matlab数学实验练习题
数学实验matlab练习1
《数学实验》第一讲实验习题1.执行下列指令,观察其运算结果,理解其意义:(1)[1 2;3 4]+10-2ians =9 1011 12(2)[1 2;3 4].*[0.1 0.2;0.3 0.4]ans =0.1000 0.40000.9000 1.6000(3)[1 2;3 4].\[20 10;9 2]ans =20.0000 5.00003.0000 0.5000(4)[1 2;3 4].^2ans =1 49 16(5)exp([1 2;3 4])ans =2.7183 7.389120.0855 54.5982(6)log([1 10 100])ans =0 2.3026 4.6052(7)prod([1 2;3 4])ans =3 8(8)[a,b]=min([10 20;30 40])a =10 20b =1 1(9)abs([1 2;3 4]-pi)ans =2.1416 1.14160.1416 0.8584(10) [1 2;3 4]>=[4 3;2 1]ans =0 01 1(11) find([10 20;30 40]>=[40 30;20 10])ans =24(12) [a,b]=find([10 20;30 40]>=[40 30;20 10])a =22b =12(13) all([1 2;3 4]>1)ans =0 1(14) linspace(3,4,5)ans =3.0000 3.2500 3.5000 3.7500(15) A=[1 2;3 4];A(:,2)ans =242. 执行下列指令,观察其运算结果、变量类型和字节数,理解其意义:(1) clear;a=1,b=num2str(a),c=a>0,a= =b,a= =c,b= =cans =(2) clear;fun=’abs(x)’,x=-2,eval(fun),double(fun)ans =2ans =97 98 115 40 120 413. 本金K 以每年n 次,每次%p 的增值率(np 为每年增值额的百分比)增加,当增加到rK 时所花费的时间为(单位:年) 1001ln ln(.)T r n p += ln()ln(10.01)r T n p =+ 用MATLAB 表达式写出该公式并用下列数据计算:20512,.,r p n ===。
数学实验matlab练习题
2015-2016数学实验练习题一、选择题1.清除Matlab工作空间(wordspace)变量的命令是(B )A. clcB. clearC. clfD.delete2. 清除当前屏幕上显示的所有内容,但不清除工作空间中的数据的命令是( A )A. clcB. clearC. clfD.delete3. 用来清除图形的命令( C )A. clcB. clearC. clfD.delete4. 在MATLAB程序中,使命令行不显示运算结果的符号是( A )A. ;B. %C. #D. &5. 在MATLAB程序中,可以将某行表示为注释行的符号是( B )A. ;B. %C. #D. &6.在循环结构中跳出循环,执行循环后面代码的命令为 ( B )A. returnB. breakC. continueD. Keyboard7.在循环结构中跳出循环,但继续下次循环的命令为( C )A. returnB. breakC. continueD. Keyboard8. MATLAB中用于声明全局变量的关键字是( C )A. infB. symsC. globalD. function9. 用户可以通过下面哪项获得指令的使用说明( A )A. helpB. loadC. demoD. lookfor10.在MATLAB命令窗口中键入命令S=zoros(3);可生成一个三行三列的零矩阵,如果省略了变量名S,MATLAB表现计算结果将用下面的哪一变量名做缺省变量名( A )A. ans;B. pi;C. NaN;D. Eps.11. 9/0的结果是( B )A. NAN;B. Inf;C. eps;D. 012.在MATLAB中程序或语句的执行结果都可以用不同格式显示,将数据结果显示为分数形式,用下面哪一条命令语句( D )A. format long;B. format long e;C. format bank;D. fromat rat13. 下列MATLAB命令中是构造1行3列的(-1,1)均匀分布随机矩阵的命令的是(D)A. randn(1,3);B. rand(1,3);C. ones(3);D. 以上都不对14. 产生四维元素都为1矩阵的语句为( A )A. ones(4)B. eye(4)C. zeros(4)D. rand(4)15. 用round 函数对数组[2.48 6.39 3.93 8.52]取整,结果为 ( C )A. [2 6 3 8]B. [2 6 4 8]C. [2 6 4 9]D. [3 7 4 9]16. y=dsolve(‘Dy=1/(1+x^2)-2*y^2’,’y(0)=0’,’x ’); ezplot(y)的功能是( A )A. 求微分方程特解并绘图;B. 解代数方程;C. 求定积分;D.求微分方程通解.17. MATLAB 命令roots([1,0,0,-1])的功能是 ( D )A. 产生向量[1,0,0,1];B. 求方程310x +=的根;C. 求多项式31x -的值;D. 求方程310x -=的根。
MATLAB数学实验答案(全)
MATLAB数学实验答案(全)第⼀次练习教学要求:熟练掌握Matlab 软件的基本命令和操作,会作⼆维、三维⼏何图形,能够⽤Matlab 软件解决微积分、线性代数与解析⼏何中的计算问题。
补充命令vpa(x,n) 显⽰x 的n 位有效数字,教材102页fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形在下⾯的题⽬中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin limx mx mx x →-与3sin lim x mx mxx →∞-syms xlimit((902*x-sin(902*x))/x^3) ans =366935404/3limit((902*x-sin(902*x))/x^3,inf)//inf 的意思 ans = 0 1.2 cos1000xmxy e =,求''y syms xdiff(exp(x)*cos(902*x/1000),2)//diff 及其后的2的意思 ans =(46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算221100x y edxdy +??dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1)//双重积分 ans = 2.13941.4 计算4224x dx m x +? syms xint(x^4/(902^2+4*x^2))//不定积分 ans =(91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求//⾼阶导数syms xdiff(exp(x)*cos(902*x),10) ans =-356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x)1.6 0x =的泰勒展式(最⾼次幂为4).syms xtaylor(sqrt(902/1000+x),5,x)//泰勒展式 ans =-(9765625*451^(1/2)*500^(1/2)*x^4)/82743933602 +(15625*451^(1/2)*500^(1/2)*x^3)/91733851-(125*451^(1/2)*500^(1/2)*x^2)/406802 + (451^(1/2)*500^(1/2)*x)/902 +(451^(1/2)*500^(1/2))/500 1.7 Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4,)n n n x x x n --=+=⽤循环语句编程给出该数列的前20项(要求将结果⽤向量的形式给出)。
MATLAB概率习题
数学实验(概率论)题目一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。
1. 用MA TLAB 计算泊松分布用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率. 3.用MA TLAB 计算均匀分布乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。
4.用MA TLAB 计算指数分布用MA TLAB 计算:某元件寿命ξ服从参数为λ(λ=11000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少? 5。
用MATLAB 计算正态分布 某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例? 二.用MATLAB 计算随机变量的期望和方差 1.用MA TLAB 计算数学期望(1)用MATLAB 计算离散型随机变量的期望 1)。
一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值 2)。
已知随机变量X 的分布列如下:{}kk X p 21== ,,2,1n k =计算.EX (2)用MATLAB 计算连续型随机变量的数学期望假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的均匀分布,其概率密度为: 1()0a x bx b aϕ⎧≤≤⎪=-⎨⎪⎩其它计算我国该种商品在国际市场上年销售量的期望.ξE .(3)用MATLAB 计算随机变量函数的数学期望假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大? 2. 用MA TLAB 计算方差(1)利用MATLAB 计算:设有甲、乙两种股票,今年的价格都是10元,一年后它们的试比较购买这两种股票时的投资风险.。
