初中数学七年级下册 第27章 相似 全章教案 6相似三角形的判定(SAS)

合集下载

27.2.1相似三角形的判定(SSS和SAS)

27.2.1相似三角形的判定(SSS和SAS)
答案:(1)略; (2)△P2P5D,△P4P5F,△P2P4D, △P4P5D,△P2P4P5,△P1FD.
网格中的相似 如何判断网格中的三角形是? 三角形相似的两个判定: 三边成比例的两个三角形相似 两边成比例且夹角相等的两个三角形相似
网格中的相似
如图,在正方形网格上有6个斜三角形:①△ABC, ②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK, 在②~⑥中,与三角形①相似的是(B )
A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥
网格中的相似
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格 点上. (1)判断△ABC和△DEF是否相似,并说明理由; (2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个 点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三 角形,并在图中连结相应线段,不必说明理由).
∴△ABC~△A'B'C'.
判定的应用
∴ΔABC∽ΔADE ∴∠BAC=∠DAE ∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE.
判定的应用 提示:先把线段乘积转化为比例
判定的应用
如图,在三角形纸片ABC中,AB=6,BC=8,AC=4. 沿虚线剪下的涂色部分的三角形与△ABC相似的是(C )
相似三角形的判定(SSS和SAS)
教学目标 理解三边成比例的两个三角形相似. 理解两边成比例且夹角相等的两个三角形相似.
教学重点 运用三角形相似的判定证明三角形相似.
教学难点 运用三角形相似的判定证明三角形相似.
知识回顾
1.对应角_相___等___,对应边成___比__例__的两个三角形, 叫做相似三角形. 2.相似三角形性质:对应角相等,对应边成比例.

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案一、教学目标1. 让学生理解三角形相似的概念。

2. 引导学生掌握三角形相似的判定方法。

3. 培养学生运用相似三角形解决实际问题的能力。

二、教学内容1. 三角形相似的定义。

2. 三角形相似的判定方法:AA相似定理、SAS相似定理、RHS相似定理。

3. 相似三角形的性质:对应边成比例、对应角相等。

三、教学重点与难点1. 教学重点:三角形相似的概念、判定方法及性质。

2. 教学难点:三角形相似的判定方法的灵活运用。

四、教学方法与手段1. 教学方法:讲解法、示范法、练习法、小组合作学习法。

2. 教学手段:黑板、多媒体课件、几何模型。

五、教学过程1. 导入新课:通过展示一些生活中的图片,如相似的树叶、钥匙等,引导学生发现相似现象,激发学生的学习兴趣。

2. 讲解三角形相似的概念:给出三角形相似的定义,解释相似三角形的含义。

3. 讲解三角形相似的判定方法:a. AA相似定理:若两个三角形的两边及其夹角分别相等,则这两个三角形相似。

b. SAS相似定理:若两个三角形的两边及它们夹角的夹角分别相等,则这两个三角形相似。

c. RHS相似定理:若两个三角形的斜边及夹在斜边之间的角分别相等,则这两个三角形相似。

4. 讲解相似三角形的性质:对应边成比例、对应角相等。

5. 课堂练习:布置一些有关三角形相似的判断题目,让学生独立完成,巩固所学知识。

6. 总结与拓展:对本节课的内容进行总结,提问学生有哪些实际问题可以运用相似三角形解决,引导学生思考。

7. 课后作业:布置一些有关三角形相似的练习题目,巩固所学知识。

六、教学评价1. 评价目标:检查学生对三角形相似的概念、判定方法和性质的理解及应用能力。

2. 评价方法:课堂练习、课后作业、小组讨论、课堂提问。

3. 评价内容:a. 学生能否正确理解三角形相似的定义。

b. 学生能否熟练运用AA、SAS、RHS相似定理判定三角形相似。

c. 学生能否掌握相似三角形的性质,如对应边成比例、对应角相等。

相似三角形的判定(SSS和SAS)课件

相似三角形的判定(SSS和SAS)课件
在几何图形中,如果两个三角形相似,那么它们的对应角度相等。因此,可以通过构造相似三角形来 求解目标角度。
其他领域的应用
物理学中的应用
01
在物理学中,相似三角形可以用来解决一些与距离、高度和角
度相关的问题,如光的折射、反射等。
工程学中的应用
02
在工程学中,相似三角形可以用来解决一些与测量、设计和施
工相关的问题,如建筑设计、道路规划等。
若两个三角形相似,则它们的面 积比等于相似比的平方。
面积于计算相似三角形的面积。
在实际应用中,可以通过测量两 个三角形的面积和相似比来计算
其中一个三角形的面积。
05
相似三角形的应用举例
测量问题中的应用
利用相似三角形测量高度
通过构造相似三角形,利用已知边长和角度,可以计算出目 标物体的高度。
相似三角形的判定 (SSS和SAS)课件
目录
• 引言 • SSS判定方法 • SAS判定方法 • 相似三角形的性质与定理 • 相似三角形的应用举例 • 总结与展望
01
引言
相似三角形的定义
对应角相等,对应边 成比例的两个三角形 叫做相似三角形。
相似三角形对应边的 比叫做相似比(或相 似系数)。
相似用符号“∽”来 表示,读作“相似于 ”。
比例和度量问题。
培养逻辑思维
学习和掌握相似三角形的判定方 法,有助于培养学生的逻辑思维
、推理能力和问题解决能力。
相似三角形的研究前景
01
深入探究判定方法
尽管SSS和SAS是两种常用的相似三角形判定方法,但仍存在其他判定
方法值得进一步研究和探讨。例如,探究更多基于边和角关系的判定方
法,提高判定的准确性和效率。

27.2.1相似三角形的判定(SAS)

27.2.1相似三角形的判定(SAS)

课题:27.2.1相似三角形的判定(SAS)【教学目标】1.掌握相似三角形判定定理(SAS) ,能初步运用定理解决相关问题2.通过相似三角形判定定理(SAS)的探究归纳过程,体会类比的数学思想.【教学重点】相似三角形判定定理(SAS)的理解与应用.【教学难点】相似三角形判定定理(SAS)的证明.【教学过程】一、复习引入1.证明两个三角形全等的方法都有哪些?(SAS、ASA、AAS,SSS)2.到目前为止,我们学习过的证明两个三角形相似的方法有哪些?(定义、预备定理、SSS)【白板操作】第2页点击“心形”右边,出现已学的三种方法.二、探究相似三角形判定方法(SAS)思考:类似于判定三角形全等的方法,我们还能不能通过两边及其夹角来判断两个三角形相似.【白板操作】第3页1.探究3(课本P44).学生自主画图,小组讨论验证【白板操作】第4页2.学生自己写出猜想,再根据猜想的的条件和结论分别写出已知、求证、尝试自己证明。

