最新高考数学数列放缩法技巧全总结

合集下载

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法(Sequence Squeezing Method)是指在解决数学问题时,通过限制或放缩数列的取值范围,从而简化问题的求解过程。

数列放缩法是数学竞赛和高等数学中常见的一种技巧,本文将总结数列放缩法常用的技巧和应用场景。

1. 加减不等式放缩法加减不等式放缩法是通过对等式进行加减操作,使得所得不等式比原来的不等式更易于求解。

常见的加减不等式放缩技巧有如下几个:1.1. 约束条件加减法设原不等式为A<B,通过针对不等式的约束条件进行加减操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

1.2. 平方项加减法对于不等式中的平方项,可以通过改变平方项的系数进行加减操作,从而得到一个更易于处理的不等式。

例如,对于a2+b2<2ab,可以将不等式变换为(a−b)2>0,从而得到更容易求解的形式。

1.3. 倒数项加减法对于不等式中的倒数项,可以通过改变倒数项的系数进行加减操作,从而放缩不等式。

例如,在2ab<a2+b2中,可以将不等式变换为$\\frac{1}{a}+\\frac{1}{b} > \\frac{2}{a+b}$,从而得到更容易处理的形式。

2. 乘除不等式放缩法乘除不等式放缩法是通过对等式进行乘除操作,使得所得不等式比原来的不等式更易于求解。

常见的乘除不等式放缩技巧有如下几个:2.1. 约束条件乘除法设原不等式为A<B,通过针对不等式的约束条件进行乘除操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

2.2. 平方项乘除法对于不等式中的平方项,可以通过改变平方项的系数进行乘除操作,从而得到一个更易于处理的不等式。

例如,在a2+b2<2ab中,可以将不等式变换为a2−2ab+b2<0,从而得到更容易求解的形式。

2.3. 倒数项乘除法对于不等式中的倒数项,可以通过改变倒数项的系数进行乘除操作,从而放缩不等式。

高考数学_压轴题_放缩法技巧全总结(最强大)

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧(高考数学备考资料)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C nn(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n nn n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(1n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a<<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.2ααα例10.所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e <+⋅⋅++)311()8111)(911( .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n naa a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+n nn a nn a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

放缩法技巧全总结

放缩法技巧全总结

高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以12212111422+=+-=-∑n n n k n技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C nn(8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n >算数平均数可证)122a b+<⇔>⇔>≥(3)2n n ≥=>易知恒成立,当2)>≥恒成立。

例2.(1)求证:)2()12(2167)12(151311222≥-->-++++nnn(2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+nnn(4) 求证:)112(2131211)11(2-+<++++<-+nnn(3)再结合nnn-+<+221进行裂项,最后就可以得到答案例3.求证:35191411)12)(1(62<++++≤++nnnn解析:一方面:35321121121513121112=+<⎪⎭⎫⎝⎛+--++-+<∑=nnknk当3≥n时,)12)(1(61++>+nnnnn,当1=n时,2191411)12)(1(6nnnn++++=++,当2=n时,2191411)12)(1(6nnnn++++<++,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b -≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3211+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++nn n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析从而ln 2ln 3ln 4ln 3111(31)()2343233n n n n++++<--+++所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1)12ln 3ln 2ln 2--n n nααα解析:构造函数后即可证明1x x e +<注111)(1(1)!n ++⋅⋅+(1)3n n e-=②2113133332(+1)xn n nn n x e e n n n -+<∴>>+⇒=⋅⋅>⋅⋅1)(1)21(13n n n ++⋅⋅+例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

47
3n 2
04、分类放缩
15.求证:1 1 1
23
1 2n 1
n 2
.
16.在平面直角坐标系 xoy 中, y 轴正半轴上的点列An 与曲线 y 2x x 0 上的点列Bn 满足
OAn
OBn
1 n
,直线
An Bn

x
轴上的截距为
an
.点
Bn
的横坐标为
bn

n N
.
(1)证明 an > an1 >4, n N ;
1 a2n
7n 11 36 .
05、迭代放缩
19.已知 xn1
xn xn
4 1

x1
1 ,求证:当
n
2
时,
n i 1
xi 2
2 21n .
20.设
Sn
sin1! 21
sin 2! 22
sin n! 2n
,求证:对任意的正整数
k,若
k≥n
恒有:|Sn+k-Sn|<
1 n
.
06、借助数列递推关系
21.求证: 1 13 135 135 (2n 1) 2n 2 1 .
2 24 246
246 2n
22.求证: 1 13 135 135 (2n 1) 2n 1 1
2 24 246
2 46 2n
(一)、经典试题
01、裂项放缩
1.(1)求
n k 1
4k
2 2 1
的值;
(2)求证:
n k 1
1 k2
5 3
.
2.求证:1
1 32
1 52