matlab数学实验习题全部答案(胡良剑)
数学实验答案%Page20,ex1(5) 等于[exp(1),exp(2);exp(3),exp(4)](7) 3=1*3, 8=2*4(8) a为各列最小值,b为最小值所在的行号(10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture(11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10)(12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10)%Page20, ex2(1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a与c相等,但他们不等于b(2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码%Page20,ex3>> r=2;p=0.5;n=12;>> T=log(r)/n/log(1+0.01*p)T =11.5813%Page20,ex4>> x=-2:0.05:2;f=x.^4-2.^x;>> [fmin,min_index]=min(f)fmin =-1.3907 %最小值min_index =54 %最小值点编址>> x(min_index)ans =0.6500 %最小值点>> [f1,x1_index]=min(abs(f)) %求近似根--绝对值最小的点f1 =0.0328x1_index =24>> x(x1_index)ans =-0.8500>> x(x1_index)=[];f=x.^4-2.^x; %删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) %求另一近似根--函数绝对值次小的点f2 =0.0630x2_index =65>> x(x2_index)ans =1.2500%Page20,ex5>> z=magic(10)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3417 24 76 83 90 42 49 26 33 6523 5 82 89 91 48 30 32 39 6679 6 13 95 97 29 31 38 45 7210 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59>> sum(z)ans =505 505 505 505 505 505 505 505 505 505 >> sum(diag(z))ans =505>> z(:,2)/sqrt(3)ans =57.157746.188046.765450.229553.693613.85642.88683.46416.928210.3923>> z(8,:)=z(8,:)+z(3,:)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3417 24 76 83 90 42 49 26 33 6523 5 82 89 91 48 30 32 39 6683 87 101 115 119 83 87 101 115 11910 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59%Page 40 ex1先在编辑器窗口写下列M函数,保存为eg2_1.m function [xbar,s]=ex2_1(x)n=length(x);xbar=sum(x)/n;s=sqrt((sum(x.^2)-n*xbar^2)/(n-1));例如>>x=[81 70 65 51 76 66 90 87 61 77];>>[xbar,s]=ex2_1(x)xbar =72.4000s =12.1124%Page 40 ex2s=log(1);n=0;while s<=100n=n+1;s=s+log(1+n);endm=n计算结果m=37%Page 40 ex3clear;F(1)=1;F(2)=1;k=2;x=0;e=1e-8; a=(1+sqrt(5))/2;while abs(x-a)>ek=k+1;F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1);enda,x,k计算至k=21可满足精度%Page 40 ex4clear;tic;s=0;for i=1:1000000s=s+sqrt(3)/2^i;ends,toctic;s=0;i=1;while i<=1000000s=s+sqrt(3)/2^i;i=i+1;ends,toctic;s=0;i=1:1000000;s=sqrt(3)*sum(1./2.^i);s,toc%Page 40 ex5t=0:24;c=[15 14 14 14 14 15 16 18 20 22 23 25 28 ...31 32 31 29 27 25 24 22 20 18 17 16];plot(t,c)%Page 40 ex6%(1)x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y)y=inline('x^2*sin(x^2-x-2)');fplot(y,[-2 2])%(2)参数方法t=linspace(0,2*pi,100);x=2*cos(t);y=3*sin(t); plot(x,y)%(3)x=-3:0.1:3;y=x;[x,y]=meshgrid(x,y);z=x.^2+y.^2;surf(x,y,z)%(4)x=-3:0.1:3;y=-3:0.1:13;[x,y]=meshgrid(x,y);z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;surf(x,y,z)%(5)t=0:0.01:2*pi;x=sin(t);y=cos(t);z=cos(2*t);plot3(x,y,z)%(6)theta=linspace(0,2*pi,50);fai=linspace(0,pi/2,20); [theta,fai]=meshgrid(theta,fai);x=2*sin(fai).*cos(theta);y=2*sin(fai).*sin(theta);z=2*cos(fai);surf(x,y,z)%(7)x=linspace(0,pi,100);y1=sin(x);y2=sin(x).*sin(10*x);y3=-sin(x);plot(x,y1,x,y2,x,y3)%page41, ex7x=-1.5:0.05:1.5;y=1.1*(x>1.1)+x.*(x<=1.1).*(x>=-1.1)-1.1*(x<-1.1);plot(x,y)%page41,ex8分别使用which trapz, type trapz, dir C:\MA TLAB7\toolbox\matlab\datafun\ %page41,ex9clear;close;x=-2:0.1:2;y=x;[x,y]=meshgrid(x,y);a=0.5457;b=0.7575;p=a*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1);p=p+b*exp(-y.^2-6*x.^2).*(x+y>-1).*(x+y<=1);p=p+a*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);mesh(x,y,p)%page41, ex10lookfor lyapunovhelp lyap>> A=[1 2 3;4 5 6;7 8 0];C=[2 -5 -22;-5 -24 -56;-22 -56 -16];>> X=lyap(A,C)X =1.0000 -1.0000 -0.0000-1.0000 2.0000 1.0000-0.0000 1.0000 7.0000%Chapter 3%Exercise 1>> a=[1,2,3];b=[2,4,3];a./b,a.\b,a/b,a\bans =0.5000 0.5000 1.0000ans =2 2 1ans =0.6552 %一元方程组x[2,4,3]=[1,2,3]的近似解ans =0 0 00 0 00.6667 1.3333 1.0000%矩阵方程[1,2,3][x11,x12,x13;x21,x22,x23;x31,x32,x33]=[2,4,3]的特解%Exercise 2(1)>> A=[4 1 -1;3 2 -6;1 -5 3];b=[9;-2;1];>> rank(A), rank([A,b]) %[A,b]为增广矩阵ans =3ans =3 %可见方程组唯一解>> x=A\bx =2.38301.48942.0213%Exercise 2(2)>> A=[4 -3 3;3 2 -6;1 -5 3];b=[-1;-2;1];>> rank(A), rank([A,b])ans =3ans =3 %可见方程组唯一解>> x=A\bx =-0.4706-0.2941%Exercise 2(3)>> A=[4 1;3 2;1 -5];b=[1;1;1];>> rank(A), rank([A,b])ans =2ans =3 %可见方程组无解>> x=A\bx =0.3311-0.1219 %最小二乘近似解%Exercise 2(4)>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1 2 3]';%注意b的写法>> rank(a),rank([a,b])ans =3ans =3 %rank(a)==rank([a,b])<4说明有无穷多解>> a\bans =110 %一个特解%Exercise 3>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1,2,3]';>> x=null(a),x0=a\bx =-0.62550.6255-0.20850.4170x0 =11%通解kx+x0%Exercise 4>> x0=[0.2 0.8]';a=[0.99 0.05;0.01 0.95];>> x1=a*x, x2=a^2*x, x10=a^10*x>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> x0=[0.8 0.2]';>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> [v,e]=eig(a)v =0.9806 -0.70710.1961 0.7071e =1.0000 00 0.9400>> v(:,1)./xans =1.17671.1767 %成比例,说明x是最大特征值对应的特征向量%Exercise 5%用到公式(3.11)(3.12)>> B=[6,2,1;2.25,1,0.2;3,0.2,1.8];x=[25 5 20]';>> C=B/diag(x)C =0.2400 0.4000 0.05000.0900 0.2000 0.01000.1200 0.0400 0.0900>> A=eye(3,3)-CA =0.7600 -0.4000 -0.0500-0.0900 0.8000 -0.0100-0.1200 -0.0400 0.9100>> D=[17 17 17]';x=A\Dx =37.569625.786224.7690%Exercise 6(1)>> a=[4 1 -1;3 2 -6;1 -5 3];det(a),inv(a),[v,d]=eig(a) ans =-94ans =0.2553 -0.0213 0.04260.1596 -0.1383 -0.22340.1809 -0.2234 -0.0532v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766%Exercise 6(2)>> a=[1 1 -1;0 2 -1;-1 2 0];det(a),inv(a),[v,d]=eig(a) ans =1ans =2.0000 -2.0000 1.00001.0000 -1.0000 1.00002.0000 -3.0000 2.0000v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i%Exercise 6(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> det(A),inv(A), [v,d]=eig(A)ans =1ans =68.0000 -41.0000 -17.0000 10.0000-41.0000 25.0000 10.0000 -6.0000-17.0000 10.0000 5.0000 -3.000010.0000 -6.0000 -3.0000 2.0000v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887%Exercise 6(4)(以n=5为例)%关键是矩阵的定义%方法一(三个for)n=5;for i=1:n, a(i,i)=5;endfor i=1:(n-1),a(i,i+1)=6;endfor i=1:(n-1),a(i+1,i)=1;enda%方法二(一个for)n=5;a=zeros(n,n);a(1,1:2)=[5 6];for i=2:(n-1),a(i,[i-1,i,i+1])=[1 5 6];enda(n,[n-1 n])=[1 5];a%方法三(不用for)n=5;a=diag(5*ones(n,1));b=diag(6*ones(n-1,1));c=diag(ones(n-1,1));a=a+[zeros(n-1,1),b;zeros(1,n)]+[zeros(1,n);c,zeros(n-1,1)] %下列计算>> det(a)ans =665>> inv(a)ans =0.3173 -0.5865 1.0286 -1.6241 1.9489-0.0977 0.4887 -0.8571 1.3534 -1.62410.0286 -0.1429 0.5429 -0.8571 1.0286-0.0075 0.0376 -0.1429 0.4887 -0.58650.0015 -0.0075 0.0286 -0.0977 0.3173>> [v,d]=eig(a)v =-0.7843 -0.7843 -0.9237 0.9860 -0.92370.5546 -0.5546 -0.3771 -0.0000 0.3771-0.2614 -0.2614 0.0000 -0.1643 0.00000.0924 -0.0924 0.0628 -0.0000 -0.0628-0.0218 -0.0218 0.0257 0.0274 0.0257d =0.7574 0 0 0 00 9.2426 0 0 00 0 7.4495 0 00 0 0 5.0000 00 0 0 0 2.5505%Exercise 7(1)>> a=[4 1 -1;3 2 -6;1 -5 3];[v,d]=eig(a)v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766>> det(v)ans =-0.9255 %v行列式正常, 特征向量线性相关,可对角化>> inv(v)*a*v %验算ans =-3.0527 0.0000 -0.00000.0000 3.6760 -0.0000-0.0000 -0.0000 8.3766>> [v2,d2]=jordan(a) %也可用jordanv2 =0.0798 0.0076 0.91270.1886 -0.3141 0.1256-0.1605 -0.2607 0.4213 %特征向量不同d2 =8.3766 0 00 -3.0527 - 0.0000i 00 0 3.6760 + 0.0000i>> v2\a*v2ans =8.3766 0 0.00000.0000 -3.0527 0.00000.0000 0.0000 3.6760>> v(:,1)./v2(:,2) %对应相同特征值的特征向量成比例ans =2.44912.44912.4491%Exercise 7(2)>> a=[1 1 -1;0 2 -1;-1 2 0];[v,d]=eig(a)v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i>> det(v)ans =-5.0566e-028 -5.1918e-017i %v的行列式接近0, 特征向量线性相关,不可对角化>> [v,d]=jordan(a)v =1 0 11 0 01 -1 0d =1 1 00 1 10 0 1 %jordan标准形不是对角的,所以不可对角化%Exercise 7(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> [v,d]=eig(A)v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887>> inv(v)*A*vans =0.0102 0.0000 -0.0000 0.00000.0000 0.8431 -0.0000 -0.0000-0.0000 0.0000 3.8581 -0.0000-0.0000 -0.0000 0 30.2887%本题用jordan不行, 原因未知%Exercise 7(4)参考6(4)和7(1), 略%Exercise 8 只有(3)对称, 且特征值全部大于零, 所以是正定矩阵. %Exercise 9(1)>> a=[4 -3 1 3;2 -1 3 5;1 -1 -1 -1;3 -2 3 4;7 -6 -7 0]>> rank(a)ans =3>> rank(a(1:3,:))ans =2>> rank(a([1 2 4],:)) %1,2,4行为最大无关组ans =3>> b=a([1 2 4],:)';c=a([3 5],:)';>> b\c %线性表示的系数ans =0.5000 5.0000-0.5000 1.00000 -5.0000%Exercise 10>> a=[1 -2 2;-2 -2 4;2 4 -2]>> [v,d]=eig(a)v =0.3333 0.9339 -0.12930.6667 -0.3304 -0.6681-0.6667 0.1365 -0.7327d =-7.0000 0 00 2.0000 00 0 2.0000>> v'*vans =1.0000 0.0000 0.00000.0000 1.0000 00.0000 0 1.0000 %v确实是正交矩阵%Exercise 11%设经过6个电阻的电流分别为i1, ..., i6. 