x 2=-1, 所以x 1x 2+y 1y 2=5m 2-4-4k 21+4k 2=0,即m 2=45(1+k 2), 所以原点O 到直线AB 得距离为|m |1+k2=255、 综上,原点O 到直线AB 得距离为定值255、 7、已知椭圆得离心率为,以原点O 为圆心,椭圆C 得长半轴长为半径得圆与直线相切. ⑴求椭圆C 得标准方程;⑵已知点A 、B 为动直线与椭圆C 得两个交点,问:在x 轴上就是否存在定点E ,使得为定值?若存在,试求出点E得坐标与定值;若不存在,请说明理由.(Ⅱ)由,得(1+3k2)x2﹣12k2x+12k2﹣6=0,(6分)设A(x1,y1),B(x2,y2),∴,,根据题意,假设x轴上存在定点E(m,0),使得为定值,则有=(x1﹣m,y1)•(x2﹣m,y2)=(x1﹣m)•(x2﹣m)+y1y2==(k2+1)=(k2+1)•﹣(2k2+m)•+(4k2+m2)=,要使上式为定值,即与k无关,则应有3m2﹣12m+10=3(m2﹣6),即m=,此时=为定值,定点为().学科*网8.已知椭圆上得点到两个焦点得距离之与为,短轴长为,直线与椭圆交于、两点.(1)求椭圆得方程;(2)若直线与圆相切,探究就是否为定值,如果就是定值,请求出该定值;如果不就是定值,请说明理由.联立得()()()222122323249161610,916km km k m x x k ∆=-+->+=-+,, =综上, (定值)。
解析几何中的定点和定值问题
解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。
此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。
考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。
一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
例1、已知A 、B 是抛物线y 2=2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明直线AB 恒过定点,并求出该定点的坐标。
解析: 设A (121,2y p y ),B (222,2y p y ),则 212tan ,2tan y p y p==βα,代入1)tan(=+βα得221214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则022222=+-⇒⎩⎨⎧=+=pb py ky pxy bkx y ∴kpy y kpby y 2,22121=+=,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。
例2.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ① 设()11,P x y ,()22,Q x y,则12x x +=,122414x x k=+ ②且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点. 【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。
高三辅导解几部分-圆锥曲线的定点、定值、定直线问题(教师版)
max
1 2
F1F2
b
bc
3,
∵以原点为中心,椭圆短半轴长为半径的圆与直线 3x 4 y 5 0 相切,
dOl
5 b b 1,c 32 42
3 , a2 b2 c2 4 ,椭圆方程为 x2 y2 1. 4
(2)当直线 l 的斜率存在时,设 l : y k x 1 ,由椭圆方程可得点 M 2, 0 ,
4
得 4k 2 1 x2 8kmx 4m2 4 0 ,由题设可知 16 4k 2 m2 1 0 ,
设
A x1,
y1
,
B x2,
y2
,则
x1
x2
8km 4k 2 1
,
x1x2
4m2 4k 2
4 1
,
而 k1 k2
y1 1 x1
y2 1 x2
kx1 m 1 x1
kx2
如果 l 与 x 轴垂直,设 l : x t ,由题设知 t 0 ,且 t 2 ,
可得 A, B 的坐标分别为 t,
4 t2 2
, t,
4 t2 2
,
则 k1 k2
4t2 2 2t
4 t 2 2 1,得 t 2 ,不符合题设; 2t
从而可设 l : y kx m m 1 ,将 y kx m 代入 x2 y2 1,
:
y
y2 x2 2
x
2
,
分别令
x
0
,可得:
P
0,
2 y1 x1 2
,
Q
0,
2 x2
y2 2
,设
x
轴上的定点为
N
x0
,
0
,
若 PQ 为直径的圆是否过 N x0 , 0 ,则 PN QN 0 ,
高考解析几何中的定点定值问题
一、解析几何中的定点问题
解析几何中定点问题的两种解法:
(1)引进参数法:引进动点坐标或动线中系数为参数表示变化量, 再研究变化的量与参数何时没有关系,找到定点.
