图形的旋转 教学课件
合集下载
人教版九年级上册数学精品教学课件 第二十三章 旋转 图形的旋转 第1课时 旋转的概念与性质
随堂训练 基础巩固
1.下列图案中能由一个图形通过旋转而构成的是_①__②___.(填序号)
2.(2020·大连)如图,△ABC中,∠ACB=90°,∠ABC=40°. 将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落 在边AB上,则∠CAA′的度数是( D )
A.50° B.70° C.110° D.120°
点A、B、P的对应点分别为 C、B、P′ .
旋转中心就是在旋转过程中始终保持固定不变的那个点, 它可以在图形的外部或内部,还可以在图形上,即它可以是平 面内的任意一点.
旋转角:任意一对对应点与旋转中心的连线所成的角.
练习
①时钟的时针在不停地旋转,从上午6时到上午9时,时针 旋转的角度是多少?从上午9时到上午10时呢?
解:从上午6时到上午9时,时针旋转的角度为90°,从上 午9时到上午10时,时针旋转的角度是30°.
②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是 点 O ,旋转角是 ∠AOA′,点A的对应点是点 A′ .
知识点2 旋转的性质
在硬纸板上先挖一个三角形洞,再在三角形
洞外挖一个小洞O(作为旋转中心),把挖好洞 的硬纸板放在白纸上,在白纸上描出挖掉的三角
R·九年级上册
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念与性质
新课导入 导入课题
欣赏日常生活中一些物体的运动现象,观察运动的过程。
学习目标
(1)了解生活中广泛存在的旋转现象,知道旋转是继平移、 对称之后的又一种基本变换. (2)能结合图形指出什么是旋转中心、旋转角和对应点. (3)体会旋转的形成过程,并探究旋转的性质.
3.(教材P60例题变式)如图,四边形ABCD是正方形,△ADF按 顺时针方向旋转一定的角度得到△ABE,已知AF=4,AB=7.
华师大版七年级下册数学10.图形的旋转说课课件
[设计意图]必做题的目的是巩固本节课应知、应会的内容,面 向全体学生,人人必须完成. 选做题要求学生根据个人的实际情况尽力完成,使学有余力的学 生得到提高,到达“不同的人得到不同的发展”的目的.
五、板书设计:
10.3.图形的旋转
1、 旋转的概念。
对应点
2、旋转的特征。
对应线
对应角
2、学法 学生通过自主学习、合作学习和探究学习,到达多思、多说、 多练,激发学生的学习兴趣。
教学过程设计
1.创设情景,激发学生的学习兴趣,请一 位学生来黑板上来完成俄罗斯方块的游戏, 另一位同学把的游戏操作用语言表达出来。
教师问:玩这个游戏的关键是什么? “旋转”
[设计意图]从游戏入手,激发学生的学习兴趣,活跃 课堂氛围,引出本节课的主要内容——旋转,培养学生 运用数学知识,解决实际问题的意识。
【设计意图】通过回忆图形平移的特征,类比推理得 出图形旋转的特征。考察小组合作探究能力,同时也 能提高学生的视察能力。
例题讲授
A
例1 如图,△ABC是等边三角形,D
是BC上一点,△ABD经过旋转后到
达△ACE的位置。
M
(1)旋转中心是哪一点?
E
(2)旋转了多少度?