列方程组如下%20-2i1=a; 5-3i2=c; a-3i3=c; a-4i4=b; c-5i5=b; b-3i6=0;%i1=i3+i4;i5=i2+i3;i6=i4+i5;%计算如下>> A=[1 0 0 2 0 0 0 0 0;0 0 1 0 3 0 0 0 0;1 0 -1 0 0 -3 0 0 0; 1 -1 0 0 0 0 -4 0 0;0 -1 1 0 0 0 0 -5 0;0 1 0 0 0 0 0 0 -3; 0 0 0 1 0 -1 -1 0 0;0 0 0 0 -1 -1 0 1 0;0 0 0 0 0 0 -1 -1 1];>>b=[20 5 0 0 0 0 0 0 0]'; A\bans =13.34536.44018.54203.3274-1.18071.60111.72630.42042.1467%Exercise 12>> A=[1 2 3;4 5 6;7 8 0];>> left=sum(eig(A)), right=sum(trace(A))left =6.0000right =6>> left=prod(eig(A)), right=det(A) %原题有错, (-1)^n应删去left =27.0000right =27>> fA=(A-p(1)*eye(3,3))*(A-p(2)*eye(3,3))*(A-p(3)*eye(3,3)) fA =1.0e-012 *0.0853 0.1421 0.02840.1421 0.1421 0-0.0568 -0.1137 0.1705>> norm(fA) %f(A)范数接近0ans =2.9536e-013%Exercise 1(1)roots([1 1 1])%Exercise 1(2)roots([3 0 -4 0 2 -1])%Exercise 1(3)p=zeros(1,24);p([1 17 18 22])=[5 -6 8 -5];roots(p)%Exercise 1(4)p1=[2 3];p2=conv(p1, p1);p3=conv(p1, p2);p3(end)=p3(end)-4; %原p3最后一个分量-4roots(p3)%Exercise 2fun=inline('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x');fzero(fun,2)%Exercise 3fun=inline('x^4-2^x');fplot(fun,[-2 2]);grid on;fzero(fun,-1),fzero(fun,1),fminbnd(fun,0.5,1.5)%Exercise 4fun=inline('x*sin(1/x)','x');fplot(fun, [-0.1 0.1]);x=zeros(1,10);for i=1:10, x(i)=fzero(fun,(i-0.5)*0.01);end;x=[x,-x]%Exercise 5fun=inline('[9*x(1)^2+36*x(2)^2+4*x(3)^2-36;x(1)^2-2*x(2)^2-20*x(3);16*x(1)-x(1)^3-2*x(2)^ 2-16*x(3)^2]','x');[a,b,c]=fsolve(fun,[0 0 0])%Exercise 6fun=@(x)[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))];[a,b,c]=fsolve(fun,[0.5 0.5])%Exercise 7clear; close; t=0:pi/100:2*pi;x1=2+sqrt(5)*cos(t); y1=3-2*x1+sqrt(5)*sin(t);x2=3+sqrt(2)*cos(t); y2=6*sin(t);plot(x1,y1,x2,y2); grid on; %作图发现4个解的大致位置,然后分别求解y1=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.5,2])y2=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.8,-2])y3=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[3.5,-5])y4=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[4,-4])%Exercise 8(1)clear;fun=inline('x.^2.*sin(x.^2-x-2)');fplot(fun,[-2 2]);grid on; %作图观察x(1)=-2;x(3)=fminbnd(fun,-1,-0.5);x(5)=fminbnd(fun,1,2);fun2=inline('-x.^2.*sin(x.^2-x-2)');x(2)=fminbnd(fun2,-2,-1);x(4)=fminbnd(fun2,-0.5,0.5);x(6)=2feval(fun,x)%答案: 以上x(1)(3)(5)是局部极小,x(2)(4)(6)是局部极大,从最后一句知道x(1)全局最小,x(2)最大。
matlab数学实验复习题(有答案)
复习题1、写出3个常用的绘图函数命令2、inv (A )表示A 的逆矩阵;3、在命令窗口健入clc4、在命令窗口健入clear 5、在命令窗口健入6、x=-1:0.2:17、det (A )表示计算A 的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。
9、若A=123456789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则fliplr (A )=321654987⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A-3=210123456--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A .^2=149162536496481⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦tril (A )=100450789⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦triu (A ,-1)=123456089⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦diag (A )=100050009⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A(:,2),=258A(3,:)=369 10、normcdf (1,1,2)=0.5%正态分布mu=1,sigma=2,x=1处的概率[t,x]=ode45(@f,[a,b],x0),中参数的涵义是@fun 是求解方程的函数M 文件,[a,b]是输入向量即自变量的范围a 为初值,x0为函数的初值,t 为输function 开头;17、二种数值积分的库函数名为:quad;quadl43,421、设x )的功能是作出将X 十等分的直方图 22、interp1([1,2,3],[3,4,5],2.5) Ans=4.523、建立一阶微分方程组⎩⎨⎧+='-='yx t y y x t x 34)(3)(2的函数M 文件。
(做不出来)二、写出运行结果:1、>>eye(3,4)=1000010000102、>>size([1,2,3])=1;33、设b=round (unifrnd (-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x=-5;m=4 ,[x,n]=sort(b) -5 2 3 5 4 3 1 2mean(b)=1.25,median (b )=2.5,range (b )=10 4、向量b 如上题,则>>any(b),all(b<2),all(b<6) Ans=1 0 15、>>[5 6;7 8]>[7 8;5 6]=00116、若1234B ⎡⎤=⎢⎥⎣⎦,则 7、>>diag(diag(B))=10048、>>[4:-2:1].*[-1,6]=-4 12 9、>>acos(0.5),atan(1) ans=1.047197551196598 ans=0.785398163397448 10、>>norm([1,2,3]) Ans=3.74165738677394111、>>length ([1,3,-1])=312、>>x=0:0.4:2;plot(x,2*x,’k*’)13、>>zeros(3,1);ans=14、>>ones(3)=111111111,vander([2,3,5])=421931255116、>>floor(1:0.3:3)=1 1 1 12 2 218、>>subplot(2,2,1); fplot('sin',[0,2*pi]);subplot(2,2,2);plot([1,2,-1]);>>x=linspace(0,6*pi);subplot(2,2,3);plot3(cos(x),sin(x),x);>>subplot(2,2,4);polar(x,5*sin(4*x/3));19、>>t=linespace(0,2,11)0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.020、>>[a,b]=binostat(15,0.2)a=3 b=2.4>>y1=binopdf(5,10,0.7)=0.1029,y2=binocdf(5,10,0.7)=0.150321、>>log10([1,10,100])=[0 1 2]22、>>p=1;for k=2:3:9 p=p*k;end;p p=8023、>>s=0;for k=2:3:9 s=s+k;end;s s=1524、('^3exp(2*)3');(,1)=--+f inline x x feval fAns=3.864725、>>a1=norminv(0.6,3,4)a1=4.013426、>>unifinv(0.4,1,5),unifpdf(0.4,1,5),unifpdf(2,1,5)Ans=2.6 0 0.2527、>>A=[0 1-1;2 1 0;1-1 1];0 1 -11 -1 1>>A([1,3],:)1 -1 10 1 -1A([3,1],:)=1 -1 10 1 -1>>A(2,:)=2 1 0>>-2*A(1,:)= 0 -2 228、>>quad(‘sin(x)’,0,pi/2)=1.000029、>>trapz([3,4,6],[1,2,3])=6.500030、>> int('x-sin(x)',0,1)Ans=cos(1) - 