小学五年级逻辑思维学习—容斥原理

合集下载

第6章 容斥原理

第6章 容斥原理
第6章 容斥原理
6.1 容斥原理
●容斥原理是组合数学中的一个重要 原理,它在计数问题中占有很重要地位.
●容斥原理所研究的问题是与若干有 限集的交、并或差有关的计数.
●在实际工作中, 有时要计算具有某种 性质的元素个数.
例: 某单位举办一个外语培训班, 开设 英语, 法语两门课.
●设U为该单位所有人集合, A,B分别为 学英语, 法语人的集合, 如图所示.
Qn | A1 A2 An |
n! | A1 A2 An | (6.5)
n!r1 (n 1)!r2 (n 2)!
(1)n1 rn1 1!(1)n rn 0!
由此可见, 计算禁位排列的关键问题是 计算ri(i=1,2,…,n).
其中ri为有i个棋子落入禁区的方案数.
证. 设Ai为第i个棋子落入禁区的排列的 集合, i=1,2,…,n
如果一个棋子落入禁区的方案数目为
r1, 那么剩下的n-1个棋子可任意排列, 所以: ∑|Ai|=r1(n-1)!. 如果两个棋子落入禁区的方案数目为
r2, 那么剩下的n-2个棋子可任意排列, 所以: ∑|Ai∩ Aj |=r2(n-2)!. 依次类推. 由容斥原理, 可以得到:
Q5 | A1 A2 A3 A4 |
5! | A1 | | A2 | | A3 | | A4 | | Ai Aj |
| Ai Aj Ak | | A1 A2 A3 A4 |
容易计算出:
|Ai|=4!, i=1,2,3,4. |A1A2|中排列含有模式123, 其中排列的 总数={123,4,5}排列总数. 所以,
些绅士没人能拿到他们来时所戴的帽子
● V-8发动机的8个火花塞从气缸中取出清洗。

容斥原理常识型公式

容斥原理常识型公式

容斥原理常识型公式(实用版)目录1.容斥原理的基本概念2.容斥原理的常识型公式3.容斥原理在实际问题中的应用正文【1.容斥原理的基本概念】容斥原理,又称为加法原理与减法原理,是集合论中的一种基本原理。

它主要用于解决集合的运算问题,包括并集、交集和补集等。

容斥原理有两个基本公式,分别是加法公式和减法公式。

【2.容斥原理的常识型公式】容斥原理的常识型公式是指在解决实际问题时,常用的一些简化公式。

主要包括以下两个公式:1.若 A、B 两集合无公共元素,则|A∪B| = |A| + |B|,|A∩B| = 0。

2.若 A、B 两集合有公共元素,则|A∪B| = |A| + |B| - |A∩B|,|A∩B| = |A| + |B| - |A∪B|。

【3.容斥原理在实际问题中的应用】容斥原理在实际问题中有广泛的应用,例如在统计学、概率论、组合数学等领域。

通过运用容斥原理,可以简化问题,求解复杂集合的运算。

例如,在一个班级中,有男生和女生两个集合。

若男生集合有 30 人,女生集合有 25 人,则班级总人数可以通过容斥原理的加法公式求解,即班级总人数 = 男生人数 + 女生人数 = 30 + 25 = 55 人。

再如,在一次考试中,有及格和优秀两个集合。

若及格人数为 80 人,优秀人数为 30 人,则不及格人数和非优秀人数可以通过容斥原理的减法公式求解,即不及格人数 = 总人数 - 及格人数 = 100 - 80 = 20 人,非优秀人数 = 总人数 - 优秀人数 = 100 - 30 = 70 人。

