风荷载标准值计算方法
风荷载标准值与风压高度变化系数
《风荷载标准值与风压高度变化系数》一、引言风荷载标准值和风压高度变化系数是建筑设计和结构工程中的重要参数。
它们直接影响着建筑物在风力作用下的稳定性和安全性。
本文将从风荷载标准值和风压高度变化系数的概念、计算方法和应用等方面展开探讨,并共享个人对这一主题的见解。
二、风荷载标准值的概念及计算方法1. 风荷载标准值的概念风荷载标准值是指建筑物在一定设计年限内所受到的最大风载荷。
它是根据当地气象数据、建筑物结构形式、高度等因素综合计算而得。
通常以单位面积(N/m²)来表示,被广泛应用于建筑物的结构设计和风险评估中。
2. 风荷载标准值的计算方法风荷载标准值的计算通常采用风荷载计算规范,其中包括了基本风速、高度变化系数等参数。
基本风速是指在一定设计年限内,某一特定重现期下的平均最大风速,高度变化系数则反映了风荷载随高度变化的规律。
根据规范的要求,可以通过相关公式和图表来计算得到风荷载标准值。
三、风压高度变化系数的概念及影响因素1. 风压高度变化系数的概念风压高度变化系数是用来描述建筑物在不同高度上所受风压的变化规律。
通过计算风压高度变化系数,可以更准确地评估建筑物在不同高度上所受到的风荷载大小,为结构设计提供重要依据。
2. 影响风压高度变化系数的因素风压高度变化系数受到多种因素的影响,主要包括地形、建筑物周围环境、建筑物结构形式等。
在平原地区和山区地区,由于地形的不同,风压高度变化系数也会有所不同。
建筑物周围的密度、高度和形状也将对风压高度变化系数产生影响。
四、风荷载标准值与风压高度变化系数的应用在实际工程实践中,风荷载标准值和风压高度变化系数的应用是十分重要的。
在建筑物的结构设计中,需要根据所在地区的气候特点和相关规范要求,合理计算风荷载标准值,并采取相应的结构设计措施。
在建筑物的风险评估和安全监测中,风荷载标准值和风压高度变化系数也是必不可少的参数,可以帮助工程师和设计师更好地评估建筑物的风险程度,从而采取相应的安全措施。
如何计算风荷载
如何计算风荷载风指的是从高压区向低压区流动的空气,它流动的方向大部分时候是水平的。
[1] 强风具有很大的破坏力,因为它们会对建筑物表面施加压力。
这种压力的强度就是风荷载。
风的影响取决于建筑物的大小和形状。
为了设计和建造更加安全、抗风能力更强的建筑物,以及在建筑物顶部安放天线等物体,计算风荷载很有必要。
方法1用通用公式计算风荷载1 了解通用公式。
风荷载的通用公式是 F = A x P x Cd,其中 F是力或风荷载, A是物体的受力面积, P是风压,而 Cd是阻力系数。
[2] 这个公式在估算特定物体的风荷载时非常有用,但无法满足规划新建筑的建筑规范要求。
2 得出受力面积 A。
它是承受风吹的二维面面积。
[3] 为了进行全面分析,你得对建筑物的每个面各做一次计算。
比如,如果建筑物西侧面的面积为20m2,那就把这个值代入公式中的 A,来计算西侧面的风荷载。
计算面积的公式取决于面的形状。
计算平坦壁面的面积时,可以使用公式面积 = 长 x 高。
公式面积 = 直径 x 高度可以算出圆柱面面积的近似值。
使用国际单位计算时,面积 A应该使用平方米(m2)作为单位。
使用英制单位计算时,面积 A应该使用平方英尺(ft2)作为单位。
3 计算风压。
使用英制单位(磅/平方英尺)时,风压P的简单公式为P =0.00256V^{2},其中 V是风速,单位为英里/小时(mph)。
[4] 而使用国际单位(牛/平方米)时,公式会变成P = 0.613V^{2},其中 V的单位是米/秒。
[5]这个公式是基于美国土木工程师协会的规范。
系数0.00256是根据空气密度和重力加速度的典型值计算得出的。
[6]工程师会考虑周围地形和建筑类型等因素,使用更精确的公式。
你可以在ASCE规范7-05中查找公式,或使用下文的UBC公式。
如果你不确定风速是多少,可以查询美国电子工业协会(EIA)标准或其他相关标准,找到你们当地的最高风速。
比如,美国大部分地区都是A级区,最大风速为86.6 mph,但沿海地区可能位于B级区或C级区,前者的最大风速为100 mph,后者为111.8 mph。
风荷载标准值计算方法
按老版本规范风荷载标准值计算方法:1.1风荷载标准值的计算方法幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算:wk =βgzμzμs1w…… 2006年版]上式中:wk:作用在幕墙上的风荷载标准值(MPa);Z:计算点标高:;βgz:瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m按5m计算):βgz =K(1+2μf)其中K为地面粗糙度调整系数,μf为脉动系数A类场地:βgz =×(1+2μf) 其中:μf=×(Z/10)B类场地:βgz =×(1+2μf) 其中:μf=(Z/10)C类场地:βgz =×(1+2μf) 其中:μf=(Z/10)D类场地:βgz =×(1+2μf) 其中:μf=(Z/10)对于B类地形,高度处瞬时风压的阵风系数:βgz=×(1+2×(Z/10))=μz:风压高度变化系数;根据不同场地类型,按以下公式计算:A类场地:μz=×(Z/10)当Z>300m时,取Z=300m,当Z<5m时,取Z=5m;B类场地:μz=(Z/10)当Z>350m时,取Z=350m,当Z<10m时,取Z=10m;C类场地:μz=×(Z/10)当Z>400m时,取Z=400m,当Z<15m时,取Z=15m;D类场地:μz=×(Z/10)当Z>450m时,取Z=450m,当Z<30m时,取Z=30m;对于B类地形,高度处风压高度变化系数:μz=×(Z/10)=μs1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1:一、外表面1. 