飞机结构与飞行原理

合集下载

飞机的物理知识点总结

飞机的物理知识点总结

飞机的物理知识点总结飞机是一种能够在大气中飞行的运载工具,它的设计和运行涉及许多物理原理和知识。

本文将对飞机相关的物理知识进行总结,包括飞机的飞行原理、机翼结构、发动机工作原理、飞行稳定性和操纵、空气动力学等方面的内容。

一、飞行原理1.1 升力和重力平衡飞机能够在大气中飞行,首先要解决的问题就是如何产生足够的升力来支撑飞机的重量。

升力的产生是基于伯努利定律和牛顿第三定律。

当飞机飞行时,机翼的形状和斜度导致了飞行速度不同,使得在两侧形成压力差,从而产生升力。

升力的大小取决于机翼的形状、角度、速度和密度等因素,而重力则是被升力所平衡。

1.2 推力和阻力平衡飞机的飞行还需要克服空气阻力,为了保持飞行速度,飞机需要产生足够的推力来平衡阻力。

飞机的推力主要由发动机提供,而阻力主要取决于飞机的速度、形状和空气密度等因素。

通常来说,飞机需要保持动力平衡,以保持恒定的速度和高效的飞行。

二、机翼结构和气动原理2.1 机翼的结构机翼是飞机最重要的部件之一,它负责产生升力和控制飞机的姿态。

机翼的结构和形状对于飞机的性能和稳定性至关重要。

通常来说,机翼的横截面呈对称形状或者近似对称形状,以便产生相对均匀的升力。

此外,在机翼上通常还加装了襟翼、副翼和气动刹车等辅助设备,以增加机翼对气流的控制能力。

2.2 气动原理机翼产生升力是基于伯努利定律和流体力学原理。

当飞机在空气中飞行时,流经机翼的气流速度和压力发生了变化,形成了压力差,从而产生了升力。

气流的速度和流向对于升力的产生有重要的影响,飞机的速度、姿态和气流状态会直接影响机翼的气动性能。

三、发动机工作原理3.1 涡喷发动机大部分现代飞机采用涡喷发动机作为动力装置。

涡喷发动机的工作原理是通过压缩空气、燃烧燃料、喷射高速气流来产生推力。

空气从飞机外部吸入后被压缩,然后经过燃烧室燃烧混合气体,最终以高速喷射产生推力。

涡喷发动机具有高效、推力大、重量轻的特点,是目前飞机主要的动力选择。

飞行知识点总结

飞行知识点总结

飞行知识点总结一、飞机的结构和原理1. 飞机的结构飞机通常由机身、机翼、尾翼、发动机和起落架等组成。

机身是飞机的主体部分,承载机翼、尾翼和发动机。

机翼是飞机的承载面,能够产生升力。

尾翼主要起到平衡和操纵的作用。

发动机提供动力,并驱动飞机进行飞行。

起落架用于飞机的起降。

2. 飞机的原理飞机飞行的物理原理包括:升力原理、推力原理、阻力原理和重力原理。

升力原理是指通过机翼产生气动升力,使飞机能够离地飞行。

推力原理是指飞机需要足够的推力来克服阻力,使飞机能够飞行。

阻力原理是指在飞行过程中,飞机会受到来自风阻的阻力。

重力原理是指飞机需要克服重力才能够飞行。

二、飞机的操作和操纵1. 飞机的操作飞机的操作主要包括起飞、飞行、下降、着陆和停机等环节。

在这些环节中,飞行员需要掌握飞机的操纵技术,包括使用油门、方向舵、升降舵、副翼和襟翼等,以确保飞机的安全飞行。

2. 飞机的操纵飞机的操纵是通过操纵杆和脚蹬来进行的。

操纵杆主要用于控制飞机的俯仰和翻滚,脚蹬主要用于控制飞机的方向。

飞机的操纵需要飞行员密切配合,以确保飞机的平稳飞行。

三、气象知识1. 气象的影响气象对飞行有着重要的影响,包括天气、气压和风向等因素。

飞行员需要根据气象情况来决定飞行计划,以确保飞机的安全飞行。

2. 气象知识飞行员需要掌握气象知识,包括天气图、气象雷达、气象站报告、风切变、雷暴、大气透镜效应等内容。

这些知识可以帮助飞行员正确判断气象情况,从而做出正确的飞行决策。

四、航行和飞行规则1. 航行知识航行知识包括航线规划、航路选取、航向计算、风速和风向计算、飞行高度计算等内容。

飞行员需要根据实际情况,制定合理的航行计划,确保飞机的安全飞行。

2. 飞行规则飞行规则是为了确保飞机的飞行安全而制定的一系列规定,包括VFR规则和IFR规则。

VFR规则是根据视觉飞行规则进行飞行,飞行员需要依靠视觉进行导航;IFR规则是根据仪表飞行规则进行飞行,飞行员需要依靠飞行仪表进行导航。

飞机各个系统的组成及原理

飞机各个系统的组成及原理

一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。

在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。

机翼通常有平直翼、后掠翼、三角翼等。