总之,容斥原理是集合论中非常重要的基本原理,它在实际问题中的应用可以帮助我们简化问题,快速求解集合的运算。

小学容斥原理的解释

小学容斥原理的解释

小学容斥原理的解释小学容斥原理,又称为容斥原理、包容原理,是组合数学中的一种重要原理。

它是解决计数问题的一种方法,通过将问题划分为不相交的子集,然后逐个计算每个子集的元素个数,并利用集合的容量大小来计算最终的结果。

容斥原理在解决小学数学题目中的应用相当广泛,如排列组合、概率论等等。

小学生在学习容斥原理之前,首先需要了解集合的概念。

集合就是由一些个体组成的整体,比如我们可以用集合{1, 2, 3}来表示三个小朋友的编号。

在容斥原理中,我们主要使用交集和并集这两个概念。

交集就是把两个或多个集合里共有的个体选出来组成一个新的集合。

例如,集合A={1, 2, 3}和集合B={2, 3, 4}的交集是{2, 3}。

并集就是把两个或多个集合里所有的个体选出来组成一个新的集合。

例如,集合A和集合B的并集是{1, 2, 3, 4}。

容斥原理的核心思想是通过计算交集和并集的关系来求解问题。

首先,我们考虑简单的情况,假设有两个集合A和B,我们要求这两个集合的元素个数之和。

根据容斥原理,我们可以通过计算A和B的并集来获得结果。

但是由于并集中包含了A和B的交集,为了避免重复计算,我们需要减去A和B 的交集的元素个数,也就是用并集的元素个数减去交集的元素个数。

例如,集合A={1, 2, 3},集合B={2, 3, 4},它们的并集为{1, 2, 3, 4},交集为{2, 3}。

根据容斥原理,集合A和集合B的元素个数之和等于并集的元素个数减去交集的元素个数,即4-2=2+2=4。

这个结果表示集合A和集合B中一共有4个元素。

在解决实际问题时,容斥原理的应用更为复杂,涉及到多个集合的情况。

我们可以通过逐个考虑不同的情况,然后用加减的方式求得最终的结果。

例如,假设有三个集合A、B和C,我们要求这三个集合的元素个数之和。

根据容斥原理,我们可以先计算每两个集合的交集的元素个数之和,然后再减去所有三个集合的交集的元素个数,最后加上三个集合的并集的元素个数。

容斥原理五年级教案

容斥原理五年级教案

容斥原理五年级教案教案标题:容斥原理五年级教案教案目标:1. 通过引导学生了解和理解容斥原理的概念,培养学生的逻辑思维和问题解决能力。

2. 帮助学生掌握容斥原理的基本应用方法,能够运用容斥原理解决简单的数学问题。

3. 激发学生对数学的兴趣,培养他们的数学思维和创造力。

教学准备:1. 教师准备白板、黑板、彩色粉笔或白板笔等教学工具。

2. 教师准备一些容斥原理相关的练习题和活动,以及相关的教学素材。

3. 学生准备笔和纸,以便做练习和记录重要知识点。

教学过程:引入:1. 教师通过提问和讨论的方式,引导学生回顾和复习集合的概念。

2. 教师引入容斥原理的概念,解释什么是容斥原理以及它的作用。

探究:1. 教师通过一个简单的例子,引导学生理解容斥原理的基本思想。

例子:有一个班级有30名学生,其中有15名学生会弹钢琴,20名学生会弹吉他,5名学生既会弹钢琴又会弹吉他。

那么班级里至少会弹一种乐器的学生有多少名?2. 学生们思考这个问题,然后在小组内讨论并给出解答。

3. 随机选择几个小组分享他们的解答和思路,引导学生互相学习和交流。

讲解:1. 教师根据学生的讨论结果,给出正确的解答,并解释容斥原理的应用方法。

2. 教师通过示范和讲解,详细介绍容斥原理的计算步骤和注意事项。

3. 教师通过一些具体的例子,帮助学生掌握容斥原理的应用技巧。

练习:1. 教师布置一些练习题,让学生在课堂上独立完成。

2. 学生在完成练习题后,相互交流和讨论答案,并向教师请教不懂的问题。

巩固:1. 教师选择一些学生分享他们的答案和解题思路,帮助其他学生理解和巩固知识点。

2. 教师总结本节课的重点内容,强调容斥原理的应用范围和重要性。

拓展:1. 教师鼓励学生在课后继续探索和应用容斥原理,解决更复杂的数学问题。

2. 教师提供一些拓展性的练习题和活动,以激发学生的学习兴趣和创造力。

评价:1. 教师通过观察学生的课堂表现,评价学生对容斥原理的理解和应用能力。

容斥原理的三个公式

容斥原理的三个公式

容斥原理的三个公式容斥原理是数学中一个挺有意思的概念,它有三个重要的公式,今天咱们就来好好聊聊这三个公式。

我先跟您说啊,这容斥原理在解决集合相关的问题时,那可真是大显身手。

就拿咱们生活中的例子来说吧,比如说学校组织活动,有参加书法比赛的同学,有参加绘画比赛的同学,还有既参加书法又参加绘画比赛的同学。

那怎么算总共有多少同学参加了这两类比赛呢?这时候容斥原理就派上用场啦!咱们先来说说容斥原理的第一个公式。

这个公式可以表述为:两个集合 A 和 B 的并集的元素个数,等于 A 的元素个数加上 B 的元素个数,再减去 A 和 B 的交集的元素个数。

简单来说就是:|A∪B| = |A| + |B| -|A∩B| 。

举个例子哈,一个班级里,喜欢语文的有 20 个同学,喜欢数学的有 30 个同学,既喜欢语文又喜欢数学的有 10 个同学。

那喜欢语文或者喜欢数学的同学一共有多少个呢?咱们就可以用这个公式来算。

|A|就是喜欢语文的 20 个同学,|B|就是喜欢数学的 30 个同学,|A∩B|就是既喜欢语文又喜欢数学的 10 个同学。

把数字带进去,那就是 |A∪B| = 20 + 30 - 10 = 40 个同学。

您瞧,是不是很清楚明了?再来说说第二个公式。

如果是三个集合 A、B、C ,那它们的并集的元素个数就是:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| +|A∩B∩C| 。

咱们还是拿例子来说事儿。

比如说在一个班级里,喜欢体育的有 25 个同学,喜欢音乐的有 15 个同学,喜欢美术的有 20 个同学,既喜欢体育又喜欢音乐的有8 个同学,既喜欢音乐又喜欢美术的有6 个同学,既喜欢体育又喜欢美术的有 9 个同学,三个都喜欢的有 3 个同学。

那喜欢体育或者音乐或者美术的同学一共有多少个呢?咱们就把数字往公式里带:|A|是 25 ,|B|是 15 ,|C|是 20 ,|A∩B|是 8 ,|B∩C|是 6 ,|C∩A|是 9 ,|A∩B∩C|是 3 。

5.3 容斥原理(二)

5.3 容斥原理(二)
博易新思维数学
五年级秋季拓展版
5.3 容斥原理 (二)
容斥原理一:
如果被计数的事物有A、B两类,那么,A类或B类元素个数
=A类元素个数+B类元素个数-既是A类又是B类的元素个数。
A
B
C
A或B的个数=A+B-C
准备题1:一次期末考试,某班有15人数学得满分,有 12人语文得满分,并且有4人语、数都是满分,那么这个班 至少有一门得满分的同学有多少人?
128+145+136-75-56-82+13 =209(个)
答:六年级一共有209个学生。
例2:某校六(1)班有学生44人,每人在暑假里都参加体育训练队, 其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有 34人,足球、排球都参加的有12人,足球、游泳都参加的有18人, 排球、游泳都参加的有14人,问:三项都参加的有多少人?
红色 白色 黑色 红、白色 红、黑色 白、黑色 红白黑三色
95 102 89
34
42
54
21
求活动现场的观众有多少?
喜欢3种颜色的人:95+102+89-34-42-54+21 =177(人) 现场的观众:177+35=212(人)
答:活动现场的观众有212人。
例5:在1到100的自然数中: (1)是3的倍数或是5的倍数的数共有多少个?
数学得满分 15人
4人
语文得满分 12人
语数都得满分
15+12-4=23(人)
答:这个班至少有一门得满分的同学有23人。
准备题2:有一根180厘米长的绳子,从一端开始,每3厘 米作一记号,每4厘米也作一记号,然后将作有记号的地方剪 断,绳子共被剪成多少段?
3厘米作记号 60段
4厘米作记号 45段