正压区按表采用;2. 负压区-对墙面,取-对墙角边,取二、内表面对封闭式建筑物,按表面风压的正负情况取或。
风荷载计算方法与步骤
欢迎共阅1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值(KN/m2)按下式计算:1.1.1基本风压按当地空旷平坦地面上50年一遇按公式 其中的单位为,kN/m 2。
也可以用公式1.1.2 风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以粗糙度类别场地确定之后上式前两项为常数,于是计算时变成下式:1.1.3风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面(5)未述事项详见相应规范。
23檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于1.1.4米且高宽比的房屋,以及自振周期虑脉动风压对结构发生顺向风振的影响。
且可忽略扭转的结构在高度处的风振系数○1g为○2R为脉动风荷载的共振分量因子,计算方法如下:为结构阻尼比,对钢筋混凝土及砌体结构可取;为地面粗糙修正系数,取值如下:为结构第一阶自振频率(Hz);高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用),B为房屋宽度(m)。
○3对于体型和质量沿高度均匀分布的高层建筑,、为系数,按下表取值:为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度风高度。
为脉动风荷载水平、竖直方向相关系数,分别按下式计算:B。
风荷载计算方法与步骤
1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。
按公式 ω0=12ρv 02确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。
也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。
1.1.2 风压高度变化系数μZ风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B 类地面粗糙程度作为标准地貌,给出计算公式。
μZX=(H tB 10)2αB (10H tX )2αX (Z 10)2αXμZA =1.248(Z 10)0.24μZB =1.000(Z )0.30μZC =0.544(Z 10)0.44μZD =0.262(Z 10)0.601.1.3 风荷载体形系数μS1)单体风压体形系数(1)圆形平面μS =0.8;(2)正多边形及截角三角平面μS=0.8+√n,n为多边形边数;(3)高宽比HB≤4的矩形、方形、十字形平面μS=1.3;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比HB >4的十字形、高宽比HB>4,长宽比LB≤1.5的矩形、鼓形平面μS=1.4;(5)未述事项详见相应规范。
风荷载取值规范
《荷载规范》 在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值, 工程设计中根据建筑物的使用性质与功能要求, 一般按照下列方法选用风压标准值的取值年 限:
1临时性建筑物:取n=10年一遇的基本风压标准值;
2一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;
图3.1.3b抗侧力构件多向布置示意图 般按照抗侧力构件布置方向, 沿着相互垂直的主3.1.3b所示。
注意: 同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算。
4、风洞试验
《高层规程》3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准 值计算公式(3.1-2)中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建 筑物受到的风荷载作用效应,确保建筑结构的抗风能力。
3、关于风荷载作用的方向问题 建筑物受到的风荷载作用来自各个方向, 风荷载的主要作用方向与建筑物所在地的风玫 瑰图方向一致(全国主要城市风玫瑰图,可以查相应的建筑设计资料) 。工程设计中,一般 按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应。