1/231、>>round(3:0.4:5),ceil(3:0.4:5);floor(3:0.4:5)3 34 45 53 3 34 4 5>>limit(1+1/(3*x)^x,inf)=1>>diff(sin(3*x)+x^3,2)=6*x-9*sin(3*x)>>taylor(exp(3*x),5,1):命令输入: y=taylor(exp(3*x),x,1,'Order',5)Ans=exp(3) + 3*exp(3)*(x - 1) + (9*exp(3)*(x - 1)^2)/2 + (9*exp(3)*(x - 1)^3)/2 + (27*exp(3)*(x - 1)^4)/8>>a1=mod(15,4),b1=rem(15,4)=3,3>>a2=mod(-15,-4),b2=rem(-15,-4)=-3,-3>>a3=mod(15,-4),b3=rem(15,-4)=-1,-3>>a4=mod(-15,4),b4=rem(-15,4)=1,-334、>>x=binornd(20,0.4,2,4)8 7 10 810 7 9 12>>sign(x),1 1 1 11 1 1 1>>y=-poissrnd(8,2,4)-16 -10 8 -7-7 -8 -6 -9>>sign(y)-1 -1 -1 -1-1 -1 -1 -135、>>[a1,b1]=binostat(20,0.4) a1=8 b1=4.8 >>[a2,b2]=poisstat(8)ans=8,8>>[a3,b3]=chi2stat(15)ans=[15 30]36、运行M文件:chi2fign=5;a=0.9;xa=chi2inv(a,n);x=0:0.1:15;y=chi2pdf(x,n);plot(x,y,'b');hold on;xf=0:0.1:xa;yf=chi2pdf(xf,n);fill([xf,xa],[yf,0],'g');text(xa*1.01,0.005,num2str(xa));text(2.5,0.05,'alpha=0.9','fontsize',20); text(9,0.09,'X~{\chi}^2(4)','fontsize',16);37、>>t=linspace(0,2*pi);>>polar(t,3*t,’g*’)38、>>quadl(’exp(2*x).*log(3*x)’,1,3)ans =398.635239、x0=0:2*pi/6:2*pi;y0=sin(x0).*cos(x0);x=[linspace(0,2*pi,100)];y=sin(x).*cos(x);y1=spline(x0,y0,x);[x;y;y1]'plot(x,y,'k',x,y1,'b-')注:此处省略100组数据40、>>A=round(unifrnd(0,100,3,3));>>[L,U]=lu(A)L =0.9897 0.4699 1.0000 0.1649 1.0000 0 1.0000 0 0 U =97.0000 80.0000 92.0000 0 35.8041 26.8247 0 0 -89.656841、a=sparse([1 3 3],[2 3 5],[1 2 3],4,5);s=full(a) s =0 1 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 三、编程1、 分别用矩形公式、梯形公式、辛普森公式、Gauss-Lobatto 公式及随机模拟方法计算数值积分/230sin 2x e xdx π⎰,并与符号运算计算的结果进行比较。
2016数学实验教程(matlab版)习题
2015-2016数学实验练习题一、选择题1.清除Matlab工作空间(wordspace)变量的命令是()A. clcB. clearC. clfD.delete2. 清除当前屏幕上显示的所有内容,但不清除工作空间中的数据的命令是()A. clcB. clearC. clfD.delete3. 用来清除图形的命令()A. clcB. clearC. clfD.delete4. 在MATLAB程序中,使命令行不显示运算结果的符号是()A. ;B. %C. #D. &5. 在MATLAB程序中,可以将某行表示为注释行的符号是()A. ;B. %C. #D. &6.在循环结构中跳出循环,执行循环后面代码的命令为 ( )A. returnB. breakC. continueD. Keyboard7.在循环结构中跳出循环,但继续下次循环的命令为()A. returnB. breakC. continueD. Keyboard8. MATLAB中用于声明全局变量的关键字是( )A. infB. symsC. globalD. function9. 用户可以通过下面哪项获得指令的使用说明()A. helpB. loadC. demoD. lookfor10.在MATLAB命令窗口中键入命令S=zoros(3);可生成一个三行三列的零矩阵,如果省略了变量名S,MATLAB表现计算结果将用下面的哪一变量名做缺省变量名()A. ans;B. pi;C. NaN;D. Eps.11. 9/0的结果是()A. NAN;B. Inf;C. eps;D. 012.在MATLAB中程序或语句的执行结果都可以用不同格式显示,将数据结果显示为分数形式,用下面哪一条命令语句()A. format long;B. format long e;C. format bank;D. fromat rat13. 下列MATLAB命令中是构造1行3列的(-1,1)均匀分布随机矩阵的命令的是()A. randn(1,3);B. rand(1,3);C. ones(3);D. 以上都不对14. 产生四维元素都为1矩阵的语句为( )A. ones(4)B. eye(4)C. zeros(4)D. rand(4)15. 用round 函数对数组[2.48 6.39 3.93 8.52]取整,结果为 ( )A. [2 6 3 8]B. [2 6 4 8]C. [2 6 4 9]D. [3 7 4 9]16. y=dsolve(‘Dy=1/(1+x^2)-2*y^2’,’y(0)=0’,’x ’); ezplot(y)的功能是( )A. 求微分方程特解并绘图;B. 解代数方程;C. 求定积分;D.求微分方程通解.17. MATLAB 命令roots([1,0,0,-1])的功能是 ( )A. 产生向量[1,0,0,1];B. 求方程310x的根; C. 求多项式31x 的值; D. 求方程310x 的根。
数学实验(matlab版)过程考试试卷及答案完整版
试绘出三种产品产量与季度的三维垂直方向条形图(分组式). >> x=[8,8,9;11,7,8;12,6,9;10,6,10]; bar3(x,'group') 图形如下:
2/2
第一题:编程计算下面问题, x 值由键≥ 1 y = x 2 , −1 ≤ x < 1 2 x − 1, x < −1
>> x=input('输入 x:'); if x>=1 y=x^2+1; end if x<-1 y=x^2-1; end if x>=-1&x<1 y=x^2; end y 输入 x:5 y= 26 第二题:某人做一种材料的伸缩实验,t 为温度(℃),L 为长度(mm),实验数据见下表 t 20 25 30 35 40 L 81 82.3 84 86.8 89
f = x 4 − xy + y 2 ,求
>> syms x y
∂f ∂ 3 f , ∂x ∂y 3
1/1
f=x^4-x*y+y^2; dx=diff(f,x,1) dy3=diff(f,y,3) dx = 4*x^3-y dy3 = 0 第四题:某厂生产三种产品,某年四季度的产量如下 A 产品产量 笫一季度 笫二季度 笫三季度 笫四季度 8 11 12 10 B 产品产量 8 7 6 6 C 产品产量 9 8 9 10
用二阶拟合法,求 L 与 t 的表达式.要求:1.编程;2.写出 L 与 t 的关系式. >> t=[20,25,30,35,40]; L=[81,82.3,84,86.5,89]; k=polyfit(t,L,2) k= 0.0091 -0.1446 80.2114 L=0.0091 t^2 —0.1446t+ 80.2114 第三题:求微分与积分(编程)
MATLAB数学实验第二版课后练习题含答案
MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。
MATLAB数学实验100例题解
一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧。
初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势。
解:程序代码:>〉 x=linspace (0,2*pi,600); t=sin (x)。
/(cos (x )+eps );plot(x ,t);title (’tan (x )');axis ([0,2*pi ,-50,50]); 图象:程序代码: 〉〉 x=linspace (0,2*pi,100); ct=cos (x)。
/(sin(x)+eps ); plot(x,ct );title(’cot(x)');axis ([0,2*pi ,—50,50]); 图象:cot(x)4在区间]1,1[-画出函数xy 1sin =的图形。
解:程序代码:>> x=linspace (-1,1,10000);y=sin(1。
/x ); plot (x,y ); axis ([-1,1,—2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>〉 t=linspace(0,2*pi,100); plot(cos(t ).*cos (5*t ),sin(t )。