已知:在△ABC和△A’B’C’,''''A B A CAB AC=,∠A=∠A’。

求证:△ABC∽△A’B’C’【白板操作】第5页点击图形相应位置,互相辅助线;点击“心形”右边,出现辅助线的作法;其余证明过程师生板书.3.得出定理,如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.符号:在△ABC和△A’B’C’中∵''''A B A CAB AC=,∠A=∠A’简写为:两边对应成比例且夹角相等,两个三角形相似.【白板操作】第6页点击“心形”右边,分别出现上述内容.三、例题例1.根据下列条件,判断△ABC和△A’B’C’是否相似,并说明理由.AB=7,AC=14,∠A=60°A’B’=6,A’C’=3,∠A’=60°例2.如图△ABC 中,D 、E 是AB 、AC 上点,AB =7.8,AD =3,AC =6,CE =2.1.试判断△ADE 与△ABC 是否会相似?【白板操作】第7-8页 师生在白板上书写解答过程.四、辨析:提出问题:是否有SSA 呢?反例:''''A B A C AB AC=,∠B=∠B ’,但△ABC 与△A ’B ’D ’不相似. 【白板操作】第9页 点击“心形”右边,出现反例图形等.第10页 这里设置了屏幕遮盖.五、课堂练习1.能判定△ABC ∽△A’B’C’的条件是( ) (A)''''AB A B AC A C =,且∠A=∠A’ (B)''''AB AC A B A C = (C)''''AB AC A B A C =,且∠B=∠B’ (D)''''AB AC A B A C =,且∠C=∠C’ 2.已知△ABC 和 △A’B’C’,根据下列条件,判断它们是否相似.(1)∠A=120°,AB=7cm ,AC=14cm,∠A`=120°,A`B`=3cm ,A`C`=6cm;(2) ∠A =45°,AB=12cm , AC=15cm∠A’=45°,A’B’=16cm ,A’C’=20cm六、本节小结:1. 到目前为止我们所学习过的相似三角形的判定方法(定义、预备定理、SSS 、SAS)2. 证明方法小结① 化归到预备定理、构造平行、全等三角形② 类比思想【白板操作】第11页 点击“心形”右边,出现相关内容.【教学反思】。