对于抗侧力构件相互垂直布置的建筑物: 一般按照两个相互垂直的主轴方向来考虑风荷 载的作用效应,详图3.1.3a所示。
3特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取
表3.1.12浙江省主要城镇基本风压(kN/m2)取值参考表
城镇名称
海拔高度
(m)
基本风压(kN/m2)
n=10年
n=50年
n=100年
杭州市
41.7
0.30
0.45
0.50
临安县天目山
1505.9
0.55
风荷载标准值计算公式
风荷载标准值计算公式
风荷载是指建筑物在风力作用下所受到的荷载,是建筑结构设计中非常重要的一个参数。
风荷载的计算需要根据当地的气象条件和建筑物的结构特点来确定,而风荷载标准值计算公式就是用来计算这一参数的重要工具。
本文将介绍风荷载标准值计算公式的相关知识,希望能对大家有所帮助。
风荷载标准值计算公式的基本原理是根据建筑物的高度、结构形式、气象条件等因素来确定建筑物所受到的风荷载大小。
一般来说,风荷载的计算可以分为静风荷载和动风荷载两种情况。
静风荷载是指建筑物在稳定风场中所受到的风荷载,而动风荷载则是指建筑物在非稳定风场中所受到的风荷载。
在实际工程中,需要根据具体情况来确定采用哪种计算方法。
静风荷载的计算公式一般采用国家相关标准或规范中给出的公式,这些公式通常是根据建筑物的高度、形状系数、风速等参数来确定风荷载的大小。
而动风荷载的计算则需要考虑建筑物在风场中的振动响应,通常需要进行风洞试验或数值模拟来确定。
在实际工程中,风荷载标准值计算公式的准确性对建筑物的结构安全性至关重要。
因此,在进行风荷载计算时,需要充分考虑建筑物的结构特点、周围环境的气象条件以及当地的风荷载标准等因素,确保计算结果的准确性和可靠性。
总之,风荷载标准值计算公式是确定建筑物在风力作用下所受到的荷载大小的重要工具,其准确性和可靠性对建筑物的结构安全性有着重要影响。
在进行风荷载计算时,需要根据实际情况选择合适的计算方法,并严格遵循相关的标准和规范,以确保建筑物的结构安全性和稳定性。
希望本文对大家对风荷载标准值计算公式有所帮助,谢谢阅读!。
风荷载计算
第二部分 风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:0k z s z W w βμμ=⋅⋅⋅ 其中k W 为垂直于建筑物单位面积上的风荷载标准值z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w =该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。
(2)确定各系数数值因结构高度19.830H m m =<,高宽比19.81.375 1.514.4HB==<,应采用风振系数z β来考虑风压脉动的影响。
该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。
(3)计算各楼层标高处的风荷载z 。
攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=⋅⋅⋅得沿房屋高度分布风荷载标准值。
7.20.4 2.88z z s z z s z q βμμβμμ=⨯=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。
其中1()q z 为迎风面,2()q z 背风面。
风正压力计算:7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==⨯⨯⨯⨯= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==⨯⨯⨯⨯= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==⨯⨯⨯⨯= 风负压力计算:7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==⨯⨯⨯⨯= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==⨯⨯⨯⨯= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯=2. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 1. 