*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:〉〉 t=0:0.01:2*pi ; r=exp (t/10);polar(log(t+eps ),log (r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形。
数学实验(matlab)样题及参考解答
东华大学高等数学实验试题A考试时间:90分钟(附参考解答)班级 学号 姓名 得分 上机考试说明:1. 开考前可将准备程序拷到硬盘, 开考后不允许用移动盘,也不允许上网;2. 领座考生试卷不同,开卷,可利用自己备用的书和其他资料,但不允许讨论,也不允许借用其他考生的书和资料。
3. 解答(指令行,答案等)全部用笔写在考卷上。
一、 计算题(70分)要求:写出M 函数(如果需要的话)、MATLAB 指令和计算结果。
1. 解线性方程组⎪⎪⎩⎪⎪⎨⎧-=+=+--=-+=-+14235231543421431321x x x x x x x x x x x 并求系数矩阵的行列式。
指令行:A=[5 1 –1 0;1 0 3 –1;-1 –1 0 5;0 0 2 4];b=[1;2;3;-1]; x=A\b,d=det(A) 结果:x 1=1.4, x 2= -5.9, x 3=0.1, x 4= -0.3. 行列式=70.2. 设 f(x,y) = 4 sin (x 3y),求 3,22==∂∂∂y x y x f 。
指令行:syms x y; f=diff(4*sin(x^3*y),x); f=diff(f,y); f=subs(f,x,2); f=subs(f,y,3)结果:1063.63. 求方程 3x 4+4x 3-20x+5 = 0 的所有解。
指令行:roots([3 4 0 –20 5])结果:-1.5003 - 1.5470i, -1.5003 + 1.5470i, 1.4134, 0.25394. 使用两种方法求积分dx e x 210221-⎰π的近似值。
方法一:指令行:syms x; s=int(1/sqrt(2*pi)*exp(-x^2/2),0,1); vpa(s,5)结果:0.34135方法二:指令行:x=0:0.01:1; y=1/sqrt(2*pi)*exp(-x.^2/2);trapz(x,y)结果:0.3413方法三:M 函数ex4fun.mfunction f=ex4fun(x)f=1/sqrt(2*pi)*exp(-x.^2/2);指令行:s=quadl(@ex4fun,0,1)结果:0.34135. 求函数 f(x,y) = 3x 2+10y 2+3xy-3x +2y 在原点附近的一个极小值点和极小值。
matlab数学实验练习题
Matlab 数学实验实验一 插值与拟合实验内容:预备知识:编制计算拉格朗日插值的M 文件。
1. 选择一些函数,在n 个节点上(n 不要太大,如5 ~ 11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50~100)。
通过数值和图形输出,将三种插值结果与精确值进行比较。
适当增加n ,再做比较,由此作初步分析。
下列函数任选一种。
(1)、 ;20,sin π≤≤=x x y (2)、;11,)1(2/12≤≤--=x x y(3)、;22,c os 10≤≤-=x x y(4)、22),ex p(2≤≤--=x x y2.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为)(0)()(τteV V V t v ---=,其中0V 是电容器的初始电压,τ是充电常数。
试由下面一组t ,V 数据确定0V 和τ。
实验二 常微分方程数值解试验实验目的:1. 用MATLAB 软件求解微分方程,掌握Euler 方法和龙格-库塔方法;2. 掌握用微分方程模型解决简化的实际问题。
实验内容: 实验三 地图问题1. 下图是一个国家的地图,为了计算出它的国土面积,首先对地图作如下测量:以由西向东方向为x 轴,由南到北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当地划分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到了表中的数据(单位mm )。
根据地图的比例我们知道18mm相当于40km,试由测量数据计算该国土2实验四狼追兔问题狼猎兔问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。
当一个兔子正在它的洞穴南面60码处觅食时,一只恶狼出现在兔子正东的100码处。
当两只动物同时发现对方以后,兔子奔向自己的洞穴,狼以快于兔子一倍的速度紧追兔子不放。
狼在追赶过程中所形成的轨迹就是追击曲线。
狼是否会在兔子跑回洞穴之前追赶上兔子?为了研究狼是否能够追上兔子,可以先考虑求出狼追兔子形成的追击曲线,然后根据曲线来确定狼是否能够追上兔子。
matlab简单编程21个题目及答案
1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。
第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。
Matlab实验习题集答案
1:用以上两种形式计算36sin 5e ++π算术运算结果。
>> 5^6+sin(pi)+exp(3)ans =1.5645e+004>> x=5^6+sin(pi)+exp(3)x = 1.5645e+0042:已知矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2211,2121B A ,对它们做简单的关系与逻辑运算C=(A<B)&(A= =B)>> A=[1 2;1 2];>> B=[1 1;2 2];>> C=(A<B)&(A==B) C =0 00 03:对数7sin 5+=a 用五位定点、十五位定点以及有理数形式表示出来。
>> a=5+sin(7);format short,aa =5.6570>> a=5+sin(7);>> format long,aa =5.6569865987187894:直接输入创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=98760154321A>> A=[1 2 3;4 15 60;7 8 9]A =1 2 34 15 607 8 95:输入矩阵111111111⎛⎫ ⎪ ⎪ ⎪⎝⎭。
%利用MATLAB 命令直接输入矩阵OneMatrix=ones(3,3,1)OneMatrix =1 1 1 1 1 1 1 1 16:输入矩阵00000 00000⎛⎫ ⎪⎝⎭>> OneMatrix=ones(2,5,1);ZeroMatrix=zeros(size(OneMatrix))ZeroMatrix =0 0 0 0 00 0 0 0 07:生成3阶魔方矩阵。
>> magic(3)ans =8 1 63 5 74 9 28:操作符冒号”:”的应用a)步长为1的等差数列b)步长为2的等差数列c)步长为-2的等差、递减数列>> 0:1:10ans =0 1 2 3 4 5 6 7 8 9 10 >> 0:2:10ans =0 2 4 6 8 10>> 10:(-2):0ans =10 8 6 4 2 09:已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=162ln973sin56231A,抽取与修改矩阵A的一些元素.a)求矩阵A的第二行第三列元素b)求矩阵A的第四个元素c)取矩阵A的A(2),A(3),A(4)d)取矩阵A的第一行e)取矩阵A的第三列f)把矩阵A的第一行第三列元素赋值给变量g)把矩阵A的第二行第一列元素修改为100>> A=[1 23 56;sin(3) 7 9;log(2) 6 1] >> A(2,3)ans =9>> A(4)ans =23>> A(2),A(3),A(4)ans =0.141120008059867ans =0.693147180559945ans =23>> A(1,:)ans =1 23 56>> A(:,3)ans =5691>> x=A(1,3)x =56>> A(2,1)=100A =1.0000 23.0000 56.0000 100.0000 7.0000 9.00000.6931 6.0000 1.000010:已知矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=851,9631BA,利用A与B生成矩阵13100690C⎛⎫= ⎪⎝⎭,() D A B=,AAAB⎛⎫= ⎪⎝⎭。
数学实验(MATLAB版韩明版)2.1-2.4部分答案