(3)如果M是AB的中点,那么经 B D
讲授新课
一 旋转的概念
在平面内,将一个图形绕着一个定点沿某个方向转动一个 角度,这样的图形运动称为旋转。
这个定点O称为旋转中心
o 旋转中心
转动的角∠POP'称为旋转角
旋转角
[设计意图]使学生了解对旋转的概念,为
接下来的学习奠定基础。
P
P'
2.旋转的特征
回忆平移的特征,仔细视察图形,小组合作探究,讨 论旋转的特征。
五、板书设计:
10.3.图形的旋转
1、 旋转的概念。
对应点
2、旋转的特征。
对应线
对应角
2、学法 学生通过自主学习、合作学习和探究学习,到达多思、多说、 多练,激发学生的学习兴趣。
教学过程设计
1.创设情景,激发学生的学习兴趣,请一 位学生来黑板上来完成俄罗斯方块的游戏, 另一位同学把的游戏操作用语言表达出来。
教师问:玩这个游戏的关键是什么? “旋转”
[设计意图]从游戏入手,激发学生的学习兴趣,活跃 课堂氛围,引出本节课的主要内容——旋转,培养学生 运用数学知识,解决实际问题的意识。
【设计意图】通过回忆图形平移的特征,类比推理得 出图形旋转的特征。考察小组合作探究能力,同时也 能提高学生的视察能力。
例题讲授
A
例1 如图,△ABC是等边三角形,D
是BC上一点,△ABD经过旋转后到
达△ACE的位置。
M
(1)旋转中心是哪一点?
E
(2)旋转了多少度?
(3)如果M是AB的中点,那么经 B D
讲授新课
一 旋转的概念
在平面内,将一个图形绕着一个定点沿某个方向转动一个 角度,这样的图形运动称为旋转。
这个定点O称为旋转中心
o 旋转中心
转动的角∠POP'称为旋转角
旋转角
[设计意图]使学生了解对旋转的概念,为
接下来的学习奠定基础。
P
P'
2.旋转的特征
回忆平移的特征,仔细视察图形,小组合作探究,讨 论旋转的特征。
人教版初中九年级上册数学《旋转作图》精品课件
教学研讨
感谢你的参与 期待下次再见
甲
还可以用 什么方法把甲 图案变成乙图 案?
可以先将甲图案绕图上的
A点旋转,使得图案被
B 乙
A
“扶直”,然后,再沿AB
方向将所得图案平移到B
甲 点位置,即可得到乙图案
B
A
二、旋转设计作图
合作探究
1.选择不同的___旋__转__中__心_、不同的_旋__转__角_旋转同一个图案,会出 现不同的效果. (1)两个旋转中,旋转中心不变, 旋__转__角__ 改变了,产生了 __不__同___的旋转效果.
方法归纳 旋转作图的基本步骤:
(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.
A E
F
B
D
考考你:
C
借助上图,如何确定它们的旋转中心位置?
答:找到两条对应点连线段的垂直平分线的交点.
例2. 怎样将甲图案变成乙图案? 乙
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延长线上截取点E′,使BE. ′=DE
则△ABE′为旋转后的图形.
想一想:
A
D
还有其他方法确定点E的
对应点E′吗?
E
答:延长CB,以点A为圆心,AE 的
长为半径画弧,交CB的延长线于E', B
C
连接AE',则△ABE'为旋转后的图形.
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'
23.1图形的旋转教学课件(共35张PPT)
线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。
九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图课件人教版
例 2 答图
(2)如答图,画出对称点 D,连接 AD,AD 可以看作是由 AB 绕着点 A 逆时针 旋转 90°得到的.
【点悟】 解答此题时应熟练掌握平移、轴对称、旋转的特征.
当堂测评
1.[2018 春·巴州区期末]如图 23-1-16,把以∠ACB 为直角的△ABC 绕点 C 按 顺时针方向旋转 85°,使点 B 转到点 E,点 A 转到点 F,得到△CEF,则下列结论 错误的是( D )
归类探究
类型之一 非网格中的旋转作图 如图 23-1-14,已知将四边形 ABCD 绕点 O 顺时针旋转一定角度后,使
点 A 落在点 A′处,试作出旋转后的图形.
图 23-1-14
解:图略. 作法:(1)连接 OA,OA′; (2)连接 OB,OC,OD,分别以 OB,OC,OD 为始边,点 O 为顶点,顺时针 作∠BOB′,∠COC′,∠DOD′,并使∠BOB′=∠COC′=∠DOD′=∠ AOA′,OB′=OB,OC′=OC,OD′=OD; (3)顺次连接 A′,B′,C′,D′四点. 故四边形 A′B′C′D′就是所要求作的图形.