(2)特殊到一般法:根据动点或动线的特殊情况探索出定点, 再证明该定点与变量无关.
例1、已知抛物线y2=2px(p>0)上有两点A,B, 且OA⊥OB,则直线AB过定点为______. A
k 2 y k(x 2 p) y 0
AB过定点(2 p,0)
例 2.椭圆 C 的中心在坐标原点,焦点在 x 轴上,该椭圆经过 点 P1,32且离心率为12.
(1)求椭圆 C 的标准方程; (2)若直线 l:y=kx+m 与椭圆 C 相交于 A,B 两点(A,B 不
是左右顶点),且以 AB 为直径的圆过椭圆 C 的右顶点, 求证:直线 l 过定点,并求出该定点的坐标.
y1
y2
2 pa
0
a
0
OA OB x1x2 y1y2 0 (my1 a)(my1 a) By1y2 0
(m2 1)(2 pa) am(2 pm) a2 0 a 2 p
AB : x my 2 p过定点(2 p,0)
思路2:设直线OA,OB
A
代入抛物线解得A,B点 O
B
得直线AB方程
O B
思路1:设直线AB方程 代入抛物线得关键方程 OA⊥OB 得定点
法1:设AB : x my a( AB水平显然不适合)A(x1, y1), B(x2, y2 )
由
x y
my a 2 2 px
y2
2
pmy
2
pa
ห้องสมุดไป่ตู้
0
高考数学解析几何中的定点定值定线问题
◆直线与圆锥曲线的定点、定值、定线问题一、定点问题定点问题,一般是直线系(或者曲线系)恒过定点的问题,这类问题一般解法是根据曲线的动因,先选择适当的参数,用参数表示出直线系(或者曲线系)方程,然后按参数整理,并令参数的系数为0得方程组,解方程方程组求出定点坐标.例如:(1)直线系1y kx =+中,当k 变化时,恒过定点(0,1);(2)直线系2(1)y k x +=-中,当k 变化时,恒过定点(1,2)-;(3)已知直线1:40l x y +-=,2:270l x y +-=,则过1l ,2l 交点的直线可以设为(4)(27)0x y m x y +-++-=,即(21)(1)7m x m y m +++--=.直线系(21)(1)740m x m y m +++--=恒过1l ,2l 的交点.1.如图,等边三角形OAB的边长为且其三个顶点均在抛物线上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线1y =-相交于点Q .证明:以PQ 为直径的圆恒过y 轴上某定点.2.一条直线l 与抛物线22y px =(0p >)交于A 、B 两点,OA OB ⊥(O 为坐标原点).求证直线l 恒过定点,并求出定点的坐标.3.222122221223231311(0)45|PF |=3|MN|=4.(1)C a b C xC C C y C C yx yab+=>>=已知椭圆:的右焦点F 与抛物线:的焦点重合,椭圆与抛物线在第一象限的交点为P ,,圆C 的圆心T 是抛物线上的动点,圆C 与轴交于M,N 两点,且求椭圆的方程。
(2)证明:无论点T 运动到何处,圆C 恒经过椭圆上一点二、定值问题定值问题的主要处理方法是函数方法,首先,选择适当的量为变量,然后把证明为定值的量表示为上述变量的函数(可能含多元),最后把得到的函数解析式化简,消去变量得到定值.消去变量的过程中,经常要用到点在曲线上进行坐标代换消元.有时先从特殊情形入手,求出定值,再对一般情形进行证明,这样可使问题的方向更加明确.另外关注图形的几何性质可简化计算.例如(1)椭圆上任意一点到两个焦点的距离之和为定值;(2)双曲线上任意一点到两个焦点的距离之差的绝对值为定值;(3)抛物线上任意一点到焦点的距离与到准线的距离的比等于 1.(4)过抛物线22y px =(0p >)的焦点F 作直线与抛物线交于A 、B 两点,则A 、B 两点的横坐标之积为定值4221p x x =,纵坐标之积为定值y 1y 2=-p 2.;11AF BF +为定值2p . 【顺便记住)(21x x p AB ++== 2p sin 2θ.】4.已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .(1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,求证:12x x ⋅为定值,并求出此定值.5.设000(,)A x y 是曲线2:4C x y =上的一个定点,过点0A 任意作两条倾斜角互补的直线,分别与曲线C 相交于另外两点P 、Q .证明:直线PQ 的斜率为定值.三.定直线(轨迹)问题证明动点在某一直线上(或某轨迹上)的问题,可以转化为求动点的轨迹问题,基本的方法有直接法和消参法。
2021高考数学考前微专题29解析几何中的定点与定值问题(教师版)
译为“
”恒成立.因此,本题的重点在于得出 P,Q 两点的坐标,其中点 P 的坐标需要联立直线与
椭圆的方程求得.
