断路器分断能力的选择和使用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断路器分断能力的选择和使用
最近几年与断路器的使用者相互磋商、探讨,并在专业刊物上阅读了一些断路器选用的文章,感到收益很大,但又觉得断路器的设计、制造者与用户之间由于沟通和宣传不够,致使用户在选择低压断路器上还存在一部分偏失。据此,笔者拟再次论述断路器的选择和应用,以期抛砖引玉、去伪存真。
一、线路预期短路电流的计算来选择断路器的分断能力。
精确的线路预期短路电流的计算是一项极其繁琐的工作。因此便有一些误差不很大而工程上可以被接受的简捷计算方法:
(1)、对于电压等级的变压器,可以考虑高压侧的短路容量为无穷大(10KV侧的短路容量一般为200~400MVA甚至更大,因此按无穷大来考虑,其误差不足10%)。
(2)、GB50054-95《低压配电设计规范》的
2.1.2条规定:
“当短路点附近所接电动机的额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响”,若短路电流为30KA,取其1%,应是300A,电动机的总功率约在150KW,且是同时启动使用时此时计入的反馈电流应是
6.5∑In。
(3)、变压器的阻抗电压UK表示变压器副边短接(路),当副边达到其额定电流时,原边电压为其额定电压的百分值。因此当原边电压为额定电压时,副边电流就是它的预期短路电流。
(4)、变压器的副边额定电流Ite=Ste/(
1.732*Ue)式中Ste为变压器的容量(KVA),Ue为副边额定电压(空载电压),在时Ue=
0.4KV因此简单计算变压器的副边额定电流应是变压器容量×(
1.44~
1.50)。
(5)、按
(3)对Uk的定义,副边的短路电流(三相短路)为I
(3)对Uk的定义,副边的短路电流(三相短路)为I
(3)=Ite/Uk,此值为交流有效值。
(6)、在相同的变压器容量下,若两相间短路,则I
(2)=
1.732I
(3)/2=
0.866I
(3)(7)、以上计算均是变压器出线端短路时的电流值,这是最严重的短路事故。如果短路点离变压器有一定的距离,则需考虑线路阻抗,因此短路电流将减小。
例如SL7系列变压器(配导线为三芯铝线电缆),容量为200KVA,变压器出线端短路时,三相短路电流I
(3)为7210A。短路点离变压器的距离为100m时,短路电流I
(3)降为4740A;当变压器容量为100KVA时其出线端的短路电流为3616A。离变压器的距离为100m处短路时,短路电流为2440A。远离100m时短路电流分别为0m的
65.74%和
67.47%。所以,用户在设计时,应计算安装处(线路)的额定电流和该处可能出现的最大短路电流。并按以下原则选择断路器:
断路器的额定电流In≥线路的额定电流I
L断路器的额定短路分断能力≥线路的预期短路电流因此,在选择断路器上,不必把余量放得过大,以免造成浪费。二、断路器的极限短路分断能力和运行短路分断能力。
国际电工委员会的IEC947-2和我国等效采用IEC的G
B4048.2《低压开关设备和控制设备低压断路器》标准,对断路器极限短路分断能力和运行短路分断能力作了如下的定义:
断路器的额定极限短路分断能力(Icu):
按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;
断路器的额定运行短路分断能力(Ics):
按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。
极限短路分断能力Icu的试验程序为o-t-co,具体试验是:
把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。t为间歇时间(休息时间),一般为3min,此时线路处于热备状态,断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功。
断路器的运行短路分断能力(Ics)的试验程序为o-t-co-t-co,它比Icu的试验程序多了一次co。经过试验,断路器能完全分断、熄灭电弧,并无超出规定的损伤,就认定它的额定进行短路分断能力试验通过。
Icu和Ics短路分断试验后,还要进行耐压、保护特性复校等试验。由于运行短路分断后,还要承载额定电流,所以Ics短路试验后还需增加一项温升的复
测试验。Icu和Ics短路或实际考核的条件不同,后者比前者更严格、更困难,因此IEC947-2和G
B14048.2确定Icu有四个或三个值,分别是25%、50%、75%和100%Icu(对A类断路器即塑壳式)或50%、75%、100%Icu(对B类断路器,即万能式或称框架式)。断路器的制造厂所确定的Ics值,凡符合上述标准规定的Icu百分值都是有效的、合格的产品。
万能式(框架式)断路器,绝大部分(不是所有规格)都具有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护,因此大多数主干线(包括变压器的出线端)都采用它作主(保护)开关,而塑壳式断路器一般不具备短路短延时功能(仅有过载长延时和短路瞬动二段保护),不能作选择性保护,它们只能使用于支路。由于使用(适用)的情况不同,IEC92《船舶电气》建议:
具有三段保护的万能式断路器,偏重于它的运行短路分断能力值,而大量使用于分支线塑壳断路器确保它有足够的极限短路能力值。我们对此的理解是:
主干线切除故障电流后更换断路器要慎重,主干线停电要影响一大片用户,所以发生短路故障时要求两个CO,而且要求继续承载一段时间的额定电流,而在支路,经过极限短路电流的分断和再次的合、分后,已完成其使命,它不再承载额定电流,可以更换新的(停电的影响较小)。但是,无论是万能式或塑壳式断路器,都有必须具备Icu和Ics这两个重要的技术指标。只有Ics值在两类断路器上表现略有不同,塑壳式的最小允许Ics可以是25%Icu,万能式最小允许Ics是50%的,Ics=Icu的断路器是很少的,即使万能式也少有Ics=100%Icu 的。(国外有一种采用旋转双分断(点)技术的塑壳式断路器,它的限流性能极好,分断能力的裕度很大,可做到Ics=Icu,但价格很高)。
我国的DW45智能型万能式断路器的Ics为
62.5%~65%Icu,国际上,ABB公司的F系列,施耐德的M系列也不过是70%左右,而塑壳式断路器,国内各种新型号,Ics大抵在50%~75%Icu之间。有些断路器应用的设计人员,按其所计算的线路预期短路电流选择断路器时,以断路器的额定运行短路分断能力来衡量,由此判定某种断路器(此断路器的