2() 2.88 2.880.00 1.300.740.50.000/z s z q z KN m βμμ==⨯⨯⨯⨯= (4)将分布风荷载转化为节点荷载第六层:即屋面处的集中荷载6F 要考虑女儿墙的影响6 2.306 2.216 3.3 2.370 2.306 1.441 1.385 3.3 1.441 1.4800.5[() 2.306]10.5[() 1.441]19.92222222F KN ++++=+⨯+⨯++⨯+⨯= 第五层的集中荷载5F 的计算过程5 2.216 2.216 2.306 2.216 1.441 1.385 1.385 1.3850.5[] 3.30.5[(] 3.312.002222F KN ++++=+⨯+++⨯=4 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.3850.5[] 3.30.5[(] 3.311.882222F KN ++++=+⨯+++⨯=3 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.3850.5[] 3.30.5[(] 3.311.882222F KN ++++=+⨯+++⨯=第二层,要考虑层高的不同: 2 3.3 4.252.216 1.385()13.5922F KN =+⨯+= 10.00F KN =等效节点集中等荷载(单位:KN )二.柱侧移刚度及剪力的计算(212hi D c=)见下表 三:各层柱反弯点和弯矩的确定(见下表)根据该多层办公楼总层数m ,该柱所在层n ,梁柱线刚度比K ,查表得到标准反弯点系数0y ;根据上下横梁线刚度比值i 查表得到修正值1y ,根据上下层高度变化查表得到修正值2y 3y ;各层反弯点高度0123()yh y y y y h =+++。
风荷载标准值的计算
风荷载标准值的计算风荷载是指风对建筑物或结构物所产生的荷载,是建筑设计中十分重要的一个参数。
在建筑物的设计过程中,需要对风荷载进行准确的计算,以保证建筑物的结构安全性和稳定性。
本文将介绍风荷载标准值的计算方法,以便于工程师和设计师在实际工作中能够准确计算风荷载,确保建筑物的安全性。
首先,风荷载的计算需要考虑建筑物所在地的风速等级。
根据国家相关标准,我国将风速分为12级,分别对应不同的风速范围。
在进行风荷载计算时,需要先确定建筑物所在地的风速等级,然后根据相应的风速等级确定基本风压。
其次,风荷载的计算还需要考虑建筑物的结构形式和高度。
不同形式和高度的建筑物所受到的风荷载也会有所不同。
一般来说,建筑物的结构形式和高度越复杂、越高,所受到的风荷载也会越大。
因此,在进行风荷载计算时,需要根据建筑物的具体结构形式和高度进行修正计算,以得到准确的风荷载数值。
此外,风荷载的计算还需要考虑建筑物的地理位置和周围环境。
不同地理位置和周围环境的建筑物所受到的风荷载也会有所不同。
例如,建筑物所在地的地形、周围建筑物的影响等都会对风荷载产生影响。
因此,在进行风荷载计算时,需要综合考虑建筑物所在地的地理位置和周围环境的影响,以得到准确的风荷载数值。
最后,风荷载的计算还需要考虑建筑物的使用功能和重要等级。
不同使用功能和重要等级的建筑物所需承受的风荷载也会有所不同。
例如,住宅建筑和工业建筑所需承受的风荷载是不同的。
因此,在进行风荷载计算时,需要根据建筑物的具体使用功能和重要等级进行修正计算,以得到准确的风荷载数值。
综上所述,风荷载的计算涉及多个因素,需要综合考虑多个方面的影响因素,以得到准确的风荷载数值。
只有在风荷载计算准确的基础上,才能保证建筑物的结构安全性和稳定性,为建筑设计提供可靠的依据。
希望本文所介绍的风荷载计算方法能够对工程师和设计师在实际工作中有所帮助,确保建筑物的安全性和稳定性。
建筑风荷载计算
风荷载标准值计算风荷载标准值计算公式为:0k z s z w w βμμ=,作用在屋面梁和楼面梁节点处的集中风荷载标准值计算公式为:0W z s z P w A βμμ= 式中:W P -作用于框架节点的集中风荷载标准值(KN) z β-风振系数s μ-风荷载体型系数 z μ-风压高度变化系数0w -基本风压(KN/㎡)A -一榀框架各层节点受风面积(㎡)本建筑基本风压为:200.3/w KN m =,由《荷载规范》得,地面粗糙为C 类。
s μ风荷载体系系数,根据建筑物体型查得 1.3s μ=。
z β风振系数,因结构总高度H=21.128m<30m ,故 1.0z β=。
风压高度变化系数z μ查《荷载规范》表7.2.1。
一榀框架各层节点受风面积A 计算,B 为3.3 3.9() 3.622m +=, h 取上层的一半和下层的一半之和,屋面层取到女儿墙顶,底层取底层的一半。
底层的计算高度从室外地面取()mm 45003004200=+。
一层: 24.5 3.9() 3.615.1222A m =+⨯= 二层: 23.9 3.9() 3.614.0422A m =+⨯=三层: 23.9 3.9() 3.614.0422A m =+⨯=四层: 23.9 3.9() 3.614.0422A m =+⨯=五层:23.9(1.50) 3.612.422A m =+⨯=计算过程见表所示:欠左风、右风荷载受荷简图框架梁柱线刚度计算框架梁柱线刚度计算见表表7-1 纵梁线刚度计算表表7-2 柱线刚度Ic 计算表7.2.2 侧移刚度D 值计算 考虑梁柱的线刚度比,用D 值法计算柱的侧位移刚度,表7-4 柱侧移刚度计算表2~5层柱D 值计算2~5层柱D 值合计:D ∑=1.572+1.572=3.144KN/m底层柱D 值计算低层柱D 值合计:D ∑=1.612+1.612=3.224KN/m 7.2.3 风荷载作用下框架位移的计算风荷载作用下框架的层间侧移可按下式计算,即jj ijV u D∆=∑式中:j V -第j 层的总剪力;ij D ∑-第j 层所有柱的抗侧刚度之和;j u ∆-第j 层的层间位移。