初中相似三角形教案

初中相似三角形教案

初中相似三角形教案教案标题:初中相似三角形教案教案目标:1. 理解相似三角形的概念和性质。

2. 能够判断两个三角形是否相似。

3. 掌握相似三角形的比例关系和性质。

4. 能够应用相似三角形的性质解决相关问题。

教案步骤:引入:1. 引导学生回顾并复习三角形的基本概念和性质。

2. 引导学生思考,什么是相似三角形?相似三角形有哪些性质?探究:3. 提供一组具有相似关系的三角形,让学生观察并发现相似三角形的特点。

4. 引导学生总结相似三角形的判定条件,并通过几个例子进行讲解和练习。

巩固:5. 给出一些练习题,让学生判断是否相似,并解释判断的依据。

6. 引导学生探究相似三角形的比例关系,例如边长比例、角度比例等,并进行相关练习。

拓展:7. 引导学生应用相似三角形的性质解决实际问题,例如计算高度、距离等。

8. 提供一些挑战性问题,让学生运用相似三角形的知识进行推理和解决。

总结:9. 对本节课的内容进行总结,强调相似三角形的重要性和应用价值。

10. 鼓励学生在日常生活中多加观察和思考,发现更多的相似三角形的应用。

教案评估:11. 通过课堂练习、小组合作等形式进行教学评估,检查学生对相似三角形的理解和应用能力。

12. 针对学生的不同水平,提供个性化的辅导和指导。

教学资源:1. 相似三角形的示例图片或幻灯片。

2. 相似三角形的练习题和解答。

3. 相关的实际问题和挑战性问题。

教学延伸:1. 鼓励学生自主学习和探究,通过互动讨论、小组合作等形式拓展相似三角形的应用。

2. 引导学生进行实地观察和测量,寻找并记录相似三角形的实际例子。

3. 鼓励学生利用数学软件或绘图工具绘制相似三角形,并探索其性质和关系。

教案反思:1. 教学过程中要注重启发式教学,引导学生主动思考和发现相似三角形的性质。

2. 针对学生的不同学习需求,提供个性化的教学辅导和指导。

3. 教学过程中要注重培养学生的实际应用能力,让他们能够将所学知识应用到实际问题中。

第27章 相似教案

第27章 相似教案

第二十七章相似27.1 图形的相似《图形的相似》是继“轴对称、平移、旋转”之后集中研究图形形状的内容,从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系.本节课是学生在认识了全等形的基础上进行教学的,研究相似比研究全等更具一般性,相似图形、相似多边形的概念是后续学习相似三角形的基础,是空间与图形领域中的重要内容.本节课所涉及的内容来源于实际生活,为学生的数学建模能力搭建了一个平台,从中学到的不仅仅是知识、方法,还会将生活语言转化为数学语言,提高了学生的应用意识,有着承上启下、贯穿始终的作用.课题27.1 图形的相似授课人素养目标1.理解相似图形的特征,掌握相似图形的识别方法.2.了解成比例线段的含义,会判断四条线段是不是成比例线段.3.理解相似多边形的概念、性质及判定,会计算和相似多边形有关的角度和线段的长.教学重点1.理解并掌握相似图形、相似多边形的概念及特征.2.探索相似多边形的性质中的“对应”关系.教学难点能利用成比例线段的概念及相似多边形的性质进行有关计算.授课类型新授课课时教学步骤师生活动设计意图回顾1.什么是全等形?全等形的形状和大小有什么关系?2.下面两个图形是不是全等形?如何判断?通过复习全等形的概念和判定,为本节课相似形的学习做铺垫.同时,通过欣赏、识别生活中的全等图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.活动一:创设情境、导入新课【课堂引入】1.欣赏下面各组图片:(1)在空中不同高度飞行的两架型号相同的直升机;(2)大小不同的两个足球;(3)汽车和它的模型.2.你能看出上面各组图片的共同之处吗?把你的想法说给同学听听.通过对生活中形状相同的图形的观察和欣赏,从实际模型中抽象概括得出数学概念,自然地引出课题,使学生初步感受相似,同时进行美育渗透.活动二:实践探究、交流新知探究新知:1.探究相似图形的定义问题:(1)全等图形的形状和大小之间有什么关系?(2)观察上述图片,它们的形状和大小之间有什么关系?(3)你能给出相似图形的定义吗?(4)全等图形一定相似吗?相似图形一定全等吗?(5)你能归纳全等图形和相似图形之间的关系吗?(6)你能举出现实生活中一些相似图形的例子吗?师生活动:学生在教师设置的问题串下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.2.探究成比例线段的概念问题:(1)把九年级数学课本的两个邻边看作两条线段AB和CD,那么什么是这两条线段的比?1.让学生亲自观察实际生活中的图形,在教师提出的问题的引导下,进行分析、探究,根据图形特点归纳出相似图形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似图形概念的形成过程,体会数学与生活息息相关.2.学生在教师提转化,培养学生用符号语言表达数学知识的能力.活动三:开放训练、体现应用【典型例题】例(教材第25页练习第2题)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:图形(d)和图形(1)相似,图形(e)和图形(2)相似.通过经历对例题的探究过程,加深学生对相似图形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.课堂小结1.课堂小结:(1)通过本节课的学习,你有哪些收获?还有什么疑感?说给老师或同学听听.(2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第27~28页习题27.1第1,3,5,6题.学生在反思中整理知识、梳理思维,获得成功的体验,积累学习的经验,养成系统整理所学知识的习惯.板书设计27.1 图形的相似提纲挈领,重点突出.教学反思在思考中,学生总结出当求证的两个比例式的线段不在同一基本型的时候应该怎样解题,并且掌握中间比的找法.对于添加辅助线的证明比例式问题,需要“透析”题目中的条件和证明方法.从课堂练习和作业反馈上体现出学生对知识的接受还比较理想,这堂课还是比较成功的.反思教学过程和教师表现,进一步提升操作流程和自身素质.27.2 相似三角形27.2.1 相似三角形的判定第1课时平行线分线段成比例《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的,是本章的重点内容.本课时首先利用“如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.”引出两个三角形相似的定义(即三个角分别相等,三条边成比例的两个三角形相似),然后引导学生思考类比全等三角形的判定方法,对于相似三角形是否存在较为简便的方法.接下来教材编写者通过一个“探究”,由学生动手测量来探究得到平行线分线段成比例的基本事实(三条平行线截两条直线,所得的对应线段的比相等),继而将其应用于三角形中,得到“平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.”这一基本事实的推论,是进一步学习相似三角形判定的预备定理的基础.课题27.2.1 第1课时平行线分线段成比例授课人素养目标1.了解相似比的定义.2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似.3.会用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.4.通过探索平行线分线段成比例这个基本事实的过程,进一步熟悉由特殊到一般的数学思想,能把一个稍复杂的图形分成几个基本图形,锻炼识图能力和推理论证能力.教学重点平行线分线段成比例的基本事实及其推论的理解.教学难点平行线分线段成比例的基本事实及其推论的灵活应用,平行线分线段成比例的基本事实的变形. 授课类型新授课课时教学步骤师生活动设计意图回顾问题1:根据所学相似多边形的知识,你能给出相似三角形的定义吗?问题2:如果相似比为1,那么这两个三角形有什么关系?问题3:判定三角形全等,我们并不是验证六个条件,而是利用了几个简便的判定定理,那么判定三角形相似我们又能找到哪些简便的方法呢?问题1引导学生回顾旧知得出相似三角形的定义及写法.问题2、3让学生理解全等是相似的特殊情况,类比三角形全等的判定方法为我们探索三角形相似的判定方法提供方向指导.活动一:创设情境、导入新课【课堂引入】问题:如图,一组等距离的平行线截直线a所得到的线段相等,那么在直线b上所截得的线段有什么关系呢?引导学生回答问题后,教师做如下总结:一组等距离的平行线在直线a上所截得的线段相等,那么在直线b上所截得的线段也相等.以上结论是平行线等分线段的基本事实,讨论的是平行线截得线段相等的情况,如果截得的线段不相等呢?通过展示问题,由浅入深,循序渐进,为学习新知做铺垫.活动二:实践探究、交流新知【探究新知】1.探究平行线分线段成比例的基本事实教师提出问题,学生讨论问题:图1如图1,三条平行直线l1,l2,l3在直线AE上截得的线段AC,CE的长度之间存在着什么关系呢?同样在直线BF上截得的线段BD,DF的长度之间存在着什么关系呢?教师指导学生利用刻度尺先测量线段的长度,然后寻找线段AC,CE,BD,DF之间是否存在比例关系,实际验证后可以得到如下结论:由l1∥l2∥l3,ACCE=23,BDDF=23,可得ACCE=BDDF=23.仿照上例分析,可得结论:由l1∥l2∥l3,可得ACAE=BDBF=23.教师引导学生初步总结出平行线分线段成比例的基本事实,然后师生共同进行1.本环节的主要任务是推理得出平行线分线段成比例的基本事实,其中运用了先猜想、再测量、最后论证的方法,用语言把平行线分线段成比例的基本事实进行总结,使结论的得出有一定的层次性,也使学生在认识问题、理解问题时确定了一种思想方法.推理论证.师生共同归纳得出基本事实,教师板书基本事实.平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.2.探究平行线分线段成比例基本事实的推论教师将图1中的某些直线进行平移变换,使其出现图2、图3所示的位置关系,对学生提出问题:图2 图3根据基本事实补全下列比例式: 由图2,得AC CE =BD DF ,AC AE =BD BF ,CE AE =DFBF ;由图3,得AC CE =BD DF ,AC AE =BD BF ,CE AE =DFBF.解答本题应关注线段之间的对应关系,列比例式时上与下的对应关系应展现在同一条直线上,同时教师应利用比例的基本性质,指导学生对比例式进行变形训练,进而总结出平行线分线段成比例的位置规律,如上下=上下,上全=上全,下全=下全等. 教师对于图形作进一步变化:对于以上两个练习,只保留如图4所示的部分,那么就可以得到两个三角形对应边成比例的式子,可以得到什么结论呢?图4教师在由一般到特殊的演化过程中,将平行线分线段成比例的基本事实延伸到三角形中,当三角形中出现平行线时,使三角形的各边之间存在比例关系. 教师指导学生总结平行线分线段成比例的基本事实的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 3.探究三角形相似的预备定理教师提出问题,学生组内讨论解答,教师适时指导:2.本环节是对平行线分线段成比例的基本事实的变式与延伸,这部分内容将在以后的学习和应用中起到重要的指导作用,所以在探究、总结、应用的过程中,一定要注意知识的重要性,要使每一个学生都有深刻的理解与记忆. 3.学生经历观察、猜想、动手实践、总结归纳、实践应用等环节,在学习知识的过程中循序渐进,符合学生的认知规律和思维模式.通过对相似三角形的基本图形的对比理解,更能加深印象.如图5,在△ABC中,D为AB上任意一点,过点D作DE∥BC交AC于点E.(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?图5(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?思考:当DE∥BC时,△ADE与△ABC相似,可以用什么语言来概括呢?你能进行证明吗?总结判定三角形相似的预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.思考:一条直线截三角形两边延长线所得三角形与原三角形相似吗?请对比图6、图7两个图形,分析其中的联系与区别.图6 图7活动三:开放训练、体现应用【典型例题】例(教材第31页练习第1题)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,求BCCE的值.