解法 1:(1)椭圆 E 的方程是
.
(Ⅱ)由
4m2-12=0,
设
,判别式
,易得
,化简得 .
,同时有
若定点 M 存在,则必在 x 轴上,因此,可设 M(t,0),由
得
.
由
解得 t=1.所以存在定点 M(1,0),使得以 PQ 为直径的圆恒过点 M.
事实上,例 1 的背景是椭圆的一个重要性质:动直线 l 与椭圆
相切于点 P,与椭圆右准
线相交于点 Q,右焦点为 F,则 PF⊥QF.本题即是以此性质为背景命制的一道定点问题.背景不变,换个命 题角度,我们可以得到如下题目,但问题本质仍未改变. 结合题目求解过程,通过分析可以看出,尽管定点、定值问题背景多元,形式多样,但求解方法都有共同 之处,即建立在对几何图形特征分析的基础上,最终回到解析几何的核心方法(坐标法)上,依托直线与圆锥 曲线的方程联立,翻译题目条件,构造等式或不等式. 总结起来,应注意如下几点: 首先,仔细研究题干,认清问题本质,找准思路,预计求解过程中遇到的各种情况,也就是要想得明白, 思路通畅可操作; 其次,找准主元,引入参数,建立各个量间的数量关系,运用消元变形、推理运算等手段证明定点、定值 问题; 再次,要努力突破计算关、心理关,认真仔细计算、准确规范,随时检查,树立信心,只要方向正确就一 算到底; 最后,必须树立数形结合意识,善于把握问题的特定信息,运用对称性、特殊性猜想定点、定值,然后证 明,要仔细分析图中的点、线等关系,挖掘隐含条件,往往能取得出奇制胜的效果. 2 定值问题 定值问题与最值问题属同一类问题,都是在一个运动变化过程中,由某个变量的变化引起另一个量的变化 或不变的问题.此类问题的求解的一种思路是找准变化的主元,设为参数,建立参变量与其他量的关系(如函 数关系、方程关系、不等式关系等),探求目标式,通过代数运算将目标式用参变量表示出来,这一步是求 解的难点也是关键所在,然后再恒等变形得到定值.另一种思路是通过特殊值或极端情形探索出定值是多少, 然后进行一般性计算或证明,探索出的定值也可以作为检验结果正确与否的试金石.
解析几何中的定值和定点问题.doc
解析几何中的定值定点问题(一)一、定点问题【例1】.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解:⑴由题意知c e a ==22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.QPOy x⑵将y kx b =+,代入曲线C 的方程,整理得22(14)8240k x kx +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则1282k x x +=-,122414x x k =+ ② 且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点. 【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。
解析几何中定值与定点问题(最新整理)
y2 b2
1上的点( x0 , y0 )处的椭圆切线方程是
x0 x a2
y0 y b2
1,证明直线
AB 恒过椭圆的右
焦点 F2 ;
(Ⅲ)在(Ⅱ)的前提下,试探究 1 1 的值是否恒为常数,若是,求出此常数;若不是,请 | AF2 | | BF2 |
说明理由.
x2 4、椭圆 C : a2
y2 b2
【实例探究】 题型 1:定值问题:
例 1:已知椭圆 C 的中心在原点,焦点在 x 轴上,它的一个顶点恰好是抛物线
的
焦点,离心率等于 (Ⅰ)求椭圆 C 的标准方程; (Ⅱ)过椭圆 C 的右焦点作直线 l 交椭圆 C 于 A、B 两点,交 y 轴于 M 点,若
为定值.
