数学思想方法专题讲解降次法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法专题讲解
降次法
Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
考点二:降次法
降次法:解时,把某个高次幂整式用一个低次幂整式去代替它,从而使整式的次数降低,达到简化问题的目的,这叫降次法。
(一)直接代入降次:
1.已知2=1-+x x ,求代数式3223++x x 的值。
2.已知2330x x +-=,求代数式325310x x x ++-的值。
3.已知2310-+=x x ,求代数式322372009x x x --+的值。
4.已知210a a +-=,求代数式4322343a a a a +--+的值.
(二)与方程的解有关的降次:
1.已知m 是方程2250x x +-=的一个根,求32259m m m +--的值。
2.已知m 是方程2310x x -+=的根,求代数式42110m m -+的值。
3.已知m 是方程25350--=x x 的一个根,求代数式22152525--
--m m m m 的值。
4.已知a 是方程2200910-+=x x 一个根,求22200920081
-+
+a a a 的值。
(三)先变形,后降次:
1.(处理根号)已知:x =
,求代数式4323652x x x x --++的值。
2.(处理代数式)若2240a a --=, 求代数式()()()211232a a a ⎡⎤+-+--÷⎣⎦的值。
(四)降次法解一元二次方程:
1.已知()()22222230a b a b +-+-=,求22a b +的值。
2.用适当的方法解下列方程(这里也有降次哦)
(1)224325440()()x x x ---+= (2)22142212()()()x x x +-=-+