实验6离散时间系统的z域分析

合集下载

离散系统的Z域分析法

离散系统的Z域分析法
X(z)
D z-1
X(k-1)
z-1X(z)
X
注意:z域框图只能求系统零状态响应 注意 域框图只能求系统零状态响应

例题
1.求如图系统的单位响应 求如图系统的单位响应h(k)和单位阶跃响应 和单位阶跃响应g(k) 求如图系统的单位响应 和单位阶跃响应
8 页
2. 知 阶 散 统 初 条 为 zi (0) = 2, yzi (1) =1 已 二 离 系 的 始 件 y , 当 入 (k) = ε (k)时 输 f , 1 5 k k 输 全 应 (k) =[ + 4⋅ 2 − ⋅ 3 ]ε (k), 出 响 y 2 2 求 差 方 ., 画 系 框 。 此 分 程 并 出 统 图
求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法: y(k) =y zi (k) + yzs (k) yzs (k) = h(k) ∗ x(k) 时域方法: 时域方法 •z变换方法: 变换方法: 变换方法 Yzs (z) = H(z) ⋅ X(z)
X

二.系统框图的z域分析法
基本思路: 基本思路 时域框图 z域框图 域框图 z域代数方程 域代数方程 Yzs(z)
7 页
yzs(k)
x(k) ⇒ X (z) yzs (k) ⇒ Yzs (z) 延迟单元 x(k)
x(k)ε (k) ↔ X(z) x(k −1)ε (k) ↔ z−1X(z) + x(−1)
y(k)
X
第 5 页
优点: 优点:
•差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •将时域卷积→z域乘积; 将时域卷积→ 域乘积; 将时域卷积 域乘积 •部分分式展开后求解z逆变换较容易; 部分分式展开后求解z 部分分式展开后求解 逆变换较容易; •z变换过程自动引入了系统初始状态(相当于0变换过程自动引入了系统初始状态(相当于0 变换过程自动引入了系统初始状态 的条件) 可同时求出零输入和零状态响应。 的条件),可同时求出零输入和零状态响应。 , 注意:z域求解系统只需 -状态[y(-1),y(-2), …,] 注意: 域求解系统只需0 状态 域求解系统只需 时域求解系统要递推出0 状态确定待定系数。 时域求解系统要递推出 +状态确定待定系数。

离散时间信号与系统的复频域分析——z变换ppt

离散时间信号与系统的复频域分析——z变换ppt

其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
6.6.1 数字滤波器的概念
与模拟滤波器相对应,在离散系统中 广泛应用数字滤波器。它的作用是利用离 散时间系统的特性对输入信号波形或频谱 加工处理。或者说,把输入的数字信号通 过一定的运算关系变成所需要的输出数字 信号。
数字滤波器一般可以用两种方法来实 现:一种方法是用数字硬件装配成一台专 门的设备,这种设备称为数字信号处理机; 另一种方法就是将所需要的运算编制成程 序利用计算机软件来实现。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
第6章 离散时间信号与系统的复 频域分析——z变换
6.1 z 变 换 的 定 义 6.2 常 用 序 列 的 z 变 换 6.3 z 变 换 的 性 质 6.4 逆 z 变 换 6.5 离散系统的z域分析 6.6 数 字 滤 波 器 6.7 用MATLAB进行z域分析

实验6-离散时间系统的z域分析

实验6-离散时间系统的z域分析

实验6 离散时间系统的z 域分析一、实验目的1.掌握z 变换及其反变换的定义,并掌握MAT LAB 实现方法。

2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理1. Z变换序列x(n )的z变换定义为()()nn X z x n z+∞-=-∞=∑Z 反变换定义为11()()2n rx n X z z dzj π-=⎰在MA TLAB 中,可以采用符号数学工具箱的ztr ans 函数和iztr an s函数计算z 变换和z 反变换:Z=z trans(F) 求符号表达式F 的z 变换。