高考数学_压轴题_放缩法技巧全总结.pdf

高考数学_压轴题_放缩法技巧全总结.pdf
23
1 2( 2 n 1 1)
n
解析 :(1) 因为 1
2
( 2n 1)
1 (2n 1)( 2n 1)
11
1 ,所以
2 2n 1 2n 1
n
1
i 1 (2i 1) 2
11 1(
23
1
11 1
)1 (
)
2n 1
2 3 2n 1
(2) 1 1 1 4 16 36
11 1
2
4n
(1 4
2
2
11
1
2) n
(1 1 4
3(2n 1) 2 n
n
2n 1 2 3
n
12 2n 1 3
(14)
k2
1
1
k! (k 1)! (k 2)! (k 1) ! (k 2) !
(15)
1
n
n(n 1)
n 1(n 2)
(15)
i2 1
j2 1
i2 j2
ij
(i j)( i 2 1 j 2 1)
ij
1
i2 1
j2 1
例 2.(1) 求证 :1
1 ,所以 n 1
2n 1
k 1k2
1 12
3
1 5
1
1
25
1
2n 1 2n 1
33
奇巧积累 :(1) 1
n2
4 4n2
4
1
1
4n2
1
2 2n
1
2n
1
(2) 1
2
1
1
C1n
C2
1n
( n 1) n( n 1)
n(n 1) n( n 1)

放缩法技巧全总结

放缩法技巧全总结

放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。

数列的放缩技巧

数列的放缩技巧

数列的放缩技巧
数列的放缩技巧主要有以下几种:
1. 利用单调性放缩:如果数列的前n项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式。

2. 分式放缩:通过改变数列的项的分母来达到放缩的目的。

3. 部分放缩:只对数列的部分项进行放缩,常用方法有:舍弃一部分不需要的项,或者将一部分项的值直接取为1等。

4. 迭代放缩:通过多次迭代的方式,逐步将数列的项进行放缩。

5. 基于递推结构的放缩:根据数列的递推公式,通过逐步推导的方式进行放缩。

6. 利用导数不等式放缩:对数列的项进行求导,再利用不等式,达到放缩的目的。

数列放缩法技巧全总结

数列放缩法技巧全总结

(1)舍掉(或加进)一些项。

(2)在分式中放大或缩小分子或分母。

(3)应用基本不等式放缩(例如均值不等式)。

(4)应用函数的单调性进行放缩。

(5)根据题目条件进行放缩。

(6)构造等比数列进行放缩。

(7)构造裂项条件进行放缩。

(8)利用函数切线、割线逼近进行放缩。

(9)利用裂项法进行放缩。

(10)利用错位相减法进行放缩。

放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,所以需要我们熟练掌握并能灵活运用。

高考数学数列放缩法技巧全总结

高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab+>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 若存在正整数k m ≤, 使bam≥, 则ba ak k ≥>+1,若)(k m b am≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111例5.已知mm m m m n S x Nm n ++++=->∈+321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nn na 24-=,nn n a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nn n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDEx S 1,从而有)ln(ln |ln 11i n n x xi i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++FE D C BAn-inyxO例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n nn a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法技巧全总结