解:(I)设椭圆 C 的方程为
,则由题意知 b = 1.
解析几何中定值与定点问题 【探究问题解决的技巧、方法】
(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要 解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.
(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再 视具体情况进行研究.
( 3
k2
t,
1 k
1)
1 1 1 ( 1 1) k 2
k 3k
直线SA的方程为y 2x 1 A(1 ,0) 2
同理 B( 3 ,0) 2
cos CSD cos ASB SA2 SB2 AB2 3
sin CSD 4
2SB SA
3 ,过 F1 且垂直 2
于 x 轴的直线被椭圆 C 截得的线段长为 1. (Ⅰ)求椭圆 C 的方程;
(Ⅱ)点 P 是椭圆 C 上除长轴端点外的任一点,连接 PF1, PF2 ,设 F1PF2 的角平分线 PM 交
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.方法综述
解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;
(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;
一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;
另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。
(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
二.解题策略
类型一定值问题
【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()
A.B.C.2p D.
【答案】D
【解析】分析:直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果.
解:抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),
所以,整理得,设点A(x1,y1),B(x2,y2),
所以,所以,
同理设经过焦点直线CD的方程为y=﹣(x﹣),
所以,整理得,
所以:|CD|=p+(p+2k2p),所以,
则则+=.故选:D.
【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
【举一反三】
1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与
圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()
A.2B.2C.1D.
【答案】C
【解析】分析:根据题意,设A(x1,y1),D(x2,y2),分析抛物线的焦点以及圆心的坐标,由抛物线的定义可得|AB|、|CD|的值,联立直线方程和抛物线方程,应用韦达定理可得所求值.
解:设A(x1,y1),D(x2,y2),
抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,
圆(x﹣1)2+y2=1的圆心为F(1,0),
圆心与焦点重合,半径为1,
又由直线过抛物线的焦点F,
则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,
即有|AB|•|CD|=x1x2,
设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,
则y1y2=﹣4,x1x2==1,故选:C.
2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆
的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()
A.B.C.D.
【答案】C
【解析】分析:取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆
方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=0,化简可得k1•k2,取P(0,b),设切线方程为:y=kx+b,同理可得:k1•k2,根据k1•k2为定值进而得出λ.
解:取P(a,0),设切线方程为:y=k(x﹣a),
代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,
化为:(a2﹣a2λ)k2=b2λ,
∴k1•k2=,
取P(0,b),设切线方程为:y=kx+b,
代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,
化为:λa2k2=b2(1﹣λ),
∴k1•k2=,
又k1•k2为定值,
∴=,
解得λ=.故选:C.
3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2
【解析】分析:求出椭圆方程,设出A、B、C的坐标,通过平方差法转化求解斜率,然后推出结果即可.解:∵椭圆的离心率为,
∴,则,得.
又三角形ABC的三个顶点都在椭圆上,
三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.
O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,
设A(x1,y1),B(x2,y2),C(x3,y3),
则,,
两式作差得,,
则,即,
同理可得,.
∴==﹣2×(﹣1)=2.
类型二定点问题
【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()
A.(0,1)B.(0,2)C.(1,0)D.(2,0)
【答案】A
【解析】分析:设A(m,m2),B(0,n),根据A,B同在一个以F为圆心的圆上,可得n=m2+2,再根据直线的斜率公式可得直线与直线和平行,以及导数的几何意义可得a=﹣,求出直线AD的方程,即可求出直线AD经过的定点的坐标.
解:设A(m,m2),B(0,n),
∵抛物线C:x2=4y的焦点为F(0,1)
又A,B同在一个以F为圆心的圆上,
∴|BF|=|AF|
∴n﹣1==m2+1
∴n=m2+2。