F=ilaplace(Z) 求符号表达式Z 的z 反变换。

2.离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换()()nn H z h n z+∞-=-∞=∑此外,连续时间系统的系统函数还可以由系统输入和输出信号的z变换之比得到()()/()H z Y z X z =由上式描述的离散时间系统的系统函数可以表示为101101()MM N N b b z b z H z a a z a z ----+++=+++……3.离散时间系统的零极点分析离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。

在MATL AB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zpla ne 函数调用格式为:zp lane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。

zpl an e(z ,p) z,p 为零极点序列(列向量)。

系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统的频率特性响应以及判断系统的稳定性:①系统函数的极点位置决定了系统单位抽样响应h(n)的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

信号与系统自测题(第6章 离散时间信号与系统的z域分析)含答案

信号与系统自测题(第6章 离散时间信号与系统的z域分析)含答案

13
1 1 、某 LTI 系统,若输入 x (n) = ( 1 ) u (n) ,输出 y (n) = [a ( ) + 10( ) ]u (n) , a 为实 6 2 3 7 。 数;若 x (n) = (−1) u(n) , y (n) = 4 (−1) ,则系统函数 H ( z) 为( A )
二、单项选择题 1, n = 0, 4, • • •, 4m, • • • 1、 x ( n ) = ,则其双边 z 变换及其收敛域为( 0, 其它

A
A
) 。
4 4
、 z z− 1 , z > 1
4 4
B
、 z 1− 1 , z > 1
4
C
、 1 −1z
, z >1 4
D
z 、 1− z
, z >1
B
1 、3 (−1) u (n) + (−2) u (n) 2 2 1 1 D、 δ ( n) + u ( n) + ( −2) u ( n) 2 2
n n n
1 z + z −1 注: − 1 δ (n) + (−1) u (n) + (−2) u (n) ↔ 似乎原题有错 2 2 z + 3z + 2
,则
z + 0.5 、z 2+ z − 0.75 注:
A
2
B
z + 0.5 、z 2+ z + 0.75
2 2
C
z − 0.5 、z 2+ z − 0.75
2 2
D
z − 0.5 、z 2+ z + 0.75
2 2

数字信号处理实验离散系统的Z域分析

数字信号处理实验离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析学号:姓名: 评语: 成绩: 一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:。

∑∞-∞=-=n n z n x Z X )()(在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为:syms n; f=(1/2)^n+(1/3)^n;ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n n z n h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若,则系统稳∞<∑∞-∞=n n h |)(|定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为,若z =1时H (z )收敛,即∑∞-∞=-=n n z n h z H )()(,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

∞<=∑∞-∞==n z n h z H |)(||)(1因此因果稳定系统应满足的条件为:,即系统函数H (z )的所有极点全部落在1,||<∞≤<ααz z 平面的单位圆之内。

3、MATLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

信号与系统第8章 离散时间系统的z域分析

信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特

离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用

6.2.1离散LTI系统z域求解与分析 - 离散LTI系统z域求解与分析(精品文档)

6.2.1离散LTI系统z域求解与分析 - 离散LTI系统z域求解与分析(精品文档)

稳定系统:系统对于任意一个有界输入,输出也有界。
LTI离散时间系统稳定的充分必要条件是:

单位样值响应h(n)是绝对可和的 h(n) 。
n
H(z)收敛域包含单位圆
信信号号处处理理与与系系统统
例1:已知系统函数 h(n) anu(n), H (z) z , | z || a |
第六章 离散时间信号与系统的z域分析
§6.1 z变换 §6.2 利用单边z变换求解LTI系统全响应 §6.3 离散时间系统的系统函数分析
信信号号处处理理与与系系统统
§6.2 利用单边z变换解LTI系统全响应
实际在前面学习z变换的性质时,已经给出了利用z变换 求解差分方程的简单实例,这里给出一般规律。
y(n) 1 u(n) 4(2)n u(n) 9 (3)n u(n) 3 u(n) 9 (3)n u(n)
2
2
4
信信号号4处处理理与与系系统统
第六章 离散时间信号与系统的z域分析
§6.1 z变换 §6.2 利用单边z变换求解LTI系统全响应 §6.3 离散时间系统的系统函数分析
k 0
k 0
系统函数
M
Y(z) X(z)