解:∵AB∥CD∥EF,∴BCCE=ADDF.又AD=AG+GD=3,DF=5,∴BCCE=35.【变式训练】1.如图,若l1∥l2∥l3,则ABAC=(PG)PH=DE(DF).本环节所设置的例题和变式非常具有代表性,既考查了平行线分线段成比例基本事实的内容及其推论,又灵活地运用转化思想实现了运用“中间比”的性质,不仅发展了学生的思维能力,还拓宽了学生的思路和视野.2.如图,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F ,且AB =6,BC =8. (1)求DEDF的值;(2)当AD =5,CF =19时,求BE 的长.解:(1)∵AD ∥BE ∥CF ,∴DE DF =AB AC =66+8=37.(2)过D 点作DM ∥AC 交CF 于M ,交BE 于N ,求出MF =14. ∵NE ∥MF ,∴NE MF =DE DF =37,∴NE =37MF =37×14=6.∴BE =BN +NE =5+6=11. 活动四:课堂检测【课堂检测】1.如图,已知AB ∥CD ∥EF ,若AC =6,CE =2,BD =3,则BF 的长为(C) A .6 B .5.5 C .4 D .4.5第1题图2.如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.第2题图提示:根据DE ∥BC 得到AD AB =AE AC ,然后根据比例的性质可计算出AE 的长为107.通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.课堂小结1.课堂小结:(1)平行线分线段成比例的基本事实是什么?推论是什么?易错点是什么?注重课堂小结,激发学生参与的主(2)目前我们有什么方法判定两个三角形相似?(3)本课两个重要的结论在探索中主要运用了哪些数学思想方法?教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第42页习题27.2第4,5题.动性,为每一个学生的发展与表现创造机会.板书设计27.2.1 相似三角形的判定第1课时平行线分线段成比例1.相似三角形的定义及有关概念.2.平行线分线段成比例定理及推论.3.相似三角形判定的预备定理.提纲挈领,重点突出.教学反思在思考中,学生总结出当求证的两个比例式的线段不在同一基本型的时候应该怎样解题,并且掌握中间比的找法.对于添加辅助线的证明比例式问题,需要“透析”题目中的条件和证明方法.从课堂练习和作业反馈上体现出学生对知识的接受还比较理想,这堂课还是比较成功的.反思教学过程和教师表现,进一步提升操作流程和自身素质.第2课时相似三角形的判定定理1,2本节课是在学习了相似多边形的概念、比例线段的有关概念及性质,并具备了有关三角形中位线和平行四边形知识后,研究相似三角形的判定定理.本节课是判定三角形相似的起始课,是本章的重点之一.一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且通过本节课的学习,还可培养学生实验、猜想、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用.因此,这节课在本章中有着举足轻重的地位.课题27.2.1 第2课时相似三角形的判定定理1,2 授课人素养目标1.了解“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”判定定理的证明过程,能运用这两个判定定理证明两个三角形相似.2.结合全等三角形的SSS和SAS的证明方法,会用类比、转化的思想证明以上两个相似三角形的判定定理.3.通过对相似三角形两个判定定理的学习,会用已知条件证明三角形相似并解决一些简单的问题.教学重点掌握两个判定定理,学会运用两个判定定理判定两个三角形相似.教学难点1.探究三角形相似的条件.2.运用两个三角形相似的判定定理解决问题.授课类型新授课课时教学步骤师生活动设计意图回顾问题:1.我们学习过哪些判定三角形全等的方法?2.全等三角形与相似三角形有怎样的关系?3.两个三角形全等有哪些简单的判定方法?由三角形全等的知识,类比思考两个三角形相似的条件能否更简单?能有哪些简单的方法?复习旧知,承前启后,回顾三角形全等的条件,用类比的思想展开思维,按顺序展开探究.活动一:创设情境、导入新课【课堂引入】问题情境:1.相似三角形是如何定义的呢?除了定义,还有什么方法可以判定两个三角问题1是本课学习的知识基础,问题2是本课探究现应用 并说明理由:(1)AB =4 cm ,BC =6 cm ,AC =8 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm.(2)∠A =120°,AB =7 cm ,AC =14 cm ,∠A ′=120°,A ′B ′=3 cm ,A ′C ′=6 cm. 解:(1)∵AB A ′B ′=412=13,BC B ′C ′=618=13, AC A ′C ′=824=13,∴AB A ′B ′=BC B ′C ′=ACA ′C ′.∴△ABC ∽△A ′B ′C ′. (2)∵AB A ′B ′=73,AC A ′C ′=146=73,∴AB A ′B ′=ACA ′C ′.又∵∠A =∠A ′,∴△ABC ∽△A ′B ′C ′. 【变式训练】1.如图,在 △ABC 和 △ADE 中,AB AD =BC DE =ACAE ,∠BAD =20°,则∠CAE 的度数为20°.2.如图,D ,E 分别是 △ABC 的边 AC ,AB 上的点,AE =1.5,AC =2,BC =3,且AD AB =34,求 DE 的长.解:∵AE =1.5,AC =2, ∴AE AC =1.52=34=ADAB,且∠EAD =∠CAB. ∴△AED ∽△ACB. ∴DE BC =34,即DE 3=34, ∴DE =94.学生对两个三角形相似的判定定理的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.活动四:课堂检测【课堂检测】1.如图,D 是 △ABC 一边 BC 上一点,连接 AD ,使△ABC ∽ △DBA 的条件是 (D)通过课堂检测,进一步巩固所学新知,同时检测学习A.AC∶BC=AD∶BD B.AC∶BC=AB∶AD C.AB2=CD·BC D.AB2=BD·BC 效果,做到“堂堂清”.课堂小结1.课堂小结:(1)本节课主要学习了哪些新知识?(2)本节课你还有哪些疑惑?说一说!教师强调:1.证明两个三角形相似的方法.2.相似三角形的判定方法与全等三角形的判定方法的联系和区别.教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第42页习题27.2第1,3题.注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会.板书设计27.2.1 相似三角形的判定第2课时相似三角形的判定定理1,21.三角形相似的判定定理:(1)三边成比例的两个三角形相似.(2)两边成比例且夹角相等的两个三角形相似.2.利用相似三角形的判定解决问题.提纲挈领,重点突出.教学反思本节课主要是探究相似三角形的判定方法1,本课教学力求使探究途径多元化,把学生利用刻度尺、量角器等作图工具做静态探究与应用“几何画板”等计算机软件做动态探究有机结合起来,让学生充分感受探究的全面性,丰富探究的内涵.另外小组合作学习的开展不仅提高了数学实验的效率,而且培养了学生的合作能力.反思教学过程和教师表现,进一步提升操作流程和自身素质.第3课时相似三角形的判定定理3本节课是初中数学九年级第二十七章第二节的内容,是初中数学四大板块中空间与图形的一部分,是相似一章的重要内容之一.既是全等三角形研究的继续,也为后面测量、相似三角的应用和研究三角函数做铺垫,还是研究圆中比例线段的重要工具,同时也是相似三角形性质的研究基础,更为其它学科和今后高中的学习打下基础,重要的是它还是中考必考的知识点.因此必须熟练掌握三角形相似的判定,并能灵活运用,显得尤为重要,相似三角形的判定的地位可见一斑,起着承前启后的作用.课题27.2.1 第3课时相似三角形的判定定理3 授课人素养目标1.了解“两角分别相等的两个三角形相似”和直角三角形相似的特殊的判定方法的证明过程,理解两角判定法和直角边斜边判定法的含义并掌握它们的数学符号表述方法,能运用两角判定法和直角边斜边判定法判定三角形相似及解决简单的问题.2.会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等问题.3.经历类比→猜想→探索→总结→应用的活动过程,进一步领悟类比的思想方法.教学重点运用两角判定法和直角边斜边判定法判定三角形相似.教学难点相似三角形判定方法的推导及应用.授课类型新授课课时教学步骤师生活动设计意图回顾请回答下列问题:1.我们学习过相似三角形的哪些判定方法?2.类比全等三角形的判定方法,猜想还会有怎样的方法判定两个三角形相似.采用类比的方法思考问题,降低知识难度,鼓励学生猜想,为学新知做好铺垫.活动一:创设情境、导入新课【课堂引入】观察猜想:学生观察自己手中的三角尺,与教师的三角尺相对照,找形状相同的一组,判断两个直角三角形是否相似.通过身边的实际问题引导学生思考、猜想,为探究问题:两个三角形相似是由什么条件得到的呢?师生活动:学生将直观印象表达出来,再进行思考,得到三个角分别相等的两个三角形相似,从而可简化为两个角分别相等即可.新知指明了方向.活动二:实践探究、交流新知探究新知:1.探究三角形相似的判定方法展示问题:如图所示,在△ABC与△A′B′C′中,若∠A=∠A′,∠B=∠B′,试猜想△ABC与△A′B′C′是否相似,并证明你的结论.师生活动:教师引导学生思考讨论,根据图形的外观,绝大多数学生会猜想两个三角形相似.根据题设条件,需要构造出符合定理条件的图形:在△ABC中,作BC的平行线,且在△ABC中截得的三角形与△A′B′C′又有着非常紧密的联系(全等),共同分析,完成证明,学生书写证明过程.证明:如图,在△ABC 的边AB上截取AD=A′B′,过点D作DE∥BC,交AC于点E,则有△ADE∽△ABC.∵∠ADE=∠B, ∠B=∠B′,∴∠ADE=∠B′.又∵∠A=∠A′,AD=A′B′,∴△ADE≌△A′B′C′.∴△ABC∽△A′B′C′.得出结论:判定定理:两角分别相等的两个三角形相似.用数学符号表示这个定理:在△ABC与△A′B′C′中,∵∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′.2.探究直角三角形相似的判定方法问题:我们知道,两个直角三角形全等可以用“HL”来判定,那么满足斜边和一条直角边成比例的两个直角三角形相似吗?在证明相似三角形的判定定理时,方法十分特别,学生理解和应用均会产生困难,教师在引导中解析,在解析中总结,学生易于接受,易于理解,能够把握判定定理的证明过程.师生总结:斜边和一条直角边成比例的两个直角三角形相似.活动三:开放训练、体现应用【典型例题】例(教材第36页练习第2题)如图,在Rt△ABC中,CD是斜边AB上的高.求证:△ACD∽△ABC.证明:∵CD是斜边AB上的高,∴∠ADC=∠CDB=90°.∴∠ACB=∠ADC=∠CDB=90°.∵∠A=∠A,∴△ACD∽△ABC.【变式训练】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,DE⊥AC.(1)图中共有几对相似三角形?(2)请选择其中的一对给予证明.解:(1)∵在Rt△ABC中,∠ACB=90°,CD⊥AB,DE⊥AC,∴∠AED=∠ACB=90°.∵∠A是公共角,∴△ADE∽△ABC.同理:△CBD∽△ABC,△ACD∽△ABC,△DCE∽△ACD,∴△ADE∽△DCE∽△CBD∽△ACD∽△ABC.∴图中共有10对相似三角形.(2)选择△CBD∽△ABC.证明:在Rt△ABC中,∵∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°.又∵∠B是公共角,∴△CBD∽△ABC.通过经历对例题的探究过程,加深学生对三角形相似的判定定理的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.活动四:课堂检测【课堂检测】1.如图,已知AB∥DE,∠AFC=∠E,则图中共有相似三角形(C)A.1对 B.2对 C.3对 D.4对通过课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂。

