视频信息处理与传输课题研究报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南科技大学

课程研究报告

课程名称:视频信息处理与传输

班级:

姓名:

学号:

指导老师:

2016年11月日

课程学习目的:

《视频信息处理与传输》是数字媒体技术方向中的一门专业必选课,学习的目的是让我们系统地理解和掌握视频信息的采集、压缩编码视频信息传输等数字视频技术,并灵活应用。为我们补充TCP/IP,UDP,RTP等视频信息在网络中传输所必需的协议。老师为我们讲解了视频信息处理与传输概述,视频信息采集技术,以及传输协议。我将分别叙述我从中学习到的知识。

第一部分视频信息处理与传输概述

随着科学技术,视频信息处理与传输的技术也成了人们关注的一个热点。从采集到应用系统,每步都在提升。信息安全与信息垃圾就如人们的生活中的隐私与生活垃圾一样重要,如何维护信息的安全和如何处理信息垃圾已成为一个热点。

信息安全是指信息网络硬件、软件及其系统中的数据受到保护,不受偶然或者恶意的原因而遭到破坏、更改、泄露。系统连续可靠正常地运行,信息服务不中断。信息安全主要包括以下五方面:保证信息的保密性、真实性、完整性、未受权拷贝和所寄生系统的安全性。信息安全的根本目的就是使内部信息不受外部威胁,因此信息通常要加密。为保障信息安全,要求有信息源认证、访问控制,不能有非法软件驻留,不能有非法操作。信息垃圾就是那些混在大量有用信息中的无用信息、有害信息,以及对人类社会的各个方面带来危害的信息。它对信息安全应用和转播构成了威胁。

这一部分就是老师讲的关于这个课程的一些概述,也没用从中获取太多的知识。

第二部分视频信息采集技术

从这一部分,我从中学到了视频是怎么样组成的,以及视频的采集技术。

我们所看到的视频信息都是由一帧一帧的静态图像构成的,再加上每一帧图像的时间信息,通过连续播放而成.。

视频分为模拟视频和数字视频,而数字视频是模拟视频的数字化。模拟信号对应于时间轴有连续的无穷多个值,它完全准确地表示信号电平,如话音、图像等均是模拟信号。以模拟信号传输或处理的电视称为模拟电视。模拟电视的讯号广播公司通常是使用NTSC、PAL或SECAM的模拟制式把它们的信号进行调频后,调节这些信号并放进VHF或者UHF的载波上。数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过PC,特定的播放器等播放出来。为了存储视觉信息,模拟视频信号的山峰和山谷必须通过模拟/数字(A/D)转换器来转变为数字的“0”或“1”。这个转变过程就是我们所说的视频捕捉(或采集过程)。如果要在电视机上观看数字视频,则需要一个从数字到模拟的转换器将二进制信息解码成模拟信号,才能进行播放。模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

可见光是波长在380 nm~780 nm 之间的电磁波,我们看到的大多数光不是一种波长的光,而是由许多不同波长的光组合成的。如果光源由单波长组成,就称为单色光源。该光源具有能量,也称强度。实际中,只有极少数光源是单色的,大多数光源是由不同波长组成,每个波长的光具有自身的强度。这称为光源的光谱分析。

研究表明,人的视网膜有对红、绿、蓝颜色敏感程度不同的三种锥体细胞。红、绿和蓝三种锥体细胞对不同频率的光的感知程度不同,对不同亮度的感知程度也不同。自然界中的任何一种颜色都可以由R,G,B 这3 种颜色值之和来确定,以这三种颜色为基色构成一个RGB 颜色空间,基色的波长分别为700 nm(红色)、546.1nm(绿色)和435.8 nm(蓝色)。颜色=R(红色的百分比)+G(绿色的百分比)+B(蓝色的百分比),只要其中一种不是由其它两种颜色生成,可以选择不同的三基色构造不同的颜色空间,即三基色原理。

模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV 信号方式,而计算机工作在RGB 空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV 或YIQ 分量,然后用三个模/数转换器对三个分量分别采样并进行数字化,最后再转换成RGB 空间。对彩色电视图像进行采样时,可以采用两种采样方法。一种是使用相同的采样频率对图像的亮度信号(Y)和色差信号(Cr,Cb)进行采样,另一种是对亮度信号和色差信号分别采用不同的采样频率进行采样。如果对色差信号使用的采样频率比对亮度信号使用的采样频率低,这种采样就称为图像子采样(subsampling)。由于人的视觉对亮度信号的敏感度高于对色差的敏感度,这样做利用人的视觉特性来节省信号的带宽和功率,通过选择合适的颜色模型,可以使两个色差信号所占的带宽明显低于Y 的带宽,而又不明显影响重

显彩色图像的观看。

目前使用的子采样格式有如下几种:

(1) 4:4:4 这种采样格式不是子采样格式,它是指在每条扫描线上每4 个连续的采样点取4个亮度Y 样本、4个红色差Cr 样本和4个蓝色差Cb 样本,这就相当于每个像素用3个样本表示。

(2) 4:2:2 这种子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y 样本、2个红色差Cr 样本和2个蓝色差Cb 样本,平均每个像素用2个样本表示。

(3) 4:1:1 这种子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y 样本、1个红色差Cr 样本和1个蓝色差Cb 样本,平均每个像素用1.5个样本表示。

(4) 4:2:0 这种子采样格式是指在水平和垂直方向上每2个连续的采样点上取2个亮度Y 样本、1个红色差Cr 样本和1个蓝色差Cb 样本,平均每个像素用1.5个样本表示。

等间隔量化适合像素灰度值在黑白范围较均匀分布的图像。非等间隔量化(非均匀量化)——对图像中像素灰度值频繁出现的灰度值范围,量化间隔取小一些,而对那些像素灰度值极少出现的范围,则量化间隔取大一些。在数字图像处理技术上,亮度信号的取样频率为13.5MHz,理由如下:

①按照奈奎斯特取样定理,取样频率至少应为信号上限频率的2倍,为获得满意的图像质量,在PAL制中亮度信号要求5.8--6MHz的带宽。因此,取样频率应大于12MHz 。

②为了取样后保证产生足够小的混叠噪声,要求取样频率是信号宽带的2.2-2.7倍。因此对PAL制信号,取样频率应大于13.2MHz。

我们使用的图像传感器主要有CMOS与CCD两种。下面就是我学习到的知识。

CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,实现图像的获取、存储、传输、处理和复现。其显著特点是,体积小重量轻,功耗小,工作电压低,抗冲击与震动,性能稳定,寿命长,灵敏度高,噪声低,动态范围大,响应速度快,有自扫描功能,图像畸变小,无残像,应用超大规模集成电路工艺技术生产,像素集成度高,尺寸精确,商品化生产成本低。因此,许多采用光学方法测量外径的仪器,把CCD器件作为光电接收器。

CMOS图像传感器是一种典型的固体成像传感器,与CCD有着共同的历史渊源。CMOS图像传感器通常由像敏单元阵列、行驱动器、列驱动器、时序控制逻辑、AD 转换器、数据总线输出接口、控制接口等几部分组成,这几部分通常都被集成在同一块硅片上。其工作过程一般可分为复位、光电转换、积分、读出几部分。CMOS 图像传感器具有以下几个优点:随机窗口读取能力,抗辐射能力。,系统复杂程度和可靠性,非破坏性数据读出方式。

相关文档
最新文档