出了格点三角形 ABC(顶点是网格线的交点)和点 A1. (1)画出一个格点三角形 A1B1C1,并使它与△ABC 全等且点 A 与 A1 是对应点; (2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作是由 AB 绕点 A
经过怎样的旋转而得到的.
图 23-1-15
解:(1)(答案不唯一)如答图,利用△ABC≌△A1B1C1,图形平移,可得出△ A1B1C1.
图 23-1-19
3.[2018 春·金牛区期末]在平面直角坐标系中,△ABC 的位置如图 23-1-20.(每 个小方格都是边长为 1 个单位长度的正方形).
(2)如答图,画出对称点 D,连接 AD,AD 可以看作是由 AB 绕着点 A 逆时针 旋转 90°得到的.
【点悟】 解答此题时应熟练掌握平移、轴对称、旋转的特征.
当堂测评
1.[2018 春·巴州区期末]如图 23-1-16,把以∠ACB 为直角的△ABC 绕点 C 按 顺时针方向旋转 85°,使点 B 转到点 E,点 A 转到点 F,得到△CEF,则下列结论 错误的是( D )
归类探究
类型之一 非网格中的旋转作图 如图 23-1-14,已知将四边形 ABCD 绕点 O 顺时针旋转一定角度后,使
点 A 落在点 A′处,试作出旋转后的图形.
图 23-1-14
解:图略. 作法:(1)连接 OA,OA′; (2)连接 OB,OC,OD,分别以 OB,OC,OD 为始边,点 O 为顶点,顺时针 作∠BOB′,∠COC′,∠DOD′,并使∠BOB′=∠COC′=∠DOD′=∠ AOA′,OB′=OB,OC′=OC,OD′=OD; (3)顺次连接 A′,B′,C′,D′四点. 故四边形 A′B′C′D′就是所要求作的图形.
出了格点三角形 ABC(顶点是网格线的交点)和点 A1. (1)画出一个格点三角形 A1B1C1,并使它与△ABC 全等且点 A 与 A1 是对应点; (2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作是由 AB 绕点 A
经过怎样的旋转而得到的.
图 23-1-15
解:(1)(答案不唯一)如答图,利用△ABC≌△A1B1C1,图形平移,可得出△ A1B1C1.
图 23-1-19
3.[2018 春·金牛区期末]在平面直角坐标系中,△ABC 的位置如图 23-1-20.(每 个小方格都是边长为 1 个单位长度的正方形).
平移和旋转(教学课件)
3D模型变换
在计算机图形学中,平移和旋转是基本的3D模型变换操作。通过平移和旋转,可以对3D模型进行位 置调整、方向调整和角度调整,以实现各种视觉效果和动画效果。
游戏开发
在游戏开发中,平移和旋转操作被广泛应用于游戏场景、角色和物体的变换。通过平移和旋转,可以 实现游戏中的移动、视角转换、物体旋转等效果,提高游戏的互动性和视觉体验。
球类运动
各种球类运动如篮球、足球等,球体 本身做旋转运动。
平移和旋转在机械工程中的应用
要点一
机械加工
要点二
机器人操作
在机械加工中,刀具对工件进行平移和旋转运动,实现切 削加工。
机器人手臂通过平移和旋转运动,实现对物体的抓取和移 动。
06
平移和旋转的教学设计
教学目标与要求
理解平移和旋转的基本概念
物体同时进行顺时针和逆时针方向的 旋转。
复合平移
物体同时进行水平和垂直方向的平移 。
03
平移和旋转的应用
平移在几何图形变换中的应用
图形平移
平移操作可以将图形在平面内沿某一方向移动一定的距离, 而不改变其形状和大小。在几何图形变换中,平移可以用于 构造复杂的图形或对图形进行位置调整。
图形对称