相似三角形教案完美版

相似三角形教案完美版

面积比与边长比关系
1 2
面积比性质
相似三角形的面积比等于对应边长的平方比,即 如果AB/A'B' = k,则S△ABC/S△A'B'C' = k^2。
面积比推论
如果两个三角形的面积比已知,可以通过求边长 比来进一步确定这两个三角形的相似关系。
3
应用
在解决与相似三角形有关的问题时,可以通过面 积比和边长比的关系来建立方程或不等式,从而 找到问题的解决方案。
三角形的边、角、顶点、高、中线、 角平分线等。
三角形全等条件
全等三角形的定义
能够完全重合的两个三角形。
全等三角形的性质
全等三角形的对应边相等,对应角相等。
全等三角形的判定条件
SSS(三边全等)、SAS(两边和夹角全等)、ASA(两角和夹边全等)、AAS(两角和 一非夹边全等)和HL(直角边斜边定理)。
推论
如果两个三角形有两个对 应的角分别相等,则这两 个三角形相似。
对应边成比例性质
定义
当两个三角形的对应边成比例时,这两个三角形 相似。
性质
相似三角形的对应边成比例,即如果AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
推论
如果两个三角形有两边对应成比例,且夹角相等 ,则这两个三角形相似。
相似多边形概念
01
02
03
相似多边形的定义
两个多边形的对应角相等 ,对应边成比例,则这两比值 。
相似多边形的性质
相似多边形的对应角相等 ,对应边成比例,面积比 等于相似比的平方。
03

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案一、教学目标1. 让学生理解三角形相似的概念及其性质。

2. 引导学生掌握三角形相似的判定方法。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 三角形相似的定义及性质。

2. 三角形相似的判定方法:AA相似定理、SAS相似定理、SSS相似定理。

三、教学重点与难点1. 教学重点:三角形相似的概念、性质及判定方法。

2. 教学难点:三角形相似判定方法的运用和证明。

四、教学方法与手段1. 教学方法:讲解、示范、练习、讨论。

2. 教学手段:黑板、PPT、几何模型。

五、教学过程1. 导入:通过展示一些形状相似的三角形,让学生观察并猜测它们之间的关系。

2. 新课导入:介绍三角形相似的定义及性质。

3. 判定方法讲解:讲解AA相似定理、SAS相似定理、SSS相似定理。

4. 实例演示:通过PPT展示三角形相似的判定过程,让学生理解并掌握判定方法。

5. 课堂练习:布置一些相关的练习题,让学生运用所学知识进行解答。

6. 解答与讲解:针对学生解答中的问题进行讲解,巩固知识点。

7. 课堂小结:总结本节课所学内容,强调三角形相似的判定方法及应用。

8. 作业布置:布置一些有关三角形相似的练习题,巩固所学知识。

六、教学拓展1. 引导学生思考:除了AA、SAS、SSS三种判定方法,还有其他判定三角形相似的方法吗?2. 介绍另一种判定方法:RHS相似定理(直角三角形相似定理)。

3. 通过实例让学生了解RHS相似定理的运用。

七、课堂互动1. 组织学生进行小组讨论:如何运用所学知识解决实际问题?2. 分享讨论成果:学生举例说明三角形相似在实际问题中的应用。

3. 教师点评:针对学生的分享进行点评,强调知识点在实际问题中的重要性。

八、课后反思1. 让学生回顾本节课所学内容,总结三角形相似的判定方法及应用。

2. 鼓励学生自主探索:如何运用三角形相似的知识解决更复杂的问题?3. 建议:课后查阅相关资料,了解三角形相似在实际生活中的应用。

初中数学相似教案

初中数学相似教案

初中数学相似教案教学目标:1. 理解相似三角形的定义和性质;2. 学会运用相似三角形解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 相似三角形的定义和性质;2. 相似三角形的判定;3. 相似三角形的应用。

教学步骤:一、导入(5分钟)1. 引导学生回顾已学的三角形相关知识,如三角形的分类、三角形的性质等;2. 提问:同学们,你们知道什么是相似三角形吗?有没有谁能举个例子来说明一下?二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形;2. 讲解相似三角形的性质:相似三角形的对应边成比例,对应角相等;3. 讲解相似三角形的判定:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似;4. 举例说明相似三角形的应用,如解决实际问题中的测量问题、几何图形的构造等。

三、课堂练习(15分钟)1. 请同学们完成教材上的练习题,巩固相似三角形的定义和性质;2. 教师选取部分学生的作业进行讲解和解析,解答学生的疑问。

四、课后作业(5分钟)1. 请同学们完成教材上的课后作业,加深对相似三角形的理解和应用;2. 教师布置一些相关的拓展题目,提高学生的思维能力。

教学评价:1. 课堂讲解:教师对学生的学习情况进行观察和评估,了解学生对相似三角形知识的掌握程度;2. 课堂练习:教师对学生的练习情况进行批改和评价,及时发现和纠正学生的错误;3. 课后作业:教师对学生的作业情况进行批改和评价,了解学生对相似三角形知识的应用能力。