数学实验(MATLAB版韩明版)2.1-2.4部分答案练习2.1画出下列常见曲线的图形(其中a=1,b=2,c=3)1.31xy =的图像:()55≤≤-x编程:>> x=-5:0.1:5; >> y=x.^(1/3); >> plot(x,y) >> grid on>> xlabel('x');ylabel('y') >> legend('y=x.^(1/3)') >> title('y=x.^(1/3)') 图像:-5-4-3-2-101234500.20.40.60.811.21.41.61.8xyy=x.(1/3)y=x.(1/3)2.e x y -=2的图像:()55≤≤-x 编程:>> x=-5:0.1:5; >> y=exp(-x.^2); >> plot(x,y) >> grid on>> xlabel('x');ylabel('y') >> legend('y=e^(-x^2)'); >> title('y=e^(-x^2)') 图像:-5-4-3-2-101234500.10.20.30.40.50.60.70.80.91xyy=e (-x 2)y=e (-x 2)=++=+=axy a y at x yx tt t313,1333222的图像:()55≤≤-x ,a=1编程:>> t=-5:0.1:5;>> x=3*t./(1+t.^2);y=3*t.^2./(1+t.^2); >> plot(x,y) >> grid on>> xlabel('x');ylabel('y')>> title('x=3*t./(1+t.^2);y=3*t.^2./(1+t.^2)') >> legend('x=3*t./(1+t.^2);y=3*t.^2./(1+t.^2)') 图像:-1.5-1-0.500.51 1.500.511.522.53xyx=3*t./(1+t.2);y=3*t.2./(1+t.2)4.?+=+=x a a y a x xyt tt t3223221,1的图像: ()55≤≤-t ,a=1 编程:>> t=-5:0.1:5;>> x=t.^2./(1+t.^2);y=t.^3./(1+t.^2); >> plot(x,y)>> xlabel('x');ylabel('y')>> title('x=t.^2./(1+t.^2);y=t.^3./(1+t.^2)') >> legend('x=t.^2./(1+t.^2);y=t.^3./(1+t.^2)') >> grid on 图像:0.10.20.30.40.50.60.70.80.91-5-4-3-2-1012345xyx=t.2./(1+t.2);y=t.3./(1+t.2)5.()()t b y t t a x cos 1,sin -=-=的图像:pi t pi *2*2≤≤-,a=1,b=2 编程:>> t=-2*pi:0.1:2*pi; >> x=t-sin(t);y=2*(1-cos(t)); >> plot(x,y) >> grid on>> xlabel('x');ylabel('y')>> legend('x=t-sin(t);y=2*(1-cos(t))') >> title('x=t-sin(t);y=2*(1-cos(t))') 图像:-8-6-4-20246800.511.522.533.54xyx=t-sin(t);y=2*(1-cos(t))x=t-sin(t);y=2*(1-cos(t))6.=+==ayx t a y t a x 32323233sincos ,的图像:pi t pi *2*2≤≤-,a=1 编程:>> t=-2*pi:0.1:2*pi; >> x=(cos(t)).^3;y=(sin(t)).^3; >> plot(x,y) >> grid on>> xlabel('x');ylabel('y')>> title('x=(cos(t)).^3;y=(sin(t)).^3') 图像:-1-0.8-0.6-0.4-0.200.20.40.60.81-1-0.8-0.6-0.4-0.200.20.40.60.81xyx=(cos(t)).3;y=(sin(t)).3x=(cos(t)).3;y=(sin(t)).37.ct z t b y t a x ===,sin ,cos 的图像:()pi t pi c b a *2*2,3,2,1≤≤-=== 编程:>> t=-2*pi:0.1:2*pi; >> x=cos(t);y=2*sin(t);z=3*t; >> plot3(x,y ,z)>> xlabel('x');ylabel('y');zlabel('z') >> grid on>> legend('x=cos(t);y=2*sin(t);z=3*t') >> title('x=cos(t);y=2*sin(t);z=3*t') 图像:-101-2-1012-20-101020xx=cos(t);y=2*sin(t);z=3*tyzx=cos(t);y=2*sin(t);z=3*t8.θa r =的图像:()pi a *20,1≤≤=θ编程:>> theta=0.0:0.1:2*pi; >> r=theta; >> polar(theta,r) >> grid on>> legend('r=theta') >> title('r=theta') 图像:24 68302106024090270120300150330180r=theta r=theta9.e a r θ=的图像:()pi a *20,1≤≤=θ编程:>> theta=-2*pi:0.1:2*pi; >> r=exp(theta); >> polar(theta,r) >> grid on >> title('r=exp(theta)') >> legend('r=exp(theta)') 图像:100200 300400 5003021060240902701203001503301800r=exp(theta)r=exp(theta)10.()?-==+yx ayxar 22222222,2cos θ的图像:1=a 编程:>> theta=0:0.1:2*pi;>> r=sqrt(abs(cos(2*theta))); >> polar(theta,r) >> grid on>> title('r=sqrt(abs(cos(2*theta)))'); >> legend('r=sqrt(abs(cos(2*theta)))') 图像:0.20.4 0.60.8 13021060240902701203001503301800r=sqrt(abs(cos(2*theta)))11.()==+xy a yxar 2222*222,2sin θ的图像:a=1编程:>> theta=0:0.1:2*pi;>> r=sqrt(abs(sin(2*theta))); >> polar(theta,r) >> grid on>> title('r=sqrt(abs(sin(2*theta)))') >> legend('r=sqrt(abs(sin(2*theta)))') 图像:0.4 0.60.8 13021060240902701203001503301800r=sqrt(abs(sin(2*theta)))12.)cos 1(θ+=a r 的图像:a=1 编程:>> theta=0:0.1:2*pi; >> r=1+cos(theta); >> polar(theta,r) >> grid on >> legend('r=1+cos(theta)') >> title('r=1+cos(theta)') 图像:0.51 1.52302106024090270120300150330180r=1+cos(theta)r=1+cos(theta)练习2.21.求出下列极限值. (1)nnn n33+∞→;(2)()n n n n ++-+∞→122lim;(3)x x x 2cot lim→;(4)??? ?→x m xx cos lim 0;(5)--→111lim1e xx x ;(6)??-+∞→x x xx 2lim .解:(1)编程:>> syms n >> limit((n^3+3^n)^(1/n),n,inf) ans = 3(2)编程:>> syms n>> limit(sqrt(n+2)-2*sqrt(n+1)+sqrt(n),n,inf) ans =0(3)编程:>> syms x >> limit(x*cot(2*x),x,0) ans = 1/2(4)编程:>> syms x m >> limit((cos(m/x))^x,x,inf) ans =1(5)编程:>> syms x>> limit(1/x-1/(exp(x)-1),x,1) ans = (exp(1)-2)/(exp(1)-1) (6)编程:>> syms x >> limit(sqrt(x^2+x)-x,x,1) ans = 2^(1/2)-1 2.有个客户看中某套⾯积为180m 2,每平⽅⽶7500元的房⼦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 数学实验
实验一 插值与拟合
实验内容:
预备知识:编制计算拉格朗日插值的M 文件。
1. 选择一些函数,在n 个节点上(n 不要太大,如5 ~ 11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50~100)。
通过数值和图形输出,将三种插值结果与精确值进行比较。
适当增加n ,再做比较,由此作初步分析。
下列函数任选一种。
(1)、 ;20,sin π≤≤=x x y (2)、;11,)1(2/12≤≤--=x x y (3)、;22,c o s
10
≤≤-=x x y
(4)、22),exp(2≤≤--=x x y
2.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为
)
(0)()(t e
V V V t v ---=,其中0V 是电容器的初始电压,τ是充电常数。
试由下面
一组t ,V 数据确定0V 和τ。
实验二 常微分方程数值解试验
实验目的:
1. 用MATLAB 软件求解微分方程,掌握Euler 方法和龙格-库塔方法;
2. 掌握用微分方程模型解决简化的实际问题。
实验内容:
实验三地图问题
1.下图是一个国家的地图,为了计算出它的国土面积,首先对地图作如下测量:
以由西向东方向为x轴,由南到北方向为y轴,选择方便的原点,并将从最西边界点到最东边界点在x轴上的区间适当地划分为若干段,在每个分点的y方向测出南边界点和北边界点的y坐标y1和y2,这样就得到了表中的数据(单位mm)。
根据地图的比例我们知道18mm相当于40km,试由测量数据计算该国土
的近似面积,并与它的精确值41288km2比较。
实验四狼追兔问题
狼猎兔问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。
当一个兔子正在它的洞穴南面60码处觅食时,一只恶狼出现在兔子正东的100码处。
当两只动物同时发现对方以后,兔子奔向自己的洞穴,狼以快于兔子一倍的速度紧追兔子不放。
狼在追赶过程中所形成的轨迹就是追击曲线。
狼是否会在兔子跑回洞穴之前追赶上兔子?