放缩法技巧全总结

放缩法技巧全总结放缩法(Scaling)是一种常用的数学技巧,用于将数学问题转化为更简单、更易解决的形式。

这种技巧广泛应用于数学竞赛和问题求解中。

以下是放缩法的几个常见技巧和应用总结。

1.强化不等关系:放缩法的核心思想是通过比较大小来改变问题的形式。

如果已知a>b,那么可以通过加减乘除等操作将问题转化为a的形式,从而简化计算过程。

例如,要求证明a+2b>0,可以通过乘法得到2a+4b>0,进一步可得3a+6b>0。

这样可以将问题转化为证明3a+6b>0的形式,而这个不等式更容易证明。

2. 运用恒等变形:放缩法还可以通过变换等式或不等式的形式来简化问题。

常用的恒等变形包括平方恒等式(a+b)^2=a^2+2ab+b^2和倒数恒等式1/(ab)=(1/a)(1/b)等。

应用这些恒等变形,可以将问题转化为更简单的形式,进而解决问题。

3.递推放缩:递推放缩是一种通过递推关系来简化问题的方法。

通过找到问题的递推关系,可以将问题规模进行放缩,从而降低问题的复杂度。

例如,要求证明一些等式成立,可以通过将等式两边代入等式左边或右边的形式,利用递推关系将问题简化。

4.红蓝染色:红蓝染色是一种通过对元素染色来放缩问题的方法。

通过给问题中的元素染色,可以将问题转化为简化的形式,从而解决问题。

例如,在一个n×n的方格中,要求选择一些相互不在同一行、同一列的方格,并使这些方格能够覆盖所有的行和列。

可以将行和列分别染成红色和蓝色,问题转化为在红色和蓝色方格中选择不同行和列的方格并覆盖所有的红色和蓝色方格的问题。

5.数学归纳法:数学归纳法是一种通过递推关系来证明数学性质的方法。

通过对问题进行归纳假设,可以按照递推步骤逐步证明问题的性质。

例如,要证明对于任意正整数n,都有n(n+1)(n+2)能被6整除,可以通过数学归纳法来证明:当n=1时,1×2×3=6能被6整除;假设当n=k时成立,即k(k+1)(k+2)能被6整除;则当n=k+1时,(k+1)(k+2)(k+3)=(k(k+1)(k+2))+(k+1)(k+2)也能被6整除,即对于任意正整数n都有n(n+1)(n+2)能被6整除。

高考数学放缩法技巧全总结(非常精辟-尖子生解决高考数学最后一题之瓶颈之精华!!)

高考数学放缩法技巧全总结(非常精辟-尖子生解决高考数学最后一题之瓶颈之精华!!)

3n
1 1(
1
23
1 3n )
因为 1 1
23
1 11
3n
23
11 1111 45 6789
1
1
1
2n 2 n 1
3n
5 33 6 69
99 18 27
3n 1
3n 1
5n
2 3n 1 3 n
6
所以 ln 2 ln 3 ln 4 2 34
ln 3n
n
3
3n
5n 1
3n
5n 6
6
6
例 9.求证 :(1)
4 n (21 22
2n ) 4(1 4 n ) 2(1 2 n ) 4 ( 4n 1) 2 (1 2 n )
14
12
3
所以
Tn
2n
4 (4n 1) 2 (1 2n ) 3
2n
4n 1
4 2
2n 1
33
2n 4n 1 2
33
2n 1
3 2n 4 n 1 3 2n 1 2
3
2n
2 2 ( 2n ) 2 3 2 n 1
1 4 x 4 x5
1 4 x2 nx2 n 1
2 ( n 1 1)(n N *)
二、函数放缩
例 8.求证: ln 2 ln 3 ln 4 2 34
ln 3n
3n
5n
6 (n
N*) .
3n
6
解析 :先构造函数有 ln x x 1 ln x 1 1 , 从而 ln 2 ln 3 ln 4
x
x
23 4
ln 3n 3n
21 2n 1
1 ,所以 n 1
2n 1

等比数列放缩法技巧全总结

等比数列放缩法技巧全总结

等比数列放缩法技巧全总结1. 哎呀呀,等比数列放缩法可太有意思啦!比如说,有一个等比数列 1,2,4,8,16……你想把它缩小一点,那就可以把后面的项适当地舍去一些嘛,就像裁剪衣服一样,把多余的部分剪掉。

这样是不是很好理解呀?2. 嘿,等比数列放缩法的技巧之一就是要学会观察规律呀!就像看星星能找到星座一样,在等比数列中找到那些关键的点。

比如 3,9,27,81……你能找到它的规律然后巧妙地放缩吗?3. 哇塞,等比数列放缩法还真不是随便放缩就行的哟!得像走钢丝一样小心翼翼呢。

好比有个等比数列 2,4,8,16……那放缩的时候可得好好把握度呀,不然就全乱套啦,对吧?4. 哟呵,等比数列放缩法的技巧你可别小瞧呀!想象一下你在搭积木,要把合适的积木放上去,才能搭出漂亮的城堡。

等比数列也是这样,用对了放缩法,就能得出你想要的结果。

像 5,25,125,625……你知道怎么放缩它最合适吗?5. 哈哈,等比数列放缩法的要点你可得记牢啦!这就好比是你掌握了一把神奇的钥匙,可以打开各种秘密的大门。

比如那个等比数列 4,16,64,256……你能拿着这把钥匙巧妙地处理它吗?6. 哎呀,等比数列放缩法有时候就像是一场冒险!你不知道前方会遇到什么,但充满了刺激和惊喜。