教学反思:本节课通过讲解相似三角形的定义、性质和判定,以及应用,使学生掌握了相似三角形的基本知识。

在教学过程中,要注意引导学生主动参与,积极思考,通过举例和练习题来巩固所学知识。

同时,还要注重培养学生的逻辑思维能力和解决问题的能力,提高他们对数学学科的兴趣和信心。

相似三角形的判定(SSS,SAS)PPT教学课件

相似三角形的判定(SSS,SAS)PPT教学课件

已知:在ABC和A' B'C'中,AB BC AC ,
求证: △ ABC ∽△ A' B'C' .
证明:在线段A' B(' 或它的延长线
A' B' B'C' A'C'
A
A'
上)截取A' D AB,过点D再做
DE∥B'C'交A'C'交于点E,可得B
CD
E
A' DE ∽ A' B'C'
BC AC ,
AC AD
AD= 25 . 4
B
C
练习
1. 根据下列条件,判断△ABC与△A′B′C′是否相似, 并说明理由: (1)∠A=40°,AB=8cm,AC=15cm,
∠A′=40°,A′B′=16cm,A′C′=30cm; (2)AB=10cm,BC=8cm,AC=16cm,
C'
应用
例1 根据下列条件,判断△ABC与△A'B'C'是否相似,并说明理由: (1)∠A=120°,AB=7cm,AC=14cm,
∠A'=120°,A'B'=3cm,A'C'=6cm; (2)AB=4cm,BC=6cm,AC=8cm,
A'B'=12cm,B'C'=18cm,A'C'=21cm.
解:(1) AB 7 , AC 14 7 ,
归纳
知识要点
边S 边S
判定三角形相似的定理之一
√边 S
如果两个三角形的三组对应边的比 相等三,边那对么应这成两比个例三,角两形三相角似形.相似.

相似三角形的判定(SSS SAS)

相似三角形的判定(SSS SAS)

相似三角形判定导学案导学目标:联系三角形全等,理解:1.三组对应边的比相等的两个三角形相似;2.两组对应边的比相等且相应的夹角相等的两个三角形相似.导学重难点:灵活应用判定解决问题。

导学过程:一、自主导学:阅读课本回答下列问题:1、三边对应相等的两个三角形全等吗?2、两边及其夹角对应相等的两个三角形全等吗?3、如果两个三角形的三组对应边的比相等,那么这两个三角形全等吗?相似吗?为什么?4、如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形全等吗?相似吗?为什么?二、合作探究:活动一自学本节课活动二:归纳总结:。

活动三巩固与拓展1、在△ABC和△DEF中,已知∠B=∠E,则当时,△ABC∽△DEF.2、已知:△ABC的三边长分别为6,7.5,9,若△DEF的最短一边长为4,则另两边长分别为时,△ABC∽△DEF.3、△ABC中,AB=18,AC=12,点E在AB上,且AE=6,点F在AC上,连接EF,使得△AEF与△ABC相似,则AF= .4、下列能够判定△ABC∽△DEF的是()A.ABDE=ACDF,∠B=∠E B.ABDF=ACDE,∠C =∠FC.BCEF=ACDF,∠C =∠F D.ABDE=EFBC,∠B=∠E5、如图一,在四边形ABCD中,BD平分∠ABC,AB=15,BD=12,要使△ABD∽△DBC,则BC长为.6、如图二,△ABC中,点D、E在AC、AB边上,要证△ABD∽△ACE,还需添加的条件是.7、下列四个条件:(1)△ABC的两边长分别是2和5,△DEF的两边长分别是3和7.5,夹角都是40°(2)△ABC的三边长分别是3、4、5,△DEF的三边长分别是9、12、15(3)腰长都是2,有一个角是80°的两个等腰三角形(4)在△ABC和△DEF中,∠C =∠F=90°,AB=6,AC=4,DE=1.5,DF=1,其中能够判定△ABC∽△DEF的个数是()A.1个 B.2个 C.3个 D.4个三、课堂检测:1、在△ABC和△DEF中,已知∠A=∠D,则当时,△ABC∽△DEF.2、已知:△ABC的三边长分别为6,7.5,9,若△DEF的最长一边长为4,则另两边长分别为时,△ABC∽△DEF.3、△ABC中,AB=12,AC=18,点E在AB上,且AE=6,点F在AC上,连接EF,使得△AEF与△ABC相似,则AF= .4、下列能够判定△ABC∽△DEF的是()A.ABDE=ACDF,∠A=∠D B.ABDF=ACDE,∠C =∠FC.BCEF=ACDF,∠B =∠E D.ABDE=EFBC,∠B=∠E5、如图一,在四边形ABCD中,BD平分∠ABC,AB=8,BD=6,要使△ABD∽△DBC,则BC长为.6、如图二,△ABC中,点D、E在AC、AB边上,若△ABD∽△ACE,AD=5,AB=10,AE=7,则 AC= .7、下列四个条件:(1)△ABC的两边长分别是2和5,△DEF的两边长分别是3和7.5,夹角都是40°(2)△ABC的三边长分别是3、4、5,△DEF的三边长分别是9、12、15(3)腰长都是2,有一个角是80°的两个等腰三角形(4)在△ABC和△DEF中,∠C =∠F=90°, AB=6,AC=4,DE=1.5,DF=1,其中能够判定△ABC∽△DEF的是.8、如图三,三个正方形拼成一个矩形ABEF,求证:(1)△ACE∽△DCA(2)∠1+∠2+∠3=90°。

初中相似教案

初中相似教案

初中相似教案教学目标:1. 让学生理解相似三角形的概念及性质。

2. 培养学生运用相似三角形解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

教学内容:1. 相似三角形的定义及判定条件。

2. 相似三角形的性质。

3. 相似三角形在实际问题中的应用。

教学过程:一、导入(5分钟)1. 利用多媒体展示一些生活中的相似图形,如姐妹花、相似的建筑等,引导学生观察并提出问题:“这些图形有什么共同特点?”2. 学生回答后,教师总结:这些图形都是相似的。

那么,什么是相似呢?今天我们就来学习相似三角形的知识。

二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角度相等,对应边成比例,那么这两个三角形称为相似三角形。

2. 讲解相似三角形的判定条件:(1)AA相似判定法:如果两个三角形的两个角分别相等,那么这两个三角形相似。

(2)SSS相似判定法:如果两个三角形的三边成比例,那么这两个三角形相似。

3. 讲解相似三角形的性质:(1)相似三角形的对应角度相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的面积比等于对应边长比的平方。

三、案例分析(15分钟)1. 给出一个实际问题:一块三角形土地,其三边长分别为3cm、4cm、5cm,求该土地的面积。

2. 引导学生运用相似三角形的性质解决问题。

3. 学生分组讨论,每组设计一种解题方案。

4. 各组汇报解题过程和结果,教师点评并总结。

四、课堂练习(10分钟)1. 布置一道课后练习题,要求学生在课堂上完成。

2. 学生独立思考,教师巡回指导。

3. 学生汇报解题过程和结果,教师点评并总结。

五、课堂小结(5分钟)1. 学生总结本节课所学内容,分享自己的学习收获。

2. 教师点评学生的总结,对相似三角形的重要性和应用进行强调。

六、课后作业(课后自主完成)1. 复习本节课所学内容,整理课堂笔记。

2. 完成课后练习题。

教学反思:本节课通过生活中的实例引入相似三角形的概念,引导学生观察、思考,培养学生的观察能力和逻辑思维能力。

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。

初中数学相似的教案

初中数学相似的教案

初中数学相似的教案一、教学目标:1. 让学生理解相似三角形的概念,掌握相似三角形的性质和判定方法。

2. 培养学生运用相似三角形解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 相似三角形的定义2. 相似三角形的性质3. 相似三角形的判定方法4. 相似三角形在实际问题中的应用三、教学重点与难点:1. 重点:相似三角形的概念、性质、判定方法和应用。