风荷载标准值公式
风荷载标准值公式风荷载标准值公式是指在建筑结构设计中,为了保证建筑物在风力作用下的安全性,需要确定一个合适的风荷载标准值。
这个标准值是根据建筑物所处的地理位置、建筑形式、高度、结构特点等因素综合考虑而得出的。
风荷载标准值公式的推导是基于风力的力学原理和建筑结构的静力学分析。
根据国家相关规范和标准,可以得到以下风荷载标准值公式:F = C × A × P其中,F表示风荷载标准值,单位为N(牛顿)或kN(千牛顿);C表示风压系数,是一个与建筑形式、高度、地理位置等因素有关的参数;A表示建筑物的参考面积,单位为m²(平方米);P表示基本风压,单位为N/m²(牛顿/平方米)。
在实际应用中,风荷载标准值公式的具体参数需要根据不同的情况进行选择和计算。
以下是一些常见参数的说明:1. 风压系数C:风压系数是根据建筑物的形状和高度来确定的。
对于一般建筑物,可以根据国家规范中的相应表格来选择合适的风压系数。
对于特殊形状的建筑物,可以通过风洞试验等方法来确定风压系数。
2. 参考面积A:参考面积是指建筑物所受到风力作用的有效面积。
对于规则形状的建筑物,可以直接根据几何形状计算出参考面积;对于不规则形状的建筑物,可以采用分割法或离散点法来估算参考面积。
3. 基本风压P:基本风压是指单位面积上的风力作用力。
根据国家规范和标准,可以通过地理位置、设计基本风速等参数来确定基本风压。
一般情况下,基本风压可以通过查表或计算得出。
需要注意的是,风荷载标准值公式只是确定了一个合适的标准值,并不能直接应用于具体的工程设计中。
在实际工程中,还需要进一步考虑结构的强度、稳定性等因素,并进行结构分析和计算,以确保建筑物在风力作用下的安全性。
总结起来,风荷载标准值公式是建筑结构设计中重要的依据之一。
通过合理选择和计算相关参数,可以得到合适的风荷载标准值,从而保证建筑物在风力作用下的安全性。
但需要注意的是,在实际工程中还需要综合考虑其他因素,并进行详细的结构分析和计算。
风荷载计算方法与步骤
1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。
按公式 ω0=12ρv 02 确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。
也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。
1.1.2 风压高度变化系数ωω风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规以B 类地面粗糙程度作为标准地貌,给出计算公式。
ωωω=(ωωω)2ωω(10ωω)2ωω(ω)2ωωωωω=1.248(ω10)0.24ωωω=1.000(ω10)0.30ωωω=0.544(ω)0.44ωωω=0.262(ω10)0.601.1.3 风荷载体形系数ωω1)单体风压体形系数(1)圆形平面ωω=0.8;(2)正多边形及截角三角平面ωω=0.8+√ω,n 为多边形边数;(3)高宽比ωω≤4的矩形、方形、十字形平面ωω=1.3;(4)V 形、Y 形、L 形、弧形、槽形、双十字形、井字形、高宽比ωω>4的十字形、高宽比ωω>4,长宽比ωω≤1.5的矩形、鼓形平面ωω=1.4;(5)未述事项详见相应规。
风荷载标准值的计算
风荷载标准值的计算中国建筑标准设计研究所刘达民1.概况建筑结构荷载规范GB50009-2001是最新版本代替了GBJ9-87,从2002年3月1日起施行。
风荷载属于基础性标准,只有50年的实测数据。
风荷载计算,第7.1.1与7.1.2黑体字属强制性条文,必须执行。
风荷载对门、窗、幕墙而言是主要荷载,其破坏作用较大,属矛盾的主要方面。
建筑结构荷载规范中风荷载虽公式未变,但参数、取值有所变化。
修改后的规范更合理,计算简化,与国际上的做法接近。
门、窗、幕墙产品测试中的P3与Wk是对应关系。
2.新老规范差异风荷载部分主要差异有:a)把主体结构与围护结构区别对待。
其中阵风系数与体型系数在取值上有区别。
b)基本风压的调整由原来30年一遇改为50年一遇,提高10%左右,但地点不同,有所区别;起点由原来0.25kPa改为0.30kPa,内陆地区变化不大,但沿海地区较大;c)规范中同时提供667个城市地区的参数可直接选用,个别仍有例外d)围护结构可仍按50年选取,专业规范另有规定的除外,例JGJ113要加大10%等。
e)高度系数作了调整由原来A、B、C三类调为A、B、C、D四类,与国际上划分一致。
A、B类与原来一样,但C类稍有降低,D类为新增加。
将A、B、C、D四类数据化:即当拟建房2km为半径的迎风半径影响范围内的房屋高度和密集度区分。
取该地区主导风和最大风向为准。
以建筑物平均高度?来划分地面粗糙度。
当?≥18M为D类;9M<?≤18M为C类;?<9M为B类;对山坡、山峰给出了计算公式。
f)体型系数作了调整增加了灵活性:即①可借鉴有关资料②宜作风洞③应作风洞④可直接采用。