小学容斥原理教案

小学容斥原理教案

小学容斥原理教案教案标题:小学容斥原理教案教学目标:1. 理解容斥原理的概念和基本原理。

2. 能够运用容斥原理解决简单的排列组合问题。

3. 培养学生的逻辑思维和解决问题的能力。

教学重点:1. 容斥原理的概念和基本原理。

2. 运用容斥原理解决简单的排列组合问题。

教学难点:1. 运用容斥原理解决稍复杂的排列组合问题。

教学准备:1. 教师准备:教案、教具、黑板、彩色粉笔。

2. 学生准备:课本、笔、纸。

教学过程:一、导入(5分钟)1. 引入容斥原理的概念:请学生回顾一下之前学过的排列组合知识,例如:从5个不同的字母中任选3个字母组成不重复的三位数,有多少种可能性?2. 引出问题:学生是否有其他方法解决这个问题?引导学生思考。

二、讲解容斥原理(10分钟)1. 讲解容斥原理的概念:容斥原理是指通过计算每个集合的元素个数,再减去同时属于两个或多个集合的元素个数,得到所有集合元素个数的总和。

2. 讲解容斥原理的基本原理:用公式表示为:A∪B = A + B - A∩B。

3. 通过具体例子解释容斥原理的应用。

三、运用容斥原理解决问题(15分钟)1. 给学生提供一些简单的排列组合问题,引导他们运用容斥原理解决。

2. 让学生分组讨论并解答问题,然后进行讲解和总结。

四、拓展练习(15分钟)1. 提供一些稍复杂的排列组合问题,要求学生运用容斥原理解决。

2. 让学生自主解答,并互相交流思路和答案。

五、归纳总结(5分钟)1. 让学生总结容斥原理的应用方法和注意事项。

2. 教师进行总结和点评。

六、作业布置(5分钟)1. 布置相关的练习题作为课后作业,要求学生运用容斥原理解决。

2. 强调学生要理解容斥原理的概念和基本原理,能够独立运用于实际问题。

教学反思:本节课通过引导学生回顾排列组合知识,引出容斥原理的概念,并通过具体例子进行讲解和练习,使学生理解容斥原理的基本原理和应用方法。

在拓展练习环节,提供稍复杂的问题,培养学生解决问题的能力。

什么是容斥原理

什么是容斥原理

什么是容斥原理容斥原理是组合数学中一种重要的计数方法,它常常被用来解决包含排列组合、集合运算等问题。

容斥原理的应用范围非常广泛,它可以帮助我们解决各种复杂的计数问题,因此对于学习组合数学的同学来说,掌握容斥原理是非常重要的。

首先,容斥原理是什么呢?简单来说,容斥原理是一种通过排除重复计数来得到准确计数结果的方法。

在解决问题时,我们常常会遇到需要计算某个集合的元素个数的情况,而有时候直接计算会非常复杂甚至不可行。

这时,我们就可以利用容斥原理来简化计数过程,从而得到准确的结果。

容斥原理的核心思想是利用集合的互斥性质,通过排除重复计数来得到准确的计数结果。

具体来说,对于给定的若干个集合,我们可以利用容斥原理来计算它们的并集的元素个数。

容斥原理的表达式可以用一个简单的公式来表示:|A ∪ B ∪ C| = |A| + |B| + |C| |A ∩ B| |A ∩ C| |B ∩ C| + |A ∩ B ∩ C|。

其中,|A| 表示集合 A 的元素个数,A ∪ B 表示集合 A 和集合 B 的并集,A ∩B 表示集合 A 和集合 B 的交集。

通过这个公式,我们可以利用容斥原理来计算任意若干个集合的并集的元素个数,从而解决各种复杂的计数问题。

容斥原理的应用非常灵活,我们可以将其应用于各种不同类型的问题中。

例如,在排列组合问题中,容斥原理可以帮助我们计算满足某些条件的排列或组合的个数;在集合运算问题中,容斥原理可以帮助我们计算多个集合的并集的元素个数;在概率统计问题中,容斥原理可以帮助我们计算多个事件的概率之和等等。

总之,容斥原理是组合数学中一种非常重要的计数方法,它通过排除重复计数来得到准确的计数结果。

掌握容斥原理可以帮助我们解决各种复杂的计数问题,因此对于学习组合数学的同学来说,深入理解和灵活运用容斥原理是非常重要的。

希望本文对你有所帮助,谢谢阅读!。

五年级容斥原理

五年级容斥原理
容斥问题
容—包括 斥—排除
排队问题:从前面数,从后面数, 丽丽都排第6,这一排共有几个 人?
6+6-1=11(人)
答:共有11人。
即当两个计数部分有重复包含时,为了不重 复计数,应从它们的和中排除重复部分。
原理1
设A、B是两类有重叠部分的量,如图,A 与B重叠部分对应的量为ab,那么这两类的 总量可以用下面的方法计算: 总量=A+B-ab
答:乒乓球组都不会参加的有106人。
练习
全班46名同学,仅会打乒乓球的有28人, 会打乒乓球又会打羽毛球的有10人,不会打乒 乓球又不会打羽毛球的有6人,仅会打羽毛球 的有多少人?
练习时间:容斥原理
探索之旅
1、五年级96名学生都订了刊物,有64人订了 少年报,有48人订了小学生报,问两种刊物都 订的有多少人?
例 3:
有50个学生,他们穿的裤子是白色或黑色的,上 衣是蓝色的或红色的。若有14人穿的是蓝色上衣、白 裤子,31人穿黑裤子,18人穿红上衣,那么穿红上 衣、黑裤子的学生有多少人?
操场上有50名同学在跑步或跳绳,其中女生有18 名,跳绳的同学有31名,跑步的男生有14名,跳绳 的女生有多少名?
例4 : 1、罗明、李阳和赵刚每人都有几本书,罗明 和李阳共有33本,罗明和赵刚共有39本,李阳 和赵刚共有34本。问:他们三人各有几本书?
语文 优秀 的人 数: 65人 两科 都优 秀的 人数: 30 数学 优秀 的人 数: 87人
65+87-30=122(人)
答:五年级一共有122人。
?人
练习: 1 、五年级学生参加了数学和语文考试,其中语文 得100分的12人,数学得100分的17人,两门都没得 100 分的有 26 人,两门都得 100 分的有 8 人,求这个 班共有多少人?