2. 难点:相似三角形的判定方法和在实际问题中的应用。

四、教学过程:1. 导入:通过复习平行线、相交线等基础知识,引导学生进入本节课的主题——相似三角形。

2. 新课讲解:(1)讲解相似三角形的定义:两个三角形的对应角度相等,对应边成比例,则这两个三角形相似。

(2)讲解相似三角形的性质:相似三角形的对应角度相等,对应边成比例。

(3)讲解相似三角形的判定方法:① AA相似判定法:若两个三角形的两个角分别相等,则这两个三角形相似。

② SSS相似判定法:若两个三角形的三边分别成比例,则这两个三角形相似。

③ SAS相似判定法:若两个三角形的两边及其夹角分别相等,则这两个三角形相似。

3. 例题讲解:通过举例,让学生掌握相似三角形的判定方法和应用。

4. 课堂练习:让学生独立完成练习题,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生的学习兴趣。

六、课后作业:1. 完成练习册上的相关题目。

2. 调查生活中相似三角形的应用,下节课分享。

七、教学反思:通过本节课的教学,学生应该能够掌握相似三角形的概念、性质、判定方法和应用。

在教学过程中,要注意引导学生积极参与,鼓励他们提出问题和解决问题。

同时,注重培养学生的逻辑思维能力和团队合作能力,使他们在解决实际问题时能够灵活运用所学知识。

相似三角形的判定的教案

相似三角形的判定的教案

相似三角形的判定的教案教案标题:相似三角形的判定教案目标:1. 理解相似三角形的概念和判定条件;2. 能够运用相似三角形的判定条件解决相关问题;3. 培养学生观察、分析和推理的能力。

教案步骤:引入活动:1. 利用一些图片或实物展示两个相似三角形,并引导学生观察它们之间的特点和相似之处。

知识讲解:2. 介绍相似三角形的定义:两个三角形的对应角相等,对应边成比例,则这两个三角形相似。

3. 解释相似三角形的判定条件:a. AA相似判定:两个三角形的两个对应角相等,则这两个三角形相似。

b. SSS相似判定:两个三角形的对应边成比例,则这两个三角形相似。

c. SAS相似判定:两个三角形的两个对应边成比例,并且夹角也相等,则这两个三角形相似。

案例演示:4. 通过几个具体的案例演示,让学生运用相似三角形的判定条件来判断两个三角形是否相似。

练习活动:5. 分发练习题,让学生独立或小组完成,巩固相似三角形的判定方法。

6. 针对练习题进行讲解和讨论,解答学生可能遇到的问题。

拓展应用:7. 提供一些拓展题目,让学生应用相似三角形的判定方法解决更复杂的问题,培养学生的推理能力和问题解决能力。

总结回顾:8. 对本节课所学内容进行总结回顾,强调相似三角形的判定方法和应用。

教学资源:- 相似三角形的图片或实物- 相似三角形的判定条件的讲义或PPT- 练习题和拓展题目- 黑板/白板和彩色粉笔/白板笔评估方式:- 课堂练习的完成情况和准确性- 拓展应用题的解答质量- 学生对相似三角形判定方法的理解和应用能力的表现教案扩展:- 可以引导学生进行实际测量,通过测量得到的角度和边长数据来判断三角形的相似性。

- 可以引导学生进行实例分析,让学生自己设计一些具有相似三角形的图形,并判断它们之间的相似性。

相似三角形的判定教案

相似三角形的判定教案

相似三角形的判定教案教学目标:1. 能够判断两个三角形是否相似。

2. 能够使用相似三角形的特性解决相关问题。

教学步骤:1. 引入相似三角形的概念。

- 请同学们回忆一下什么是相似图形,以及相似图形有哪些性质。

- 引导学生将相似图形的性质应用在三角形上,让他们思考相似三角形的特点。

2. 判断相似三角形的条件。

- 同学们尝试分析相似三角形的条件,并总结出能够判断两个三角形相似的条件。

- 与同学们讨论并总结出结论: 两个三角形的对应角相等,并且对应边的比例相等。

3. 判断相似三角形的例题练习。

- 给出几个具体的例题,让同学们分析并判断给出的三角形是否相似。

- 引导同学们根据相似三角形的条件来进行判断,并解释判断的依据。

4. 利用相似三角形解决问题。

- 引导同学们分析相似三角形的特性,并掌握如何利用相似三角形解决实际问题。

- 给出一些实际问题,并指导同学们使用相似三角形的特性来解决问题。

5. 总结。

- 与同学们一起总结相似三角形的判定条件和解决问题的方法。

- 强调相似三角形的应用在日常生活中的重要性,并提醒同学们在解决实际问题时要善于利用相似三角形的特性。

教学反思:在本节课中,我们针对相似三角形的判定和应用进行了详细的讲解和练习。

通过引导学生分析相似三角形的特性,培养了他们分析和解决问题的能力。

然后,通过解决实际问题的练习,帮助学生更好地理解和应用相似三角形的知识。

最后,通过总结归纳,巩固了学生对相似三角形判定和应用的理解。

这样的教学设计有助于提高学生对相似三角形的学习兴趣,培养他们的思维能力和解决问题的能力。

初中数学相似三角形教案

初中数学相似三角形教案

初中数学相似三角形教案【教案名称】:初中数学相似三角形教案【教学目标】:1. 了解相似三角形的概念和性质;2. 掌握相似三角形的判定方法;3. 能够运用相似三角形的性质解决相关问题。

【教学内容】:1. 相似三角形的定义和性质;2. 相似三角形的判定方法;3. 相似三角形的应用。

【教学步骤】:一、导入(5分钟)教师通过提问和引入实际问题的方式,激发学生对相似三角形的兴趣,引出本节课的主题。

二、概念讲解和性质介绍(15分钟)1. 教师简要介绍相似三角形的定义,并通过示意图展示相似三角形的形状特点。

2. 教师详细讲解相似三角形的性质,包括对应角相等、对应边成比例等。

三、相似三角形的判定方法(20分钟)1. 教师介绍相似三角形的判定方法之一:AAA判定法,即如果两个三角形的对应角相等,则它们是相似的。

2. 教师介绍相似三角形的判定方法之二:AA判定法,即如果两个三角形的两个对应角相等,则它们是相似的。

3. 教师通过示例演示相似三角形的判定方法,并引导学生进行练习。

四、相似三角形的应用(30分钟)1. 教师通过实际问题的引入,讲解相似三角形在实际生活中的应用,如影子定理、塔楼高度测量等。

2. 教师设计一些练习题,让学生运用相似三角形的性质解决问题,并进行讲解和讨论。

五、梳理与总结(10分钟)教师对本节课的重点内容进行梳理与总结,强调相似三角形的重要性和应用价值,并鼓励学生积极运用所学知识解决实际问题。

【教学资源】:1. 教学课件:包含相似三角形的定义、性质、判定方法和应用示例;2. 相似三角形的练习题。

【教学评估】:1. 教师观察学生在课堂上的思维表达和问题解决能力;2. 教师布置相似三角形的作业,检查学生对知识的掌握程度;3. 教师根据学生的表现和作业情况进行评估和反馈。

【教学延伸】:1. 学生可以通过自主学习和实践,探索相似三角形的更多性质和应用;2. 学生可以运用相似三角形的知识解决更复杂的问题,提高问题解决能力。

第27章相似-相似三角形的性质与判定(教案)