g)第7.3.3条专对围护结构而言的(1)外表面正压区:按表7.3.1采用负压区:对墙面,取-1.0;对墙角边,取-1.8;对坡度>10°的屋脊部位,取-2.2;对檐口、雨棚、遮阳板,取-2.0。
注:屋面、墙角边的划分:作用宽度0.1,作用高度0.4,起点应大于1.5m。
《建筑结构荷载规范》-风荷载计算
60° +1.0 +0.7 -0.4 -0.2 -0.5
15° +1.0 +0.3 +0.4 +0.5 +0.4
60° 30° +1.0 +0.4 +0.3 +0.4 +0.2
60° +1.0 +0.8 -0.3
0
-0.5
15° +1.0 +0.5 +0.7 +0.8 +0.6
90° 30° +1.0 +0.6 +0.8 +0.9 +0.7
表8.2.1 风压高度变化系数 μz
离地面或海
地面粗糙度类别
平面高度
A
B
C
D
(m)
5
1.09
1.00
0.65
0.51
10
1.28
1.00
0.65
0.51
15
1.42
1.13
0.65
0.51
20
1.52
1.23
0.74
0.51
30
1.67
1.39
0.88
0.51
40
1.79
1.52
1.00
0.60
50
33
封闭式
带下沉天窗
18
的
双坡屋面
或拱形屋面
封闭式
带下沉天窗 19
的双跨双坡
或拱形屋面
封闭式
带天窗挡风 20
板
的双跨屋面
封闭式
带天窗挡风 21
板
的双跨屋面
封闭式 22
锯齿形屋面
风荷载计算方法与步骤
1风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值(KN/m²)按下式计算:风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1基本风压按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。
按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m³,单位为kN/m2。
也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。
1.1.2风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B类地面粗糙程度作为标准地貌,给出计算公式。
粗糙度类别 A B C D30.12 0.15 0.22 0.31.1.3风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面;(5)未述事项详见相应规范。
2)群体风压体形系数详见规范规程。
3)局部风压体形系数檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。
未述事项详见相应规范规程。
1.1.4风振系数对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。
(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。
风荷载取值
3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。
多层建筑,建筑物高度<30m ,风振系数近似取1。
(1)风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规表3.1.10 建筑物体型系数取值表范》7.3要求取值,表3.1.10中列出了常用体型建筑物的体型系数。
注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。
一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验W W z s z k μμβ=)21.3(-资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。
注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。
对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。
表3.1.11 风压高度变化系数地面粗糙度类别离地面或海平面高度(m )A B C D 5101520 1.171.381.521.63 1.001.001.141.250.740.740.740.840.620.620.620.62304050601.801.922.032.121.421.561.671.771.001.131.251.350.620.730.840.93附注:对位于山区的建筑物,按照本表确定的风压高度变化系数必须考虑地形条件的修正,详《荷载规范》7.2.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按老版本规范风荷载标准值计算方法:1.1风荷载标准值的计算方法幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0……7.1.1-2[GB50009-2001 2006 年版]上式中:w k :作用在幕墙上的风荷载标准值(MPa);Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算):1. 正压区2. 负压区- 对墙面,- 对墙角边,二、内表面对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2本计算点为大面位置按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。