H (z)

k0 N
bkzk ak zk
k0

H (z) h(n)zn 其中 z re j 是一个复数。
n
信信号号处处理理与与系系统统
例1:LTI系统差分方程 y(n) 1 y(n 1) x(n) 1 x(n 1)

by(1) 1 bz1
yzi (n)
Yzs
(
z)

bz
Y 1 zs

第6章 离散时间系统的z域分析

第6章 离散时间系统的z域分析

1 | z | 1 2 | z | 2
例 求序列f (k ) cosh (2k ) (k )的z变换。
1 2k 由于 cosh ( k ) (e e 2 k ) 2 2 在单边指数序列a k ( k )的z变换中令a e 2 , 可得 z e (k ) , | z || e 2 | z e2 根据z变换的线性性质可得
f (k )
3
f ( k ) ( k ) 3
2
2
1
1 o 1 2
f ( k 1) 3 2
k
1 o 1 2
f ( k 1) ( k ) 3 2
1
k
1
1 o 1 2
f ( k 1)
k
1 o 1 2
f ( k 1) ( k )
3
k
3
2 1
1 o 1 2
k
1 o 1 2
k
(1)双边Z变换的移位 若 f (k ) F ( z )
k 0
该式称为单边Z变换。
将f ( k )的Z变换简记为Z [ f ( k )] ,象函数F ( z )的逆z变换 简记为Z
1
[ F ( z )] f ( k )与F ( z )两者间的关系简记为 ,
f (k ) F ( z )


在拉普拉斯变换分析中重点讨论了单边拉普拉斯 变换,这是由于在连续时间系统中,非因果信号 的应用较少。 对于离散系统,非因果信号也有一定的应用范围, 因此对单、双边z变换都进行讨论。
a
b
O
Re(z )
6.1.3 常见序列的Z变换
(k )
1
O
k
(k ) 1

离散时间信号与系统的Z域分析

离散时间信号与系统的Z域分析

《信号与系统》课程实验报告变换。

zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。

例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。

零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。

(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。

由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。

(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。

离散系统的Z域分析

离散系统的Z域分析
z
k
cos(
0
k
)
k
z
z2 z2 z cos 2z2 2z cos 0
0
1
2
..........
k
sin 0k
k
z
2z2
z 2
sin 0 z cos 0
1 2
.........
k k
k
z (z )2k kk Nhomakorabea1
五、ZT & DTFT
求和收敛
设f(k)
为因果序列、则
F (e j ) f k e jk
Z eS Ts e e Ts jTs e j
k
F (z) f (k)zk k 0
e Ts
Ts
2 s
S 域中的一点→ → Z 域中的一点;Z 域中的一点→ → S 域中的无穷个点。
S 1 Ln z 1 Ln(e j ) 1 Ln j
Ts
Ts
Ts
Ts
三、收敛域: F (z) f k zk
ak (k) bk (k 1) z z ∣a∣< |z|< |b|
za zb
jIm[z]
|b|
|a|
o
Re[z]
四、常用 z 变换
(k+1) ←→z; (k-1) ←→z-1;……
(k) ←→1 (k) ←→z/(z-1) ←→ - (- k-1)
零、极 点分布
k k z k k 1
F(z)
K1 e j z
z e j
K1 e j z
z e j
若z> , f(k)=2K1kcos(k+)(k),… …
(3) F(z)有重极点 推导记忆:

第六章 离散系统的z域分析

第六章 离散系统的z域分析
3z 例: 2δ(k)+ 3ε(k) ←→ 2 + δ ε z −1
第1-12页 12页
z > 1
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
二、移位特性
双边z 双边z变换
若: f (k) ←→F (z) , α<z<β,且有整数 β 且有整数m>0, , 则: f(k±m) ←→ z±mF(z), α<z<β ± , β
2 2
z > a
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
四、卷积定理
若: f1 (k) ←→F1(z) , α1<z<β1 β f2 (k) ←→F2(z) , α2<z<β2 β 则: f1(k) * f2(k) ←→ F1(z)F2(z), , 例 收敛域至少为 相交部分 求单边序列 (k+1)akε(k)的z变换,(0<a<1)。 的 变换, 。 变换
三、z域尺度变换(序列乘ak) 域尺度变换(序列乘a
若: f (k) ←→F (z) , α<z<β,且对整数m>0, β 且对整数 , 则: ak f(k) ←→ F(z/a), αa<z<βa , β 变换。 例:求指数衰减正弦序列 aksin(βk)ε(k) 的z变换。 β 解:
6.1 z 变 换
b k , k < 0 f 2 (k ) = b k ε (−k − 1) = 0, k ≥ 0
解: 反因果序列的 变换为: 反因果序列的z变换为 变换为:

第6章离散时间信号与系统的z域分析

第6章离散时间信号与系统的z域分析

2 双边ZT的移位特性p173
若 f [n] F(z), z : (a,b ) 则 f [n m] zmF(z), z : (a,b )
(m为整数)
5.时域反转特性p176
若 f [n] F (z), z : (a,b )
则:f [n] F (1), z : ( 1 ,1)
z
ab
3 序列指数加权(Z域尺度变换)特性 p174
证明: f1[n] f2[n] f1[n] f2[n]zn n
f1[k] f2[n k ]zn
n k
交换求和次序
f1[k ]
f
2[n
k
]z
k
k
n
当 z : (a2,b 2 ) f1[k]F2 (z)zk k
f1[k
]z
k
F2
(
z
)
k
当 z : (a1,b 1)F1(z)F2 (z)
z : (0.)
6.1.3 双边z变换的性质 p172
1 线性特性p172
若 f1[n] F1(z), z : (a1,b 1)
f2[n] F2 (z), z : (a2,b 2 )
则 c1 f1[n] c2 f2[n] c1F1(z) c2F2 (z), z : 公共部分
其中c,c 为常数 12
Z 1 F (z) 1 F (z)zn1dz f [n], z : (a, )
2j c
6.3.2 单边ZT的性质 p181
除具双边ZT的全部性质外,还具有如下性质: 1、序列乘线性加权(Z域微分)特性p181
若:f [n] F (z), z : (a, )
则:nf [n] zF / (z), z : (a, )

离散系统的时域和Z域分析

离散系统的时域和Z域分析



三、收敛域 :
ZT 存在的条件: f k z
k

k

在此条件下 z 的取值范围称为ZT的收敛域。 f k k 2、f k 1, 2, 3, 2, 1 例:求ZT。1、 解:1、Fb z
Fb z 2、
k 1
1 k 2 f 2 6 1 k 3 f 3 6 k 4 f 4 5 2 k 5 f 5 3
3
3
3
3
f k 0, 1 , 3, 6, 6, 5, 3, 0 f k
1
f 2 k
k 0
2
3 3
1

1
0

k 2 k 3
第六章
离散系统的Z 域分析

T t
f s t
6.1 Z变换(ZT) f t 一、从 LT 到 ZT : f s t f t T t f t t nT

k k k skT
f t t f 0 t
f k k k0 f k0 k k0
k
f k k f 0

k
f k k k f k
0 0
k k k 1
1
2
3
4
k
1

1
0
1
2
k
3、乘积计算法
1
f1 k
1
0
f 2 k
2
3 3


1
2
3
4
k

离散信号与系统的 Z 域分析

离散信号与系统的 Z 域分析

第 六 章 离散信号与系统的 Z 域分析引言与线性连续系统的频域分析和复频域分析类似,线性离散系统的频域分析是输入信号分解为基本信号e jΩk 之和,则系统的响应为基本信号的响应之和。

这种方法的数学描述是离散时间傅里叶变换和逆变换。

如果把复指数信号e jΩk 扩展为复指数信号Z k ,Z=re jΩ ,并以Zk 为基本信号, 把输入信号分解为基本信号Z k 之和, 则响应为基本信号Z k 的响应之和。