小学五年级奥数PPT:容斥原理.ppt

小学五年级奥数PPT:容斥原理.ppt

? 例1:设某班每名学生都要选修至少一种外语, 其中选修英语的学生人数为25,选修法语的 学生人数为18,选修德语的学生人数为20, 同时选修英语和法语的学生人数为8,同时选 修英语和德语的学生人数为13 ,同时选修法 语和德语的学生人数为6,而同时选修上述三 种外语的学生人数则为3,问该班共有多少名 学生?
(A+D+E+G)+(B+D+F+G)+(C+E+F+G)-(D+G)-(F+G)-(E+G)


↓ ↓ ↓↓
25 + 34+ 22-18-14-12
=A+B+C+D+E+F
=6块(去重时把 G去完了)
再加上三种都参加的G
25+34+22-18-14-12+8 =这个班人数
?结论(公式二)
? 如果被计数的事物有A、B、C三类, 那么,A类或B类或C类事物个数= A类 事物个数+ B类事物个数+C类事物个 数—既是A类又是B类的事物个数—既 是A类又是C类的事物个数—既是B类 又是C类的事物个数+既是A类又是B类 而且是C类的事=158人 158-90=68人
? 3、在一次数学测验中,所有同学都答了第1、2 两题,其中答对第1题的有35人,答对第2题的 有28人,这两题都答对的有20人,没有人两题 都答错。一共有多少人参加了这次数学测验?
35+28-20=42人
? 4、一个俱乐部里,会下中国象棋的有69人,会 下国际象棋的有52人,这两种棋都不会下的有 12人,都会下的有30人。这个俱乐部里有多少 人?
41+34-27=48(人)
?
41 27 34
容斥原理
?一个班有45名学生,订阅《小学生数 学报》的有 15人,订阅《今日少年报》 的有10人,两种报纸都订阅的有 6人。

容斥原理总结

容斥原理总结

容斥原理习题总结首先讲一下有关这个问题的核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C题型一:逆向思维题1、在一次展览会上展品中有366部手机不是A公司的,有276部手机不是B公司的,两公司的展品共有378部,问B公司有多少部手机参展?2、学校展览每个年级的书画作品,其中28副不是五年级的,24副不是六年级的,五六年级的展览作品共有20副。

一二年级的参展作品比三四年级总数少4副。

问一二年级的参赛作品有几幅?解:第一题中问B公司的手机有几部,设为X部。

X+276即为所有展品的数量。

X+276=366+378-X。

(等式右边是以A公司的展品表示的所有展品数量)第二题中设五年级的作品有X副,X+28=24+20-X,求得X=6.则共有作品8+28=36副。

一二三四年级加起来有16副。

X+Y=16X-Y=4 因此一二年级有展品6副。

题型二:需要列表的题(较复杂)1、某班有少先队员35人,这个班有男生23人,问女生少先队员比男生非少先队员多几人。

少先队员非少先队员男X 23-X 23女35-X容易得到答案为12.2、某校参加数学奖赛的有男生120人,女生80人,而参加语文竞赛的男生有80人,女生有120人。

已知共有260人参赛了,75名男生两科都参加了,问只参加数学竞赛而没参加语文竞赛的女生有几人?解:语文数学男120 80 200女80 120 200200 200400=260+75+X,求得参加两科的女生有65人。

80-65=15人。

题型三:分数题结合整除特性来做1、一次数学考试,小王做对的题占全部题目的2/3,小李做错了5道题,两人都做错的占全部的1/4,问小王做对了几道题?解:全部题目能被12整除,两人都做错的题目数≤5,全部题目数≤20,在≤20范围内能被12整除的只有12.所以8道题为答案。

五年级奥数-容斥原理最新解读

五年级奥数-容斥原理最新解读

例如:一次期末考试,某班有15人数学得满分,有12 人语文得满分,并且有4人语、数都是满分,那么这个 班至少有一门得满分的同学有多少人? 分析:依题意,被计数的事物有语、数得满分两类, “数学得满分”称为“A类元素”,“语文得满分” 称为“B类元素”,“语、数都是满分”称为“既是A 类又是B类的元素”,“至少有一门得满分的同学” 称为“A类和B类元素个数”的总和。为15+12-4=23。
练1.C班的同学都至少喜欢一项运动,有37人喜欢 乒乓球,26人喜欢篮球,21人两种球都喜欢, 问C班有多少人? 解: 练2.自然数1,2,3…,99,100当中,能被3整除或能被4整除的 数共有几个?
Байду номын сангаас
解: 练3.某校参加数学竞赛的有120名男生、80名女生,语文竞赛的有 120女生,80男生,总共参赛人数有260名,其中75名男生两科都 参加了,问,只参加数学没参加语文的女生有多少?
问题1.十月国庆节,学校门口挂了一行彩 旗。小张从前数起,红旗是第8面;从后数 起,红旗是第10面。这行彩旗共多少面?
问题2.同学们排队做操,每行人数同样多。小明的位 置从左数起是第4个,从右数起是第3个,从前数起是 第5个,从后数起是第6个。做操的同学共有多少个? 问题3.把两块一样长的木板像下图这样钉在一起成 了一块木板。如果这块钉在一起的木板长120厘米, 中间重叠部分是16厘米,这两块木板各长多少厘米?
例1. A班共有40人,同学们都喜欢打篮球或者打羽毛球。 喜欢打篮球的有26人,喜欢打羽毛球的有24人,问两 种球都喜欢的同学有多少人? 解:
原理1:既是A又是B的数量=A的数量+B的数量-A或B的数量。
A或B的数量=A的数量+B的数量-既是A又是B的数量