根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f )其中K 为地面粗糙度调整系数, 1 f 为脉动系数A 类场地:B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: Bgz =0.89 X (1+2 [1 f ) 其中:1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0.3 对于B 类地形,B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数;根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24卩 z =1.379 X (Z/10).当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m0.32卩 z =(Z/10)当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取Z=10m 卩 z =0.616 X (Z/10) 0.44当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取Z=15m 卩 z =0.318 X (Z/10) 0.60当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数卩一、外表面 S1 : 按表7.3.1采用;取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以还应考虑室内压-0.2。
对无开启的结构,《建筑结构荷载规范》条文说明第733 条指出“对封闭建筑物,考虑到建筑物内实际存在的个别洞口和缝隙,以及机械通风等因素,室内可能存在正负不同的气压,参照国外规范,大多取土(0.2-0.25) 的压力系数,现取土0.2 ”即不论有无开启扇,均要考虑内表面的局部体型系数。
另注:上述的局部体型系数卩si(1)是适用于围护构件的从属面积A小于或等于im的情况,当围护构件的从属面积A大于或等于iom时,局部风压体型系数卩si(io)可乘以折减系数0.8,当构件的从属面积小于iom而大于im时,局部风压体型系数卩si(A)可按面积的对数线性插值,即:卩si(A)=卩si(1)+[卩si(10)-卩si(1)]logA在上式中:当A> 10m 时,取A=10rf;当A< im 时,取A=im;(1 si(10)=0.8 (1 si(i)w 0:基本风压值(MPa),根据现行<<建筑结构荷载规范>>GB50009-200i附表D.4(全国基本风压分布图)中数值采用,但不小于0.3KN/H2,按重现期50年,天津地区取0.0005MPa1.2计算支撑结构时的风荷载标准值计算支撑结构时的构件从属面积:2A=1.2 X 4=4.8mLogA=0.6811 s1(A)= i s1(1)+[ i s1(10)- i s1(1)]logA=0.8641s1=0.864+0.2=1.064W k= B gz 1 z 1 s1W)=1.7189 X 1.1529 X 1.064 X 0.0005=0.001054MPa1.3计算面板材料时的风荷载标准值计算面板材料时的构件从属面积:A=1.2 X 1.1=1.32m2LogA=0.1211 s1(A)= i s1(1)+[ i s1(10)- i s1(1)]logA=0.9761s1=0.976+0.2=1.176W k = B gz 1 z 1 s1W)=1.7189 X 1.1529 X 1.176 X 0.0005=0.001165MPa按新版本规范风荷载标准值计算方法:2.1风荷载标准值的计算方法幕墙属于外围护构件,按《建筑结构荷载规范》 (GB50009-2012)计算:上式中:w k :作用在幕墙上的风荷载标准值(MPa);z :计算点标高:11.7m ;3 gz :高度z 处的阵风系数; 根据不同场地类型,按以下公式计算:3 gz =1+2gh o (z/10)-“ ……条文说明部分 8.6.1[GB50009-2012]其中A B C D 四类地貌类别截断高度分别为:5m 10m 15m 30m A 、B 、C 、D 四类地貌类别梯度高度分别为: 300m 350m 450m 550m 也就是:对A 类场地:当z>300m 时,取z=300n g 当z<5m 