这种方法的数学描述为Z 变换及其逆变换,这种方法称为离散信号与系统的Z 域分析法.如果把离散信号看成连续时间信号的 抽样值序列,则Z 变换可由拉普拉斯变换引入.因此离散信号与系统的Z 域分析 和连续时间信号与系统的复频域分析有许多相似之处.通过Z 变换,离散时间信 号的卷积运算变成代算,离散时间系统的差分方程变成Z 域的代数方程,因此可 以比较方便的分析系统的响应。

Z 变换从拉普拉斯变换到Z 变换对连续信号f(t)进行理想抽样,即f(t)乘以单位冲击序列δT (t),T 为 抽样间隔,得到抽样信号为f s (t)=f(t)δT (t)= =对fs(t)取双边拉普拉斯变换,得F s (s)=£[fs(t)]=令z=e sT , 则Fs(s)=F(z) ,得F(z)=因为T为常数,所以通常用f(k)表示f(kT),于是变为F(z)=称为f(k)的双边Z变换,z为复变量。

z和s的关系为:z=e sTs=(1/T)㏑z由复变函数理论,可以得到f(k)= ∮cF(z)z k-1 dz式(7.1-5)称为F(z)的双边Z逆变换(后面讨论).双边Z变换的定义和收敛域§双边 Z 变换的定义对于离散序列f(k)(k=0,±1,±2,┄),函数(z的幂级数)F(z)=称为f(k)的双边Z变换,记为F(z)=Z[f(k)].F(z)又称为f(k)的象函数,f(k)又 称为F(z)的原函数.为了表示方便,f(k)与F(z)之间的对应关系可表示为 f(k) F(z)§双边 Z 变换的收敛域f(k)的双边Z变换为一无穷级数,因此存在级数是否收敛的问题.只有当 (7.1-6)式的级数收敛,F(z)才存在.F(z)存在或级数收敛的充分条件是 ∞在f(k)给定的条件下,式(7.1-6)级数是否收敛取决于z的取值.在z复平面上, 使级数收敛的z取值区域称为F(Z)的收敛域。

第6章 离散系统的z域分析

第6章 离散系统的z域分析

Z[2k (k 1)] z , | z | 2
z2
Z[2k
(k )]
z
z
1
2z , 2z 1
| z | 1 2
2
F (z) 2z z 3z , 1 | z | 2 2z 1 z 2 (2z 1)(z 2) 2
6.2 z变换的性质
二、移位(移序)特性 单边、双边差别大!
双边z变换的移位: 若 f(k) ←→ F(z) , <z<,且对整数m>0,则
Ff (z) (bz 1 )k
k
(b 1 z) m
m1
lim b 1 z (b 1 z) N 1
N
1 b 1 z
可见,b-1z<1,即z<b时,其z变换存在,
Ff
(z)
z zb
jIm[z]
|b|
收敛域为|z|< |b|
o
Re[z]
6.1 z变换
例4
双边序列f(k)=fy(k)+ff(k)= 的z变换。
解:
cos( k) (k)
1 (e jk 2
e jk )
0.5z z e j
0.5z z e j
6.2 z变换的性质
四、卷积性质:
对单边z变换,要
设 f1(k) F1(z), 1 | z | 1
f2(k) F2(z), 2 | z | 2
求f1(k)、 f2(k)为因 果序列
则 f1(k) f2 (k) F1(z) F2 (z). max(1,2 ) | z | min(1, 2 )
f(k)
单边F (z)
一一对应
f(k)
6.1 z变换
常用序列的z变换:

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

第 6 章离散信号与系统的Z 域分析6.0 引言与拉氏变换是连续时间傅立叶变换的推广相对应,Z 变换是离散时间傅立叶变换的推广。

Z 变换的基本思想、许多性质及其分析方法都与拉氏变换有相似之处。

当然, Z 变换与拉氏变换也存在着一些重要的差异。

6.1 双边 Z 变换6.1.1双边Z变换的定义前面讨论过,单位脉冲响应为h[n] 的离散时间 LTI 系统对复指数输入z n的响应y[n]为y[ n]H ( z) z n(6.1)其中H ( z)h[ n] z n(6.2)n式 (6. 2) 就称为 h[n] 的双边 Z 变换。