就像面对 7,49,343,2401……你敢不敢大胆地去尝试放缩呢?7. 嘿呀,等比数列放缩法可不简单哟!但咱可不能被它吓住,得勇敢地去探索。

拿那个等比数列6,36,216,1296……来说,这里面的奥秘可多着呢,你准备好去发现它们了吗?8. 哇哦,等比数列放缩法真的是很有挑战性呀!但也超级有趣呢。

就好像玩游戏打怪兽,每一关都不好过,但过了就特别有成就感。

比如面对 8,64,512,4096……你能运用放缩法战胜它吗?我的观点结论就是:等比数列放缩法充满了奇妙之处和挑战,只要我们认真去学习、去实践。

高考数学-压轴题-放缩法技巧全总结(最强大)

高考数学-压轴题-放缩法技巧全总结(最强大)

放缩技巧(高考数学备考资料)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n(11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13)3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a<<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m≥,则b a a k k ≥>+1,若)(k m b a m≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知n n na 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα答案例10.所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+n nn a nn a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

数列型不等式的放缩技巧九法

数列型不等式的放缩技巧九法

数列型不等式的放缩技巧九法1.上凸性法:如果数列满足$a_{n+1}-a_n>0$,则可放缩为$a_n>a_1+(n-1)d$或$a_n>a_1+n(n-1)d$,其中$d$为常数。

2.下凸性法:如果数列满足$a_{n+1}-a_n<0$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。

3.奇偶性法:如果数列满足$a_{n+1}-a_n$的奇偶性与$n$的奇偶性相同,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。

4.整除性法:如果数列满足$a_{n+1}-a_n$能整除$n$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。

5.线性递增法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。

6.线性递减法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。

7.最值法:如果数列满足$a_{n+1}-a_n$为一组有界变量,且$a_n$有最大或最小值,则可通过对最大或最小值进行放缩得到不等式。

8. 平均值大小法:如果数列满足$a_1,a_2,\ldots,a_n$的平均值满足一些条件,则可借助平均值大小的不等式进行放缩。

9.乘积法:如果数列满足相邻项的乘积满足一些条件,则可通过对乘积进行放缩得到不等式。

举个例子来说明这些放缩技巧的应用:问题:证明数列$a_n=\frac{1}{2n-1}$是递减的。

解答:我们可以使用上凸性法进行放缩。

由$a_{n+1}-a_n=\frac{1}{2(n+1)-1}-\frac{1}{2n-1}=\frac{1}{2n+1}-\frac{1}{2n-1}=\frac{2n-1-(2n+1)}{(2n+1)(2n-1)}=-\frac{2}{(2n+1)(2n-1)}<0$所以$a_n>a_{n+1}$,即数列$a_n$是递减的。