时,取z=5m对B 类场地:当z>350m 时,取z=350m 当z<10m 时,取z=10m ;对C 类场地:当z>450m 时,取z=450m 当z<15m 时,取z=15m ; 对D 类场地:当z>550m 时,取z=550m 当z<30m 时,取z=30m ;g :峰值因子,取2.5 ;I 10: 10m 高名义湍流度,对应A 、B 、C D 地面粗糙度,可分别取0.12、0.14、 0.23 和 0.39 ;a:地面粗糙度指数,对应 A 、B C 、D 地面粗糙度,可分别取0.12、0.15、 0.22 和 0.30 ;对于B 类地形,11.7m 高度处的阵风系数为:3 gz =1+2X 2.5 X 0.14 X (11.7/10) -0.15 =1.6837卩z :风压咼度变化系数;根据不同场地类型,按《建筑结构荷载规范》条文说明部分 8.2.1提供的公 A 卩 z =1.284 X (z/10) B卩 z =1.000 X (z/10) 卩 z C =0.544 X (z/10) 卩 zD =0.262 X (z/10)公式中的截断高度和梯度高度与计算阵风系数时相同,也就是:对A 类场地:当z>300m 时,取z=300m 当z<5m 时,取z=5m对B 类场地:当z>350m 时,取z=350m 当z<10m 时,取z=10m对C 类场地:当z>450m 时,取z=450m 当z<15m 时,取z=15m对D 类场地:当z>550m 时,取z=550m 当z<30m 时,取z=30m对于B 类地形,11.7m 高度处风压高度变化系数:卩 z =1.000 X (11.7/10) 0.30=1.0482卩s1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2012第8.3.3条:计算围护结构及其连 接的风荷载时,可按下列规定采用局部体型系数卩s1:1 封闭矩形平面房屋的墙面及屋面可按表 8.3.3-1的规定采用;2 檐口、雨篷、遮阳板、边棱处的装饰条等突出构件,取 -2.0 ;W k = 3 gz 卩 si 卩 z W)8.1.1- 2[GB50009-2012] 式计算:A 类场地B 类场地C 类场地D 类场地 0.24 0.30 0.44 0.603 其它房屋和构筑物可按本规范第831条规定体型系数的1.25倍取值。
本计算点为墙面大面位置,按如上说明,查表得:U si (1)=1按《建筑结构荷载规范》GB50009-2012第8.3.4条:计算非直接承受风荷载的围护构件风荷载时,局部体型系数可按构件的从属面积折减,折减系数按下列规定采用:1 当从属面积不大于1吊时,折减系数取1.0 ;2 当从属面积大于或等于25吊时,对墙面折减系数取0.8,对局部体型系数绝对值大于1.0的屋面区域折减系数取0.6,对其它屋面区域折减系数取1.0 ;3 当从属面积大于1吊且小于25吊时,墙面和绝对值大于1.0的屋面局部体型系数可采用对数插值,即按下式计算局部体型系数:U s1(A)= U s1(1)+[ U s1(25)- U s1(1 )]l ogA/1.4 8.3.4[GB50009-2012]其中:U s1(25)=0.8 U s1(1) =0.8 x 1=0.8计算支撑结构时的构件从属面积:A=1.185 x 52=5.925m当A>25时取a=25,当A小于1时取A=1;LogA=0.773贝U:U s1(A)= U s1(1)+[ U s1(25)- U s1(1 )]logA/1.4=1+[0.8-1] x 0.773/1.4=0.89按《建筑结构荷载规范》GB50009-2012第8.3.5条:计算围护结构风荷载时,建筑物内部压力的局部体型系数可按下列规定采用:1 封闭式建筑物,按其外表面风压的正负情况取-0.2或0.2 ;2 仅一面墙有主导洞口的建筑物:- 当开洞率大于0.02且小于或等于0.10时,取0.4 U s1;- 当开洞率大于0.10且小于或等于0.30时,取0.6 U s1;- 当开洞率大于0.30时,取0.8 U s1;3 其它情况,应按开放式建筑物的U s1取值;注:1:主导洞口的开洞率是指单个主导洞口与该墙面全部面积之比;2 : U s1应取主导洞口对应位置的值;本计算中建筑物内部压力的局部体型系数为0.2(封闭式建筑内表面);因此,计算非直接承受风荷载的支撑结构时的局部风压体型系数为:U s1=0.89+0.2=1.09而对直接承受风压的面板结构来说,其局部风压体型系数为:U s1=1+0.2=1.2w °:基本风压值(MPa),根据现行《建筑结构荷载规范》GB50009-2012附表E.5中数值采用,但不小于0.3KN/m,按重现期50年,天津地区取0.0005MPa2.2计算支撑结构时的风荷载标准值W k = B gz 卩z 卩si W)=1.6837 X 1.0482 X 1.09 X 0.0005=0.000962MPa 因为w k<0.001MPa 所以按JGJ102-2003,取WA=0.001MPa 2.3计算面板材料时的风荷载标准值W k= B gz 卩z 卩s1W)=1.6837 X 1.0482 X 1.2 X 0.0005=0.001059MPa。