当 z= e j时, Z 变换就转变为傅立叶变换。

因此一个离散时间信号的双边Z 变换定义为:X ( z)x[ n]z n(6.3)n式中 z 是一个复变量。

而x[n]与它的双边z 变换之间的关系可以记做zx[n]X (z)6.1.2双边Z变换的收敛域x[n] 的双边 Z 变换为一无穷级数,因此存在级数是否收敛的问题,即一方面并非所有信号的Z 变换都存在;另一方面即使某信号的Z 变换存在,但并非Z 平面上的所有点都能使X(z)收敛。

那些能够使X(z)存在的点的集合,就构成了X(z)的收敛域,记为ROC。

只有当式 (6.3) 的级数收敛,X (z) 才存在。

X ( z) 存在或级数收敛的充分条件是x[n]z n(6.4)n在 x[ n] 给定的条件下,式 (6.4)级数是否收敛取决于 z 的取值。

在 z 复平面上,使式 (6.4)级数收敛的 z取值区域就是 X(z)的收敛域。

6.1.3零极点图如果X(z) 是有理函数,将其分子多项式与分母多项式分别因式分解可以得到:N ( z)(z z i )X ( z)i(6.5)M(zD ( z)z p )p则由其全部的零极点即可表示出X ( z) ,最多相差一个常数因子。

在Z 平面上表示出全部的零极点,即构成X ( z) 的几何表示——零极点图。

信号与系统 第六章离散系统的Z域分析

信号与系统  第六章离散系统的Z域分析
j
Z平面

k 1 k (1 z ) ( 3z ) 3 k 1 k 0


0
|z|<3时,第一项收敛于
z ,对应于左边序列。 z 3 z |z|>1/3时,第二项收敛于 ,对应于右边序列。 1 收敛域 z3
1 3
3
1 当 | z | 3 时, 3
8 z z 3 z F ( z) 1 z 3 z 3 ( z 3)( z 1 3)
应用尺度变换:
k

sin k (k )
z a
z sin z 2 2 z cos 1
0< a <1
sin a z sin a sin k (k ) z 2 z ( a ) 2( a ) cos 1 z 2 2 a z cos a 2
§6.2
Z变换的性质
| k-3|(k)
解:(1) F z
k k k z 1
k 1
(2) 双边z变换: F z
k
f k z


k
2 1 z 2z 3 2 z z
2
0 z
单边z变换: F z f k z
k 0
长春理工大学
零点:0 极点:3,1/3
§6.1
Z 变换
Z变换的收敛域
收敛域内不包含任何极点,在极点处,F(z)为无穷大, Z变换不收敛。 有限长序列的收敛域为整个Z平面, 可能不含z=0, z=。 因果有限长序列: F(z)=f (1)z -1+ f (2)z -2+· · · · |z|>0 反因果有限长序列: F(z)=f (-1)z 1+ f (-2)z2+· · · · |z|< 如果是因果序列,收敛域为|z|>0圆的外部。 如果是左边序列,收敛域为|z|<0 。 如果是双边序列,收敛域由圆环组成。

第六章离散系统的Z域分析

第六章离散系统的Z域分析

z z F (z) ( a z b ) za zb
a z 当 1且 1即a z b 收敛 z b
j Im [z ]
b
0
a
Re [ z ]
5
由上可知 (1) z变换的收敛域与f(k) 与z值的范围有关,两 个不同的序列由于收敛域不同可能对应于同一个z 变换,为了单值的确定z变换对应的序列,在给出 序列的z变换式的同时,必须明确其收敛域。
m
n m
f (n)z
1
n m
f (n)z
n
1
n
]
]
14
z f ( k m ) ( k ) f ( k m )z
k 0