容斥原理集合公式card

容斥原理集合公式card

容斥原理集合公式card在我们日常生活和工作中,数学原理的应用无处不在。

本文将介绍一个有趣的数学原理——容斥原理,以及与之相关的集合公式card。

通过实例演示与应用,帮助你更好地理解和运用这一原理,提升解决实际问题的能力。

一、容斥原理简介容斥原理,又称容斥公式,是一种计算两个或多个集合交集、并集、补集的方法。

它是由德国数学家卡尔·魏尔斯特拉斯(Karl Weierstrass)在19世纪提出的。

容斥原理的核心思想是:两个集合的并集减去交集,等于两个集合的并集的card(集合基数)。

用数学公式表示为:A ∪B = A + B - A ∩ B其中,A、B为两个集合。

二、容斥原理应用场景1.计算集合交集、并集、补集:通过容斥原理,我们可以方便地计算出多个集合的交集、并集、补集,无需一一求解。

2.计数问题:在计数问题时,容斥原理可以帮助我们快速求解。

例如,计算一个班级中男生和女生的总人数,已知男生人数为a,女生人数为b,班级总人数为c,我们可以用容斥原理求解:男生和女生的并集= 男生人数+ 女生人数- 男生与女生的交集3.组合问题:在组合问题中,容斥原理也有广泛应用。

例如,从n个人中选出m个人组成一个团队,不考虑顺序。

我们可以用容斥原理计算组合数:C(n, m) = ∑[C(n-1, k) * C(m, k)](k从0到m)其中,C(n, k)表示从n个人中选出k个人的组合数。

三、集合公式card介绍card表示集合的基数,即集合中元素的个数。

在日常生活中,我们经常需要计算集合的card,以便了解集合的大小。

例如,有以下三个集合:A = {1, 2, 3}B = {2, 3, 4}C = {3, 4, 5}我们可以计算出这三个集合的card:card(A) = 3card(B) = 3card(C) = 3四、实例演示与应用1.计算两个集合的交集、并集、补集。

集合A = {1, 2, 3},集合B = {2, 3, 4}根据容斥原理,我们可以计算出:A ∪B = A + B - A ∩ B = {1, 2, 3, 4}A ∩B = {2, 3}2.计算组合数。

小学数学容斥原理知识点

小学数学容斥原理知识点

小学数学容斥原理知识点在小学数学中,容斥原理是一种非常重要的解题方法,可以帮助我们解决一些复杂的计数问题。

容斥原理通过排除重复计数来解决问题,让我们一起来了解一下容斥原理的具体内容。

容斥原理的基本思想是,对于所给的问题,我们可以从整体的角度来思考,然后通过减去重复计数的部分来得到最终的结果。

下面我们通过一个具体的例子来理解容斥原理。

假设有一个小学学生组成的班级,其中有20个学生,分别擅长数学、英语和音乐。

我们想要知道至少擅长其中一门学科的学生人数。

首先,我们可以分别统计擅长数学、英语和音乐的学生人数,分别记为M、E和M1;然后,我们可以统计同时擅长数学和英语、数学和音乐以及英语和音乐的学生人数,分别记为ME、MM和EM;最后,我们可以统计同时擅长数学、英语和音乐的学生人数,记为MEM。

根据容斥原理,我们可以得到至少擅长其中一门学科的学生人数为:M + E + M1 - (ME + MM + EM) + MEM在这个例子中,我们通过容斥原理将问题分解成了几个部分,并减去了重复计数的学生人数。

通过这样的计算,我们可以得到至少擅长其中一门学科的学生人数,而不需要逐个统计每个学生的情况。

容斥原理不仅可以用于解决学生人数的问题,还可以用于解决更复杂的计数问题。

下面我们通过更多的例子来进一步了解容斥原理的应用。

例子一:小明手中有4个红色球、3个蓝色球和2个绿色球,他从中随机取出3个球,问至少有两个球是红色的概率是多少?我们可以使用容斥原理来解决这个问题。

首先,我们可以计算至少取到一个红色球的概率(记为P(至少一个红色球));然后,我们可以计算至少取到两个红色球的概率(记为P(至少两个红色球));最后,我们可以计算至少取到三个红色球的概率(记为P(至少三个红色球))。

根据容斥原理,我们可以得到至少有两个球是红色的概率为:P(至少一个红色球) - P(至少两个红色球) + P(至少三个红色球)我们可以具体计算每个部分的概率,然后代入公式进行计算。

容斥问题讲解方法

容斥问题讲解方法

容斥问题讲解方法一、容斥原理容斥原理是组合数学中的一种重要原理,主要用于解决包含与排斥的问题。

当两个或多个集合存在重叠时,我们不能简单地将这些集合的元素数目相加,因为重叠部分的元素被重复计算了。

容斥原理提供了解决这类问题的方法,通过将各个集合的元素数目两两相减,得到不重叠部分的元素数目。

二、基本形式两个集合的容斥问题:设A和B是两个集合,则A和B 的并集的元素数目可以通过|A∪B| = |A| + |B| - |A∩B| 来计算。

三个集合的容斥问题:设A、B和C是三个集合,则A、B和C的并集的元素数目可以通过|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| + |A∩B∩C| 来计算。