高三数学二轮复习冲刺:解决数列放缩问题的六大技巧

高三数学二轮复习冲刺:解决数列放缩问题的六大技巧

解决数列放缩问题的六大技巧本篇主要目标是聚焦于数列放缩,常见的方法有六种,具体我将在文中以实例详细说明.类型1.利用单调性放缩例1.已知数列{}n a 满足11a =,131n n a a +=+(1)设12n n b a =+,证明:{}n b 是等比数列,并求{}n b 的通项公式;(2)证明:12211113nb b b ≤+++< .解析:(1)∵131n n a a +=+,则111322n n a a +⎛⎫+=+ ⎪⎝⎭,即13n n b b +=,又∵111322b a =+=,所以{}n b 是首项为32,公比为3的等比数列,∴32n n b =,故{}n b 的通项公式为32nn b =.(2)由(1)知123n n b =,即1n b ⎧⎫⎨⎩⎭是首项为23,公比为13的等比数列,∴121221133111222111333313nnnn b b b ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦+++=+++==- ⎪⎝⎭- ,又∵数列113n⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调递增,∴11111133n⎛⎫⎛⎫-≤-< ⎪ ⎪⎝⎭⎝⎭,故12211113nb b b ≤+++< .类型2.先求和再放缩先求和再放松实质上是一类很常见的题目,这类放缩实质在考察数列求和,放缩的结果也很松,下面通过两个例子简单说明即可,分别是利用裂项相消求和与错位相减求和后放缩.例2.记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.(1)求{}n a 得通项公式;(2)证明:121112+++< na a a .解析:(1)111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .(2)121111112[]1223(1)+++=+++⨯⨯+ n a a a n n 111112(1)2231=-+-++-+ n n 12(1)21=-<+n .注:111111().n n n n a a d a a ++=-,则:1223111111111......()n n n a a a a a a d a a ++⇒+++=-.可以看到,裂项后一定可以得到一个估计.例3.已知等比数列{}()n a n N*∈为递增数列,且236324,522==+aa a a a .(1)求数列{}n a 的通项公式;(2)设()42n nn b n N a *-=∈,数列{}n b 的前n 项和为n S ,证明:6n S <.解析:(1)由题意,()2251123111522a q a q a q a q a q⎧=⎪⎨=+⎪⎩,解得11212a q ⎧=⎪⎪⎨⎪=⎪⎩或122a q =⎧⎨=⎩,因为等比数列{}()n a n *∈N 为递增数列,所以122a q =⎧⎨=⎩,所以1222n nn a -=⨯=.(2)由(1)知数列{}n b 的前n 项和为:0111322212n n n S -=++-+ ①,112123212122223n n n n n S --=++-++ ②,两式相减可得:1112111112121232212312222211122212n n n n n n n n n S --⎛⎫=+⎛⎫- ⎪--+⎝⎭=+=+++-⎝-⎪⎭-- ,所以12362n n n S -+=-,又因为*n N ∈,所以12302n n -+>,所以123662n n n S -+=-<.类型3.先放缩通项再求和这一类是数列放缩问题的常考类型,相较于类型2而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点.此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩.当然,下面的这些常见的裂项公式与放缩公式需要注意.1.常见的裂项公式:例如:n n n n n )1(11)1(12-<<+或者12112-+<<++n n nn n 等2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 这样的话,可得:1)(-->-n nnab a b a ,就放缩出一个等比数列.3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<.下面来看上面这些基本的放缩结构的应用.例4.(2013年广东)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++< .解析:(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111n a n n n =+-⨯=,所以2n a n =.(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<下面我们再看将通项放缩成等比(等差比数列)再求和完成放缩证明.例5.(2014全国2卷)已知数列{}n a 满足1a =1,131n n a a +=+.(1)证明{}12n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112na a a ++<…+.解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+,又11322a +=,所以1{}2n a +是首项为32,公比为3的等比数列,1322n n a +=,因此{}n a 的通项公式为312n n a -=(2)由(1)知1231nn a =-,因为当1n ≥时,13123n n --≥⨯,所以1113123n n -≤-⨯于是12-112311-1111111313311-13332321-3n n n n a a a a ++++<++++==< (.所以123111132n a a a a ++++< .注:此处13123nn --≥⨯便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 当然,利用糖水不等式亦可放缩:13133132-=<-n n n ,请读者自行尝试.类型4.基于递推结构的放缩1.nnn a a a +=+11型:取倒数加配方法.例6.(2021浙江卷)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A.100332S <<B.10034S <<C.100942S <<D.100952S <<解析:由211111124n n n a a a ++⎛⎫==+-⎪⎪⎭2111122n a +⎛⎫∴<++⎪⎪⎭12<根据累加法可得,11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++.一方面:252111)1(41002>⇒+-+>+>S n n n a n .另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<.故选:A.2.二次递推型:r qa pa a n n n ++=+21.12121211+++++=-⇒+=-⇒++=n n n n n nn n n nn a a r pa a qa r pa qa a r qa pa a ,然后裂项即可完成放缩,我们以2015浙江卷为例予以说明.例7.(2015浙江卷)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N );(2)设数列{}2n a 的n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).分析:=-⇒=-++n n n n n a a a a a 11121211[1,2]1n n n n n na a a a a a +==∈--,累加,则可证得.解析:(1)由题意得210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤.由11(1)n n n a a a --=-得1211(1)(1)...(1)0n n n a a a a a --=--->,由102n a <≤得211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤.(2)由题意得21n n n a a a +=-,所以11n n S a a +=-①,由1111n n n n a a a a ++-=和112n n a a +≤≤得11112n n a a +≤-≤所以11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②由①②得:*11()2(2)2(1)n S n N n n n ≤≤∈++.类型5.数列中的恒成立例8.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+-∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++,所以{}21n a n ++是以12114a +⨯+=为首项,公比为2的等比数列,所以1121422n n n a n -+++=⨯=,所以1221n n a n +=--.(2)()()()231122325221n n n S a a a n +⎡⎤=+++=-+-++-+⎣⎦()()23122235721n n +=+++-+++++ ()()222212321122242n n n n n n +-++=--=---,若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+---+>,可得22222nn n n λ+⋅>+-即2242nn n λ+>-对于任意正整数n 恒成立,所以2max242n n n λ⎡⎤+>-⎢⎥⎣⎦,令()242n nn n b +=-,则21132n n n n b b ++--=,所以1234b b b b <>>>⋯,可得()222max222422n b b +⨯==-=-,所以2λ>-,所以λ的取值范围为()2,-+∞.类型6.利用导数产生数列放缩1.由不等式1ln -≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.例9.(2017全国3卷)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1(1)222n m ++⋅⋅⋅+<,求m 的最小值.解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->,令112n x =+得11ln(1)22n n +<,从而221111111ln(1ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,而23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立.进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b->-+,即111ln ln ()2b a b a a b-<+-.令,1a n b n ==+,则111ln(1)ln ()21n n n n +-<++,所以111ln(1)ln (21n n n n +-<++①.(,)L a b<1ln ln ln 2ln (1)a ab x x x b x ⇔-⇔⇔<->其中,接下来令t =2>11(1)n ln n >+,1(n ln n+>②.例10.已知函数(1)()ln(1)1x x f x x xλ+=+-+.(1)若0x ≥时,()0f x ≤,求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++ ,证明:21ln 24n n a a n-+>.解析:(1)综上可知,λ的最小值时12.(2)由上述不等式①,所以111ln(1)ln (21n n n n +-<++,111ln(2)ln(1)()212n n n n +-+<+++,111ln(3)ln(2)(223n n n n +-+<+++…,111ln 2ln(21)(2212n n n n--<+-.将以上各不等式左右两边相加得:1122221ln 2ln (2123212n n n n n n n n-<+++++++++- ,即111211ln 22123214n n n n n n<+++++++++- ,故11211ln 212324n n n n n +++++>+++ ,即21ln 24n n a a n-+>.例12.已知函数()ax x f x xe e =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设*n N ∈(1)ln n ++⋯+>+.1()n ln n+>,进一步求和可得:11231((...(1)12nnk k k n ln ln ln n k n==++>=⨯⨯⨯=+∑,...(1)ln n ++.。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结是一种在解决数学问题时常用的技巧,它能够将原问题转化为一个更简单或者更易解决的问题。