k
z
m
f (k m )z
k 0

( k m )
z
m
z [ f ( n)z
n 0
m m 1 n 0
据定义
zkf ( k )
k 1
z ( kz
k
d k d z z f (k ) z F ( z ) dz k dz
时域序列线性加权的z变换为原序列象函数微 20 分后乘以(z)
kf (k )z dz ) f ( k ) z [ dz
k k
k

k
] f (k )
推广:
m
d m k f ( k ) ( z ) F ( z ) ( 1 z 2 ) dz
d m ( z ) F ( z )表示对F ( z )求导并乘以 ( z )共m次 dz
z 例4、 若 已 知 z[ ( k )] ,求 斜 变 序 列 k ( k )的z变 换 z 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验6 离散时间系统的z 域分析一、实验目的1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。

2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理1. Z 变换序列x(n)的z 变换定义为()()nn X z x n z+∞-=-∞=∑Z 反变换定义为11()()2n rx n X z z dzj π-=⎰在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换和z 反变换:Z=ztrans(F) 求符号表达式F 的z 变换。

F=ilaplace(Z) 求符号表达式Z 的z 反变换。

2.离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换()()nn H z h n z+∞-=-∞=∑此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到()()/()H z Y z X z =由上式描述的离散时间系统的系统函数可以表示为101101()MM N N b b z b z H z a a z a z ----+++=+++……3.离散时间系统的零极点分析离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。

在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为:zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。

zplane(z,p) z,p 为零极点序列(列向量)。

系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统的频率特性响应以及判断系统的稳定性:①系统函数的极点位置决定了系统单位抽样响应h(n)的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

②系统的频率响应取决于系统的零极点,根据系统的零极点分布情况,可以通过向量分析系统的频率响应。

③因果的离散时间系统稳定的充要条件是H(z)的全部极点都位于单位圆内。

三、实验内容(1)已知因果离散时间系统的系统函数分别为:①23221()0.50.0050.3z z H z z z z ++=--+②324322()3331z z H z z z z z -+=+-+-试采用MATLAB 画出其零极点分布图,求解系统的冲激响应h(n)和频率响应H(),并判断系统是否稳定。

①MATLAB 代码如下: b=[1 2 1];a=[1 -0.5 -0.005 0.3]; zplane(b,a); b1=[1 2 1];a1=[1 -0.5 -0.005 0.3 0]; [r,p,k]=residue(b1,a1) r =-1.5272 - 2.2795i -1.5272 + 2.2795i -0.2790 + 0.0000i 3.3333 + 0.0000i p =0.5198 + 0.5346i 0.5198 - 0.5346i -0.5396 + 0.0000i 0.0000 + 0.0000i k = []Ωj e实验结果分析:由零极点分布可得 冲激响应:h(n)=((-1.5272 - 2.2795*i)*(0.5198 + 0.5346i)^n+(-1.5272 + 2.2795*i)*(0.5198 - 0.5346*i)^n+(-0.2790)*(-0.5396)^n)*heaviside(n) 频率响应:232()21()()0.5()0.0050.3jw jw jwjw jw jwe e H e e e e ++=--+ 由于该系统所有极点位于Z 平面单位圆内,故系统是稳定的。

②MATLAB 代码如下: b=[1 -1 0 2]; a=[3 3 -1 3 -1]; zplane(b,a); b1=[1 -1 0 2]; a1=[3 3 -1 3 -1 0]; [r,p,k]=residue(b1,a1) r =-0.1375 + 0.0000i 0.2628 + 0.3222i 0.2628 - 0.3222i 1.6119 + 0.0000i -2.0000 + 0.0000i p =-1.6462 + 0.0000i0.1614 + 0.7746i 0.1614 - 0.7746i 0.3234 + 0.0000i 0.0000 + 0.0000i k = [] 实验结果分析: 由零极点分布可得 冲激响应:h=((-0.1375)*(-1.6462)^n+(0.2628 + 0.3222*i)*(0.1614 + 0.7746*i)^n+(0.2628 - 0.3222*i)*(0.1614 - 0.7746*i)^n+(1.6119)*(0.3234)^n)*heaviside(n); 频率响应:32432()()2()3()3()()31jw jw jwjw jw jw jwe e H e e e e e -+=+-+- 由于该系统所有存在极点位于Z 平面单位圆外,故系统是不稳定的。