三、复杂形式当集合的数量增加时,容斥原理可以扩展到更复杂的形式。

通过递归或归纳的方法,可以将多个集合的并集的元素数目表示为各个集合元素数目的函数。

四、解题技巧明确问题的条件和目标:首先需要明确问题的条件和目标,确定涉及的集合以及它们之间的关系。

画出文氏图:在理解问题时,可以通过画出文氏图来直观地表示各个集合以及它们的重叠部分。

文氏图是一种用封闭曲线表示集合及其关系的图形。

应用容斥原理:根据问题的具体情况,选择适当的容斥原理公式来解决问题。

如果涉及多个集合,需要仔细分析它们的重叠关系。

简化计算:在应用容斥原理时,需要注意简化计算,避免出现大量的重复计算和复杂运算。

可以采取提取公因式、使用对称性等方法来简化计算。

检查答案:在解决问题后,需要检查答案是否符合实际情况和逻辑,确保答案的正确性。

五、注意事项理解问题的背景和要求:在解决容斥问题时,需要注意理解问题的背景和要求,弄清各个集合的含义和关系。

避免重复计数:在应用容斥原理时,需要注意避免重复计数。

特别是当集合之间存在多重重叠时,需要仔细分析重叠部分的关系。

分情况讨论:当问题涉及多种情况时,需要注意分情况讨论。

不同情况下的集合关系可能会有所不同,需要分别进行分析和计算。

容斥原理公式

容斥原理公式

容斥原理公式容斥原理是组合数学中的一种重要方法,用于解决集合之间的交集和并集问题。

容斥原理的应用范围非常广泛,涉及到概率论、组合数学、计算几何等多个领域。

在实际问题中,容斥原理可以帮助我们简化复杂的计算,提高问题求解的效率。

本文将介绍容斥原理的基本概念和公式推导,希望能够帮助读者更好地理解和运用容斥原理。

首先,我们来看容斥原理的基本概念。

容斥原理是指对于给定的集合A,B,C…的交集和并集问题,可以通过容斥原理来求解。

假设A,B,C…是有限集合,那么它们的交集和并集可以表示为:并集,A∪B∪C = |A| + |B| + |C| |A∩B| |A∩C| |B∩C| + |A∩B∩C|。

交集,A∩B∩C = |A| + |B| + |C| |A∪B| |A∪C| |B∪C| + |A∪B∪C|。

其中,|A|表示集合A的元素个数。

这就是容斥原理的基本公式,通过这个公式我们可以方便地求解集合的交集和并集问题。

接下来,我们来看容斥原理的公式推导。

首先,我们可以通过一个简单的例子来理解容斥原理的推导过程。

假设有三个集合A,B,C,我们要求它们的交集。

根据容斥原理的基本公式,交集可以表示为:A∩B∩C = |A| + |B| + |C| |A∪B| |A∪C| |B∪C| + |A∪B∪C|。

这个公式的推导过程可以通过集合的特征函数来解释。

我们定义集合A,B,C的特征函数分别为χA(x),χB(x),χC(x),其中χA(x)表示元素x是否属于集合A。

那么集合的交集可以表示为:A∩B∩C = ΣχA(x)χB(x)χC(x)。

通过特征函数的定义,我们可以将交集的计算转化为特征函数的计算,进而得到容斥原理的公式推导过程。

在实际问题中,容斥原理可以帮助我们简化复杂的计算。

例如,在概率论中,我们经常需要计算多个事件的交集和并集,这时容斥原理可以帮助我们简化计算过程。

在组合数学中,容斥原理也经常用于计算排列组合的问题,提高问题求解的效率。

巨人学校五年级尖子仁华预备班 第十一讲容斥原理 第十一讲容斥原理

巨人学校五年级尖子仁华预备班 第十一讲容斥原理 第十一讲容斥原理

第十一讲 容斥原理『方法总结』:一、二元容斥原理:||||||||A B A B A B =+-。

二、三元容斥原理:||||||||||||||||A B C A B C A B A C B C A B C =++---+三、学会画出图形来表示两个或者三个对象之间的关系,利用田字格方块图来表示两个对象的容斥原理,掌握对应数在图形中的特定位置,利用三圆环交叉画来理解三个对象的容斥原理。