为了研究狼是否能够追上兔子,可以先考虑求出狼追兔子形成的追击曲线,然后根据曲线来确定狼是否能够追上兔子。
试验五:开放式基金的投资问题
某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择。
每个项目可以重复投资,根据专家经验,对每个项目投资总额不能太高,且有个上限。
这些项目所需要的投资额已经知道,在一般情况下,投资一年后各项目所得利润也可估计出来(见表一),
表一: 投资项目所需资金及预计一年后所得利润(单位:万元)
请帮助该公司解决以下问题:
1、1、就表一提供的数据,试问应该选取哪些项目进行投资,使得第一年所得利
润最大?
2、2、在具体对这些项目投资时,实际还会出现项目之间相互影响等情况。
公司
在咨询了有关专家后,得到如下可靠信息:
1)1) 如果同时对第1个和第3个项目投资,它们的预计利润分别为
1005万元和1018. 5万元;
2)2) 如果同时对第4、5个项目投资,它们的预计利润分别为1045
万元和1276万元;
3)3) 如果同时对第2、6、7、8个项目投资,它们的预计利润分别为
1353万元、840万元、1610万元、1350万元;
4)如果考虑投资风险,则应该如何投资使得收益尽可能大,而风险尽可能的小。
投资项目总风险可用所投资项目中最大的一个风险来衡量。
专家预测出的投资项
目A i的风险损失率为q i,数据见表二。
表二:投资项目的风险损失率
由于专家的经验具有较高的可信度,公司决策层需要知道以下问题的结果:(1)(1)如果将专家的前3条信息考虑进来,该基金该如何进行投资呢?(2)(2)如果将专家的4条信息都考虑进来,该基金又应该如何决策?
开放式基金一般要保留适量的现金,降低客户无法兑付现金的风险。
在这种情况下,将专家的4条信息都考虑进来,那么基金该如何决策,使得尽可能的降低风险,而一年后所得利润尽可能多?
实验六:修理厂的模拟
某修理厂设有3个停车位置,其中一个位置供正在修理的汽车停放。
现以一天为一个时段,每天最多修好一辆车,每天到达修理站的汽车数有如下概率分布:
的汽车于正在等待修理的汽车一起进入下一时段。
试问:该停车厂有无必要增加停车位置,并说明理由
实验 七:确定死亡时间
某天中午12:00时,警察接到报案在一个住宅内发现一具受害者尸体。
法医于12:35赶到现场,立即测得死者体温是30.8℃,一个小时以后再次测得死者的体温为29.0℃,法医还注意到当时室温是28.0℃,请你建立一个数学模型来帮助警察来推断出受害者的死亡时间,并说明你的理由。
实验 八:狐狸与野兔(捕食者与被捕食者)问题
在一个封闭的大草原里生长着狐狸和野兔。
在大自然的和谐的坏境中,野免并没有因为有狐狸的捕食而灭绝。
因为每一种动物都有它们特有的技巧来保护自己。
设t 时刻它们的数量分别为y(t)和x(t),已知满足以下微分方程组
⎪⎪⎩⎪⎪⎨
⎧-=-=.02.04,9.0001.0xy x dt dx y xy dt dy
(1) (1) 分析这两个物种的数量变化关系。
(2) 在什么情况下狐狸和野兔数量出现平衡状态?
(2) (3) 建立另一个微分方程来分析人们对野兔进行捕猎会产生什么
后果?对狐狸进行捕猎又会产生什么后果?
实验 九: 人口拟合
下面是六十年代世界人口的增长数据(单位:亿):
拟合,并说明你的理由。
(2)用你的经验回归模型试计算:以1960年为基准,人口增长一倍需要多少年?世界人口何时将达到100亿?
(3)用你的模型估计2002年的世界人口数,请分析它与现在的实际人口数的差别的成因。
实验十:超市收费服务系统
一小型超级市场有4个付款柜,每个柜台为一位顾客计算货款数的时间与顾客所购商品件数成正比(大约每件费时1s),20%的顾客用支票或信用卡支付,这需要1.5min,付款则仅需0.5min。
有人倡议设一个快速服务台专为购买8个或8个以下商品的顾客服务,指定另外两个为“现金支付柜”。
请你建立一个模拟模型,用于比较现有系统和倡议的系统的运转。
假设顾客到达平均间隔时间是0.5min,顾客购买商品件数按如下频率表分布。
实验十一:确定肥猪的最佳销售时机
一般从事猪的饲养和销售总希望获得利润,因此饲养某种猪是否获利,怎样获得最大利润,是饲养者必须考虑的问题。
如果把饲养技术水平,猪的性质等因素看成不变的,且不考虑市场的需求变化,那么影响获利大小的一个主要因素是如何选择猪的售出时机,即何时把猪卖出获利最大。
也许有人认为,猪养的越
大,售出后获利愈大,其实不然,因为随着猪的生长,单位时间消耗的饲养费用也就愈多,但同时其体重的增长速度却不断下降,所以饲养时间过长是不合算的。
考虑某个品种猪的最佳销售时机的数学模型。
实验十二养老保险金问题
(1)养老保险是与人们生活密切相关的一种保险类型。
通常保险公司会提供多种方式的养老金计划让投保人选择,在计划中详细列出保险费和养老金的数额。
某保险公司的一份材料指出:在每月交费200元至60岁开始领取养老金的约定下,男子若30岁起投保,届时月养老金1800元;估算所交保险费获得的利率。
(2) 假如保险公司请你帮他们设计一个险种:35岁起保,月利率为0.005,60岁开始领取养老金,届时投保人养老金多少为最宜?
(假设投保人平均领取养老保险金的年龄为75岁;80岁呢?)。