(2)已知离散时间系统系统函数的零点z 和极点p 分别为:①z=0,p=0.25 ②z=0,p=1 ③z=0,p=-1.25 ④z=0,p 1=60.8je π,p 2=60.8jeπ- ⑤z=0,p 1= 8jeπ,p 2= 8jeπ-⑥z=0,p 1= 341.2jeπ,p 2= 341.2jeπ-试用MATLAB 绘制上述6种不同情况下,系统函数的零极点分布图,并绘制相应单位抽样响应的时域波形,观察分析系统函数极点位置对单位抽样响应时域特性的影响和规律。

①MATLAB 代码如下:b=[1 0];a=[1 -0.25];subplot(121);zplane(b,a); %绘出零极点分布图subplot(122);impz(b,a,0:10); %绘出单位抽样响应得到图像如下:②MATLAB代码如下:b=[1 0];a=[1 -1];subplot(121);zplane(b,a);subplot(122);impz(b,a,0:10);得到图像如下:③MATLAB代码如下:b=[1 0];a=[1 1.25];subplot(121);zplane(b,a);subplot(122);impz(b,a,0:20);得到图像如下:④MATLAB代码如下:z=[0]';p=[0.8*exp(i*pi/6) 0.8*exp(-i*pi/6)]'; subplot(121);zplane(z,p);b=[1 0];a=[1 -1.6*cos(pi/6) 0.64];subplot(122);impz(b,a,0:30);得到图像如下:⑤MATLAB代码如下:z=[0]';p=[exp(i*pi/8) exp(-i*pi/8)]'; subplot(121);zplane(z,p);b=[1 0];a=[1 -2*cos(pi/8) 1];subplot(122);impz(b,a,0:30);得到图像如下:⑥MATLAB代码如下:z=[0]';p=[1.2*exp(3*i*pi/4) 1.2*exp(-3*i*pi/4)]'; subplot(121);zplane(z,p);b=[1 0];a=[1 -2.4*cos(-3*pi/4) 1.44];subplot(122);impz(b,a,0:30);得到图像如下:实验结果分析:由以上6种情况可以总结出:①当极点位于单位圆内时,h(n)为衰减序列; ②当极点位于单位圆上时,h(n)为等幅序列; ③当极点位于单位圆外时,h(n)为增幅序列; ④若h(n)有一阶实数极点,则h(n)为指数序列;⑤若h(n)有一阶共轭极点,则h(n)为指数振荡序列,并且当h(n)的极点位于虚轴左边时,h(n)按一正一负的规律交替变化。

(3)已知离散时间系统的系统函数分别为:①66(2)()(0.8)(0.8)jjz z H z z ez eππ-+=--②66(2)()(0.8)(0.8)jjz z H z z ez eππ--=--上述两个系统具有相同的极点,只是零点不同,试用MATLAB分别绘制上述两个系统的零极点分布图及相应单位抽样响应的时域波形,观察分析系统函数零点位置对单位抽样响应时域特性的影响。

①MATLAB代码如下:z=[0 -2]';p=[0.8*exp(i*pi/6) 0.8*exp(-i*pi/6)]';subplot(121);zplane(z,p);b=[1 2 0];a=[1 -1.6*cos(pi/6) 0.64];subplot(122);impz(b,a,0:30);得到图像如下:②MATLAB代码如下:z=[0 2]';p=[0.8*exp(i*pi/6) 0.8*exp(-i*pi/6)]';subplot(121);zplane(z,p);b=[1 -2 0];a=[1 -1.6*cos(pi/6) 0.64];subplot(122);impz(b,a,0:30);得到图像如下:实验结果分析:从图像看出,两个系统极点相同,零点互为相反数,得到的h(n)各值也对应相反,但收敛性一致,故在有相同极点的情况下,零点分布只影响系统时域响应的幅度,不影响响应模式。

四、实验心得体会。

相关文档
最新文档