例题:1、六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 人.[分析与解答]所求人数=全班人数-(会骑车人数+会游泳人数-既会骑车又会游泳人数)=46-(17+14-4)=19(人)2、在1至10000中不能被5或7整除的数共有 个.[分析与解答]在1到10000中,能被5整除的有2000510000=⎥⎦⎤⎢⎣⎡(个),能被7整除的有1428710000=⎥⎦⎤⎢⎣⎡(个),能被35整除的有2857310000=⎥⎦⎤⎢⎣⎡⨯(个).因此能被5或7整除的共有2000+1428-285=3143(个).从而不能被5或7整除的有10000-3143=6857(个).3、在1至10000之间既不是完全平方数,也不是完全立方数的整数有 个.[分析与解答]1~10000中完全平方数有100个(因为1002=10000),完全立方数有21个(因为213<10000<223),完全六次方数有4个(因为46<10000<56).故1~10000中是完全平方数或完全立方数的数共有100+21-4=117(个);从而既不是完全平方数,又不是完全立方数的数有10000-117=9883(个).4、某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没有一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有 人.[分析与解答]如图所示,设既参加是球队又参加排球队的人数为x ,则依容斥原理,有20+12+10-6-2-x =30,解得x =4.5、分母是1001的最简真分数有 个.[分析与解答]1~1001中,有7的倍数14371001=⎥⎦⎤⎢⎣⎡(个);有11的倍数91111001=⎥⎦⎤⎢⎣⎡(个),有13的倍数77131001=⎥⎦⎤⎢⎣⎡(个);有7⨯11=77的倍数13771001=⎥⎦⎤⎢⎣⎡(个),有7⨯13=91的倍数11911001=⎥⎦⎤⎢⎣⎡(个),有11⨯13=143的倍数71431001=⎥⎦⎤⎢⎣⎡(个).有1001的倍数1个. 由容斥原理知:在1~1001中,能被7或11或13整除的数有(43+91+7)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个. 10 12 20 6 2 x 排球队 足球队 蓝球队6、在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有 人,最多有 人.[分析与解答]如图,当100人都是或者音乐爱好者,或者体育爱好者时,这两者都爱好的人数为最小值即56+75-100=31(个).当所有的音乐爱好者都是音乐爱好者时,这两者都爱好的人数最大可为56人.7、某进修班有50人,开甲、乙、丙三门进修课、选修甲这门课的有38人,选修乙这门课有的35人,选修丙这门课的有31人,兼选甲、乙两门课的有29人,兼选甲、丙两门课的有28人,兼选乙、丙两门课的有26人,甲、乙、丙三科均选的有24人.问三科均未选的人数?[分析与解答]如图,选甲乙而不选丙的有a =29-24=5(人),选甲丙而不选乙的b =28-24=4(人),选乙丙而不选甲的有c =26-24=2(人), 仅选了丁的人有d =35-24-a -c =4(人),仅选了丙的人有e =31-24-b -c =1(人),故少选了一科的人数是:甲+d +c +e =45(人),故三门均未选的人数为50-45=5(人).8、求小于1001且与1001互质的所有自然数的和.[分析与解答]由第5题的结论知分母是1001的最简分数的个数是720.又真分数1001a 和真分数10011001a - (a 与1001互质)是成对出现的,故上述720个真分数可以分成360对,每一对=数之和为1,故上述720个分母是1001的真分数之和为360.所以所有小于1001且与1001互质的数之和为360⨯1001=360360.音乐 爱好者 体育 爱好者甲 乙 丙 24 a b c d e9、如图所示,A 、B 、C 分别代表面积为8、9、11的三张不同形状的纸片,它们重叠放在一起盖住的面积是18,且A 与B ,B 与C ,C 与AC三个图形公共部分(阴影部分)的面积. [分析与解答]设阴影部分的面积是x ,由容斥原理知28-(5+3+4)+x =18,故x =2.10、分母是385的最简真分数有多少个,并求这些真分数的和.[分析与解答]因为385=5⨯7⨯11,故在1~385这385个自然数中,5的倍数有 765385=⎥⎦⎤⎢⎣⎡(个),7的倍数有557385=⎥⎦⎤⎢⎣⎡(个),11的倍数有355385=⎥⎦⎤⎢⎣⎡(个), 5⨯7=35的倍数有1135385=⎥⎦⎤⎢⎣⎡(个),5⨯11=55的倍数有755385=⎥⎦⎤⎢⎣⎡(个),7⨯11=77的倍数有⎥⎦⎤⎢⎣⎡77385=5(个),385的倍数有1个. 由容斥原理知,在1~385中能被5、7或11整除的数有77+55+35-(11+7+5)+1=145(个),而5、7、11互质的数有385-145=240(个).即分母为385的真分数有240(个).如果有一个真分数为385a ,则必还有另一个真分数385385a -,即以385为分母的最简真分数是成对出现的,而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为1⨯120=120.11、64人订A 、B 、C 三种杂志.订A 种杂志的28人,订B 种杂志的有41人,订C 种杂志的有20人, 订A 、B 两种杂志的有10人,订B 、C 两种杂志的有12人,订A 、C 两种杂志的有12人,问三种杂志都订的有多少人?[分析与解答]设三种杂志均订的人数为x ,则有28+41+20-10-12-12+x =64,解得x =9,即三种杂志都订的有9人.练习题 1、求从1到1994中不能被5整除,也不能被6或7整除的自然数的个数.[分析与解答]在1~1994中,能被5整除的个数为39851994=⎥⎦⎤⎢⎣⎡;能被6整除的个数为33261994=⎥⎦⎤⎢⎣⎡;能被7整除的个数为28471994=⎥⎦⎤⎢⎣⎡;能被5⨯6=30整除的个数为66301994=⎥⎦⎤⎢⎣⎡;能被5⨯7=35整除的数为56351994=⎥⎦⎤⎢⎣⎡;能被6⨯7=42整除的个数为47421994=⎥⎦⎤⎢⎣⎡;能被5⨯6⨯7=210整除的个数为92101994=⎥⎦⎤⎢⎣⎡. 根据容斥原理,1~1994中或能被5,或能被6,或能被7整除的数的个数为:(398+332+284)-(66+54+47)+9=854,从而不能被5整除,也不能被6或7整除的自然数的个数为1994-854=1140(个).2、夏日的一天,有10个同学去吃冷饮.向服务员交出需要冷饮的统计,数字如下,有6个人要可可;有5个人要咖啡;有5个人要果汁;有3个人既要可可又要果汁;有2个人要可可又要咖啡;有3个人要咖啡又要果汁;有1个人既要可可、咖啡又要了果汁.求证其中一定有一个人什么冷饮也没有要[分析与解答]要了冷饮的总人数为6+5+5-3-2-3+1=9(人),但总人数为10人,故一定有一个人什么冷饮也没有要. A B Cx。

什么是容斥原理

什么是容斥原理

什么是容斥原理容斥原理是组合数学中的一种重要的计数方法,常常用于解决包含排列组合的问题。

容斥原理的核心思想是通过排除重复计数的方法,来求解包含多个集合的问题。

在实际问题中,容斥原理有着广泛的应用,特别是在概率统计、组合数学、计算机算法等领域。

首先,我们来了解一下容斥原理的基本概念。

假设有n个集合A1、A2、……、An,我们希望求解这些集合的并集的元素个数。

容斥原理告诉我们,这个并集的元素个数可以通过如下的公式来计算:|A1 ∪ A2 ∪……∪ An| = Σ|Ai| Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak| …… + (-1)^(n-1) |A1 ∩ A2 ∩……∩ An|。