在数学竞赛和解题中,这种方法被广泛运用到。

本文将对进行全面总结,介绍其基本思想和几种常见的应用。

一、基本思想的基本思想是通过对数列中的一些项进行放缩或者递推,从而改变问题的形式,使得原问题变得更易解决。

常用的放缩方法包括递归放缩、平均放缩、配对放缩等。

递归放缩是将原数列的每一项都表示为前面一些项的函数形式。

通过找到递推关系,可以用前面的项来递推后面的项,从而得到数列的性质。

递归放缩常用于求解递推数列或者递推关系的问题。

平均放缩是将原数列的每一项都表示为平均值或者近似值。

通过对数列中的项进行平均化处理,可以得到新的数列,从而得到更简单的性质。

平均放缩常用于求解数列的上下界、最值等问题。

配对放缩是将原数列的每一项都与其他项相对应。

通过找到合适的对应关系,可以将原数列分解为多个子数列,从而实现对原问题的转化。

配对放缩常用于求解数列的差分序列、重要性质等问题。

二、应用举例1. 递推数列假设有一个递推数列$a_1, a_2, a_3, \ldots$,已知$a_1=1$,$a_2=2$,且$a_n=a_{n-1}+a_{n-2}$,要求求解$a_n$的通项公式。

我们可以使用递归放缩的方法来求解。

将$a_n$表示为$a_{n-1}+a_{n-2}$,即$a_n=a_n-1+a_{n-2}$,得到递推关系。

根据递推关系,我们可以从已知的$a_1$和$a_2$开始,递推得到后面的项。

通过求解递推关系,我们可以得到$a_n$的通项公式。

2. 数列的上下界假设有一个数列$a_1, a_2, a_3, \ldots$,已知$a_n=\sqrt{n}$,要求证明这个数列的上界和下界。

我们可以使用平均放缩的方法来证明。

注意到对于任意的$n$,有$a_n=\sqrt{n}<\sqrt{n+1}$。

由于数列$a_n$是递增的,所以它的上界是无穷大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab+>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 若存在正整数k m ≤, 使ba m≥, 则ba ak k ≥>+1,若)(k m b am≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111例5.已知mm m m m n S x Nm n ++++=->∈+321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nn n a 24-=,nn n a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+因为 12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩 例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nn n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCF x S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰FE D C BAn-inyxO取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDE x S 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

相关文档
最新文档