通过平移,可以将图形进行对称变换,即在平面内将图形沿 垂直或水平方向移动一定的距离,得到与原图形关于某一点 或直线对称的新图形。
垂直平移
物体在垂直方向上移动, 不改变其方向和宽度。
斜向平移
物体在任意方向上移动, 不改变其方向和高度、宽 度。
旋转的表示方法
顺时针旋转
物体按照顺时针方向进行 旋转。
逆时针旋转
物体按照逆时针方向进行 旋转。
旋转角度
描述旋转的幅度,通常以 度数表示。
在计算机图形学中,平移和旋转是基本的3D模型变换操作。通过平移和旋转,可以对3D模型进行位 置调整、方向调整和角度调整,以实现各种视觉效果和动画效果。
游戏开发
在游戏开发中,平移和旋转操作被广泛应用于游戏场景、角色和物体的变换。通过平移和旋转,可以 实现游戏中的移动、视角转换、物体旋转等效果,提高游戏的互动性和视觉体验。
球类运动
各种球类运动如篮球、足球等,球体 本身做旋转运动。
平移和旋转在机械工程中的应用
要点一
机械加工
要点二
机器人操作
在机械加工中,刀具对工件进行平移和旋转运动,实现切 削加工。
机器人手臂通过平移和旋转运动,实现对物体的抓取和移 动。
06
平移和旋转的教学设计
教学目标与要求
理解平移和旋转的基本概念
物体同时进行顺时针和逆时针方向的 旋转。
复合平移
物体同时进行水平和垂直方向的平移 。
03
平移和旋转的应用
平移在几何图形变换中的应用
图形平移
平移操作可以将图形在平面内沿某一方向移动一定的距离, 而不改变其形状和大小。在几何图形变换中,平移可以用于 构造复杂的图形或对图形进行位置调整。
图形对称
通过平移,可以将图形进行对称变换,即在平面内将图形沿 垂直或水平方向移动一定的距离,得到与原图形关于某一点 或直线对称的新图形。
垂直平移
物体在垂直方向上移动, 不改变其方向和宽度。
斜向平移
物体在任意方向上移动, 不改变其方向和高度、宽 度。
旋转的表示方法
顺时针旋转
物体按照顺时针方向进行 旋转。
逆时针旋转
物体按照逆时针方向进行 旋转。
旋转角度
描述旋转的幅度,通常以 度数表示。
《平移与旋转的认识》图形的运动PPT
知识梳理
【小练习】 1.下面哪些物体的运动是平移?哪些物体的运动是旋转?平移的 请( )里打上“√”,旋转的请在( )打“○”。
(√ )
(○ ) (○ )
(√ )
知识梳理
2.选一选。(请填上序号)
知识梳理
② ④ ⑥ ⑦ ⑧ 这些物体的运动是平移;
① ③ ⑤⑨
这些物体的运动是旋转。
【讲评】本题是让学生对生活中典型的平移现象和旋转现象进行判断,加 深对平移和旋转的认识,培养用数学眼光看待、描述生活中常见现象的习 惯和能力。 平移现象——物体沿着直的路线运动,在运动中没有改变大小和方向。旋 转现象——物体的每一个部分都绕着同一个点(或同一条直线)转动。
A.平移现象
B.旋转现象
C. 轴对称
【讲评】判断时要抓住平移和旋转的特征,再根据生活经验来确定答案。
4.下图中,把由图①平移得到的图形涂上红色。
课后习题
【参考答案】:
5.下面哪些图是
由平移得到的?请你圈出来。
课后习题
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
课后习题
【讲解】图(1)(3)(5)(6)的方向与原图不同,图(2)(8)的大 小与原图不同,只有图(4)(7)的大小和方向与原图一致,因此图(4) 和图(7)是由原图平移得到的。
请生伸活出中你你的还手见,过模哪仿些一平下移这现些象平?移运动。
推拉开抽窗屉户是是平平移移现现象象。。
拉杆箱的拉杆被拉开 也是平移。
深入探究 移一移。 说得真哪对座,小快房试子试可,以还通有过哪平座移小相房互子重也合可呢以??