其中,|A|表示集合A的元素个数,Σ表示求和运算。

公式右边的第一项是将所有集合的元素个数相加,第二项是将两两集合的交集的元素个数相减,第三项是将三个集合的交集的元素个数相加,以此类推。

最后一项是将所有集合的交集的元素个数相加,并且交替加减。

通过这个公式,我们可以清晰地看到容斥原理的核心思想,通过交替相加和相减集合的交集元素个数,来排除重复计数,最终得到并集的元素个数。

接下来,我们通过一个具体的例子来说明容斥原理的应用。

假设有一个集合包含了所有小于100的正整数中能被2、3或5整除的数,我们希望求解这个集合中元素的个数。

首先,我们分别求解能被2、3和5整除的数的个数,分别记为A2、A3和A5。

然后,我们求解能同时被2和3、2和5、3和5以及2、3和5整除的数的个数,分别记为A2∩3、A2∩5、A3∩5和A2∩3∩5。

最后,根据容斥原理的公式,我们可以得到集合中元素的个数:|A2 ∪ A3 ∪ A5| = |A2| + |A3| + |A5| |A2 ∩ A3| |A2 ∩ A5| |A3 ∩ A5| + |A2 ∩ A3 ∩ A5|。

通过具体的计算,我们可以得到最终的结果。

这个例子清晰地展现了容斥原理在实际问题中的应用,通过排除重复计数,我们可以准确地求解集合的并集元素个数。

第4章 容斥原理

第4章 容斥原理


N ( Pi1 , Pi2 ,, Pi k )
则定理 4.1.1 的公式可写成:
| A1 A2 Am | W (0) W (1) W (2) W (3) (1) W (m)
m
在 P 75 例 1 中
N ( P ) 200, 1 N ( P1 , P2 ) 33,
w(3) 8
| A1 A2 A3 | w(0) w(2) w(3) =1000-491+99-8=600
定理4.2.2 设集合S中具有性质P ={P1,P2,…,Pm}中 恰好r(0≤r ≤m)个性质的 元素的个数为:
r 1 r 2 mr m N (r ) W (r ) W (r 1) W (r 2) (1) r W (m) r r mr i r i (1) W (r i) i 0 r
证明 任取 xS。 (1) 若 x 具有的性质数少于 r,则 x 对公式的各项贡献为 0. (2) 若 x 恰好具有 r 条性质,则 x 对 W(r)项贡献为 1,而对以后各项 W(r+1),… ,W(m)贡献都是 0,所以 x 对公式右端的总贡献是 1. (3) 若 x 恰好具有 r+k 条性质, k=l,2,…,m-r. x 对公式中的 W(r+i) 则 项的贡献为 C(r+k,r+i),其中 i=0,1,…,m-r,而对以后的各项贡献 都是 0,
N1 2 6! C (7,5) 2 6! 76 30240 , 2
不同数字的七位数有 P(9,7)个,由定理 4.1.1,所求的七 位数的个数 N=P(9,7)- N1=151200。
例3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级逻辑思维学习—容斥原理
知识定位
容斥原理中的知识点比较简单,是计数问题中比较浅的一支。

这个知识点经常和数论知识结合出综合型题目。

这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。

1. 充分理解和掌握容斥原理的基本概念
2. 利用图形分析解决容斥原理问题
知识梳理
授课批注:
本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。

一. 容斥原理的概念
定义
在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A的元素个数。

求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,
用式子可表示成: |A∪B| = |A| + |B| - |A∩B|,
我们称这一公式为包含与排除原理,简称容斥原理。

图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。

用法:
包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:
第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);
第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)
二.竞赛考点
1. 容斥原理的基本概念
2. 与数论相结合的综合型题目
例题精讲
【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

其中6人买了汽水,6人买了可乐,4人买了果汁,有 3人既买了汽水又买了可乐,1人既买了汽水又买了果汁,2人既买了可乐又买了果汁。

问:
(1)三样都买的有几人?
(2)只买一样的有几人?
【题目】某班有学生46人,在调查他们家中是否有电子琴和小提琴时发现,有电子琴的22人,两种琴都没有的14人,只有小提琴的与两种琴都有的人数之比是5∶3。

问:只有电子琴的有多少人?
【题目】以105为分母的最简真分数共有多少个?它们的和为多少?
【题目】一次数学测验,甲答错题目总数的14,乙答错3道题,两人都答错的题目是题目总数的16。

求甲、乙都答对的题目数.
某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?
【题目】某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.那么语文成绩得满分的有多少人?
【题目】有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?
【题目】50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,…,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?
【题目】在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:
(1)标签号为2的倍数,奖2支铅笔;
(2)标签号为3的倍数,奖3支铅笔;
(3)标签号既是2的倍数,又是3的倍数可重复领奖;
(4)其他标签号均奖1支铅笔.
那么游艺会为该项活动准备的奖品铅笔共有多少支?
【题目】有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占,标有4的倍数的卡片占
,标有12的倍数的卡片有15张.那么,这些卡片一共有多少张?
【题目】东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的.现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
【题目】在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
【题目】五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.
2334
【题目】如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.
【题目】四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数..
【题目】图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?
【题目】如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?
【题目】甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
【题目】甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了7.5个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?
【题目】有黑白两种棋子共300枚,按每堆3枚分成100堆.其中只有1枚白子的共27堆;有2枚或3枚黑子的共42堆;有3枚白子的与有3枚黑子的堆数相等.那么在全部棋子中,白子共有多少枚?
习题演练
【试题来源】
【题目】二年级一班共42名同学,其中少先队员33人。

这个班男生20人,女生中有4人不是少先队员,男生中有多少人是少先队员?
【试题来源】
【题目】在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。

如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
【试题来源】
【题目】某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球。

没有一个人三种球都爱好,也没有一个人三种球都不爱好。

问:既爱打篮球又爱打排球的有几人?
【试题来源】
【题目】有三个面积各为30厘米2的圆,两两重叠的面积分别为5平方厘米、6平方厘米、8平方厘米,三个圆共同重叠的面积为3平方厘米。

三个圆共盖住多大面积?
【试题来源】
【题目】某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球。

那么,这个班至少有多少学生这三项运动都会?。

相关文档
最新文档