第27章相似-相似三角形的性质与判定(教案)
三、教学难点与重点
1.教学重点
-理解并掌握相似三角形的定义及性质,这是相似三角形知识体系的基础。
-重点一:相似三角形的定义,即对应角相等,对应边成比例。
-重点二:相似三角形的性质,包括对应角相等和对应边成比例。
-熟练运用相似三角形的判定方法,包括AA、SSS、SAS。
-重点三:AA判定法,即两个角分别相等的两个三角形相似。
-能够运用已知条件和几何定理进行合理推理,正确判定相似三角形。
3.增强学生的问题解决与实际应用能力,将相似三角形知识应用于解决实际问题,提高学生的数学应用意识。
-能够将实际问题转化为数学模型,运用相似三角形知识求解。
4.培养学生的合作交流能力,通过小组讨论、问题探究等活动,促进学生之间的交流与合作,共同提高。
第27章相似-相似三角形的性质与判定(教案)
一、教学内容
第27章相似-相似三角形的性质与判定
1.理解相似三角形的定义及性质;
-性质:对应角相等,对应边成比例。
2.掌握相似三角形的判定方法;
- AA(角角相似)判定法;
- SSS(边边边相似)判定法;
- SAS(边角边相ຫໍສະໝຸດ )判定法。3.应用相似三角形的性质与判定解决实际问题;
-求解相似三角形的未知边长;
-计算平面图形的面积。
4.了解相似三角形在实际生活中的应用,如建筑、摄影等领域。
二、核心素养目标
1.培养学生的几何直观与空间观念,通过对相似三角形性质的学习,使学生能够理解和运用相似概念,形成对几何图形的深入认识。
-能够观察和描述相似图形的特征,建立几何图形之间的关系。
2.发展学生的逻辑思维与推理能力,通过相似三角形的判定方法,培养学生严谨的逻辑思维,提高解决问题的能力。

初中数学七年级下册 第27章 相似 全章教案 7相似三角形的判定(HL)

初中数学七年级下册 第27章 相似 全章教案 7相似三角形的判定(HL)

第3页 共3页D C B A HGF ED C B AFEDCA(第7节)相似三角形的识别(hl )目标:通过推论论证推导出直角三角形相似的识别方法;能利用直角三角形的识别方法证明等积式和相似三角形。

重点:定理的推导与应用难点:培养学生推理论证的能力过程复习:回顾:相似三角形的识别方法练习1:已知如图,∠ABC=∠CDB=90°且AC ∥BD ,如果AC=13,BC=12求:BD 的长 解:∵AC ∥BD ∴∠ACB=∠CBD又∵∠ABC=∠CDB=90°∴△ABC ∽△CDB ( )∴BDDB BC CB AC 121213==即 ∴13144=BD*练习2:如图所示,三个边长为1的正方形拼成一个矩形(1)计算AC 、AF 、AG 的长度 (2)证明△ACF ∽△GCA 解:(1)根据题意AB=BC=1,BF=2,BG=3 在Rt △ABC 中,21122=+=+=BC AB AC 在Rt △ABF 中,54122=+=+=BF AB AF 在Rt △ABG 中,109122=+=+=BG AB AG (2)在△ACF 和△GCA 中∠ACF=∠GCA∵2:2:=CG AC ,2:22:1:==AC CF ∴AC :CG=CF :AC∴△ACF ∽△GCA ( )方法2.(三边对应成比例……)新课:探究:在Rt △ABC 和Rt △DEF 中,∠C=∠F=90°,若DF AC DE AB =,是否可以推证Rt △ABC ∽Rt △DEF 证明:在Rt △ABC 和Rt △DEF 中 ∵∠C=∠F=90°∴222AC AB BC -= ,222DF DE EF -=第3页 共3页E D CBA设k DFACDE AB == 分析:利用勾股定理求出BC 、EF ∴AB=k ·DE ,AC= k ·DF 再证DEABEF BC =∴()222222222222222222k DFDE DF DE k DF DE DF k DE k DF DE AC AB EF BC =--=-⋅-⋅=--= ∵BC >0,EF >0 ∴k EF BC = 即 EF BC DF AC DE AB == ∴Rt △ABC ∽Rt △DEF定理:斜边和一条直角边对应成比例的两个直角三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第6节)相似三角形的判定(3)
目标:使学生明确相似三角形的识别方法3,4并能简单应用
重点:相似三角形的识别
过程:
一、复习:相似三角形预备定理。

1、已知:DE∥BC,EF∥AB
求证:①△ADE∽△EFC
②若AD:DB=2:3,则BF:FC=
2、订正上节课作业5
作DE∥BC—→△ADE∽△ABC 作∠ADE=∠C—→△ADE∽△ACB
二、新课:
作图:书45页探究2
定理2:如果两个三角形的三组对应边的比相等,那么这两三角形相似。

(三边成比例,两三角形相似)
作用:由k
A
C
CA
C
B
BC
B
A
AB
=
=
=
'
'
'
'
'
'
⇒△ABC~△A’B’C’⇒






=


=


=

'
'
'
C
C
B
B
A
A
定理3:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

(两边对应成比例且夹角相等,两三角形相似)
作用:由






=

=
'
'
'
'
'
A
A
C
A
AC
B
A
AB
⇒△ABC~△A’B’C’⇒








=


=

=
=
'
'
'
'
'
'
C
C
B
B
k
B
A
AB
C
B
BC
例1、依据下列条件,判定△ABC和△A’B’C’是不是相似,并说明为什么?
(1)∠A=120°,AB=7cm,AC=14cm
∠A’=120°,A’B’=3cm,A’C’=6cm
(2)AB=4cm,BC=6cm,AC=8cm
A ’
B ’=12cm ,B ’
C ’=18cm ,A ’C ’=21cm
解(1)∵37''=B A AB ,3
7614''==C A AC ∴'
'''C A AC B A AB = 又∠A=∠A ’=120°
∴△ABC ∽△A ’B ’C ’( )
(2)∵31124''==B A AB ;31186''==C B BC ;21
8''=C A AC ∴'
'''''C A AC C B BC B A AB ≠= ∴△ABC 与△A ’B ’C ’不相似。

问题:要使△ABC 与△A ’B ’C ’相似,不改变AC 的值,A'C'的长应该是多少?
点评:1、先求比值,再判断是否成比例。

2、如何确定对应线段呢?三条线段中,短、中、长分别对应求比。

例2:要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4,5,6,另一个三角形框架的一边长为2,现在有几个同学完成了这项工作,但他们的答案都不一样,这是为什么?(学生分组讨论)
图1
在△ABC 中,AB=4,BC=5,AC=6。

在AB 上取AD=2,作DE ∥BC 交AC 于E
则△ADE ∽△ABC ∴2
1===AC AE BC DE AB AD ∴DE=2.5 AE=3
①△ADE 的三边长为2.5,3,2
同图1,如果AE=2 ③如果DE=2
②31625====DE AB AD AC AE 5
264===AE AD BC DE ∴344*3131===AB AD 5
84*5252===AB AD 355*3131===BC DE 5
126*5252===AC AE ∴△ADE 的三边长为2,3
5,34 ∴△ADE 的三边长为2,512,58
在AB 上取一点E ,使∠ADE=∠C
△ADE ∽△ACB
CB
DE AC AD AB AE == ④若AE=2 则 2156==DE AD ,AD=3,DE=2
5 同① 将△ADE 绕点A
⑤若AD=2 则 4531AE DE == ,3
4,35==AE DE 同② ⑥若DE=2 则 4652AE AD == ,5
8,512==AE AD 同③
结论:与△ABC 相似的三角形有3个
他们的边长分别为2,25,3;34,35,2;58,2,5
12。

图1,图2所得到的结论是一样的。

例3、已知:D ,E ,F 分别为△ABC 各边中点,
求证:△DEF ∽△ABC
讨论证明方法。

相关文档
最新文档