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
九年级数学人教版上册课件第二十三章旋转23.1图形的旋转
思路,采用引导发现,自主探索的教学方法, 1、学生小学就进行过相关概念的学习,并且结合实际生活中的常见物品有一定的直观感受。
∠ABE′=∠ADE=90°, BE′=DE .
将观察——发现——操作——交流——抽象— 说一说:旋转的基本性质
过程与方法:经历图形旋转概念的形成过程和性质的探索过程,发展直观想象能力,逐步提高分析、归纳、抽象概括的思维能力。 新人教版九年级上《旋转》
根据新课标的理念,本节课我坚持以“学 1、问题情境,导入新课
△ ABC ≌△A′B′C′
生为主体,教师为主导,数学活动为载体”的 在正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.
OA与OA ′相等吗?OB与OB ′相等吗? 设计意图:既内化定义,加深对应点和旋转角的理解,又为后面的探究埋下伏笔。
教学重点: 归纳图形旋转的有关概念及性质。
教学难点: 概念的形成过程和性质的探索过程。
四、教法学法分析
我相信这样既能突出重点、突破难点教学,也会极大的激发学生的学习兴趣。
并且“图形的旋转”本身就是一种重要的数学变换思想,它不仅为本章后续学习“中心对称”打下基础,更为后面章节“圆”的相关 学习做了铺垫。
练习2.如图,用左面的三角形经过怎样
旋转,可以得到右面的图形.
练习3.找出图中扳手拧螺母
时的旋转中心和旋转角.
O
A
B
四、小结作业、深化提高
课堂小结:
今天这节课我们学习了那些内容,你学会了那些思想 方法,在学习的过程中有什么感受?请同学们畅所欲 言!
分层作业
1.将例题中的“顺时针”改为“逆时针”, 请完 成作图。 2习题23.1第4题 3把一个三角形进行旋转:选择不同的旋转中 心、不同的旋转角,看看旋转的效果有什么 不同。
∠ABE′=∠ADE=90°, BE′=DE .
将观察——发现——操作——交流——抽象— 说一说:旋转的基本性质
过程与方法:经历图形旋转概念的形成过程和性质的探索过程,发展直观想象能力,逐步提高分析、归纳、抽象概括的思维能力。 新人教版九年级上《旋转》
根据新课标的理念,本节课我坚持以“学 1、问题情境,导入新课
△ ABC ≌△A′B′C′
生为主体,教师为主导,数学活动为载体”的 在正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.
OA与OA ′相等吗?OB与OB ′相等吗? 设计意图:既内化定义,加深对应点和旋转角的理解,又为后面的探究埋下伏笔。
教学重点: 归纳图形旋转的有关概念及性质。
教学难点: 概念的形成过程和性质的探索过程。
四、教法学法分析
我相信这样既能突出重点、突破难点教学,也会极大的激发学生的学习兴趣。
并且“图形的旋转”本身就是一种重要的数学变换思想,它不仅为本章后续学习“中心对称”打下基础,更为后面章节“圆”的相关 学习做了铺垫。
练习2.如图,用左面的三角形经过怎样
旋转,可以得到右面的图形.
练习3.找出图中扳手拧螺母
时的旋转中心和旋转角.
O
A
B
四、小结作业、深化提高
课堂小结:
今天这节课我们学习了那些内容,你学会了那些思想 方法,在学习的过程中有什么感受?请同学们畅所欲 言!
分层作业
1.将例题中的“顺时针”改为“逆时针”, 请完 成作图。 2习题23.1第4题 3把一个三角形进行旋转:选择不同的旋转中 心、不同的旋转角,看看旋转的效果有什么 不同。
人教版九年级数学上册 《图形的旋转》PPT课件(第一课时)
问题:
1)线段OA与OA'有什么关系? 2)∠AOA'与∠BOB'有什么关系? 3)△ABC与ΔA'B'C'的形状和大小有什么关系?
相等
相等
全等
第七页,共十四页。
情景思考
如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:
(1)旋转中心?
点O
(2)旋转方向?
顺时针
(3)经过旋转,找出点A、B的对应点?
置.
① 试说出旋转中心、旋转方向及旋转角度? 点A、逆时针、60°
② ∠DAE等于多少度? 60°
A
③ △DAE是什么三角形?
等边三角形
④ 如果M是AB的中点,那么经过上述旋转后,点M转到了什
M
么位置?
AC边中点
第十一页,共十四页。
BD
E C
随堂测试
如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,
P
O
如果图形上的点P经过旋转变为点P′
,那么这两个点P和P′叫做这个旋转的对
应点.
P′
旋转中心是_____O__点__,
旋转角度是_________. 120°
第四页,共十四页。
课堂测试
时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角是多少度? 从下午3时到下午5时呢?
第五页,共十四页。
(3)对应点与旋转中心所连线段的夹角等于旋转角.
第九页,共十四页。
情景思考
如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
A
FB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从“1”到“ 3”,指针绕点O按顺时针方向旋转了 60°; 从“3”到“6”,指针绕点O按顺时针方向旋转了 90 °; 从“6”到“1122””,,指针绕点O按逆时针方向旋转了180 °;
问题:1.在描述旋转现象时要注意些什么?
从“1”到“ 3”,指针绕点 O 按顺时针方向旋转了 60°; 从“3”到“6”, 指针绕点 O 按顺时针方向旋转了90 °; 从“6”到“12”,指针绕点 O 按逆时针方向旋转了180 °;
问题:右侧有车通过,车杆的位置会怎样变化?
图形的运动(三)
认识旋转的特征(1)钟表的转动Fra bibliotek(2)风车的转动
请将这根小棒放在方格纸上,分别用黑色 和红色笔画下它旋转前和旋转后的位置
要像我一样竖直放置 后再开始旋转噢!
问题:从“12”到“1”,指针的位置是怎样变化的? 从“12”到“1”,指针绕点 O 按顺时针方向旋转了30°。
问题:你能把这三句话补充完整吗?
2.你能像这样描述指针位置的变化吗?
小组探讨: 1、图中三角板是如何按顺时针转动的?
三角板绕o点顺时针旋转了90°
2、在旋转的过程中,什么变了?什么没变?
三角板的位置变了。 三角板的形状大小、中心点、对应线段的长度没变
运用新知
O
风车绕O点逆时针旋转(90)°
O
左侧有车通过,车杆要绕点O1按顺时针方向旋转 90°; 右侧有车通过,车杆要绕点 O2按逆时针方向旋转90 °;
问题:1.在描述旋转现象时要注意些什么?
从“1”到“ 3”,指针绕点 O 按顺时针方向旋转了 60°; 从“3”到“6”, 指针绕点 O 按顺时针方向旋转了90 °; 从“6”到“12”,指针绕点 O 按逆时针方向旋转了180 °;
问题:右侧有车通过,车杆的位置会怎样变化?
图形的运动(三)
认识旋转的特征(1)钟表的转动Fra bibliotek(2)风车的转动
请将这根小棒放在方格纸上,分别用黑色 和红色笔画下它旋转前和旋转后的位置
要像我一样竖直放置 后再开始旋转噢!
问题:从“12”到“1”,指针的位置是怎样变化的? 从“12”到“1”,指针绕点 O 按顺时针方向旋转了30°。
问题:你能把这三句话补充完整吗?
2.你能像这样描述指针位置的变化吗?
小组探讨: 1、图中三角板是如何按顺时针转动的?
三角板绕o点顺时针旋转了90°
2、在旋转的过程中,什么变了?什么没变?
三角板的位置变了。 三角板的形状大小、中心点、对应线段的长度没变
运用新知
O
风车绕O点逆时针旋转(90)°
O
左侧有车通过,车杆要绕点O1按顺时针方向旋转 90°; 右侧有车通过,车杆要绕点 O2按逆时针方向旋转90 °;