机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。

近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。

即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。

为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。

襟翼平时处于收上位置,起飞着陆时放下。

3)尾翼尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。

飞行员利用方向舵进行方向操纵。

当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。

同样,蹬左舵时,方向舵左偏,机头左偏。

某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。

低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。

即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。

飞机的设计基本原理

飞机的设计基本原理

飞机的设计基本原理一、飞行原理飞机的飞行原理主要有动力学原理和气动学原理两个方面。

动力学原理主要涉及飞行的加速度、力和力矩的平衡,以及速度和高度的变化规律;气动学原理主要涉及飞机在空气中的运动和受力情况。

1.动力学原理飞机的动力学原理主要包括牛顿力学定律和牛顿第二定律。

牛顿第一定律规定了外力和内力平衡时,物体将保持匀速直线运动或静止不动;牛顿第二定律则说明了力和加速度之间的关系。

2.气动学原理气动学原理主要包括气流运动定律、升力原理和阻力原理。

气流运动定律主要涉及空气流动、流速和压力分布等;升力原理解释了飞机如何产生升力,使其能在空中飞行;阻力原理则解释了飞机受到的阻力,制约了其速度和飞行距离。

二、机翼设计机翼是飞机的重要组成部分,其设计直接影响着飞机的升力、阻力和飞行稳定性。

机翼的主要设计要素包括翼型、展弦比、后掠角、攻角等。

1.翼型设计翼型是飞机机翼外形的横截面形状,常见的翼型有对称翼型和非对称翼型。

翼型的选择应根据飞机的速度、载荷和任务需求进行合理的设计。

2.展弦比设计展弦比是机翼跨度与翼面积的比值,影响着飞机的升阻比。

一般来说,较大的展弦比可以提高升阻比,但也会增加制造成本和结构重量。

3.后掠角设计后掠角是机翼与飞机航向的夹角,对飞机的阻力、稳定性和操纵性都有影响。

合理的后掠角设计可以降低阻力并提高飞机的操纵性能。

4.攻角设计攻角是机翼气流与机翼弦向之间的夹角,影响着机翼产生升力和阻力的大小。

合理的攻角设计既要保证飞机产生足够的升力,又要避免产生过大的阻力。

三、动力设计飞机的动力设计主要涉及发动机的选择和飞机的推力配置。

1.发动机选择发动机的选择应根据飞机的任务需求和性能要求进行合理的选择。

一般来说,涡轮螺旋桨发动机适用于低速、短途和小尺寸的飞机,而喷气发动机适用于高速、远程和大尺寸的飞机。

2.推力配置推力配置主要指发动机的布置和数量。

常见的推力配置包括单发、双发和多发布置。

合理的推力配置可以提高飞机的安全性和性能。

为什么飞机可以在空中飞行

为什么飞机可以在空中飞行

为什么飞机可以在空中飞行?
飞机可以在空中飞行是因为它利用了多种原理和工程技术。

下面是一些关键因素:
1. 升力:飞机通过翅膀产生的升力来支持自身的重量。

翅膀的形状和横截面以及内部结构被设计得能够生成足够的升力,这样飞机就能在空中保持平衡。

2. 推力:飞机需要推力来克服空气阻力和重力。

推力通常来自于发动机喷出的高速气流,这个喷射气流反作用在飞机上,从而产生向前的推力。

3. 驾驶控制:飞机配备了复杂的控制系统,包括操纵面(如副翼、升降舵和方向舵)以及发动机控制系统。

飞行员通过操作这些控制器来控制飞机的姿态、方向和速度。

4. 空气动力学:飞机的设计和形状经过精确计算,以便在不同速度和高度下最大限度地减少空气阻力。

减小空气阻力有助于提高飞机的效率和节省燃油。

综上所述,飞机可以在空中飞行是由于升力、推力、驾
驶控制和空气动力学等因素的相互作用。

这些原理和技术使得飞机能够克服重力和空气阻力,从而实现平稳的飞行。

航空工程知识点

航空工程知识点

航空工程知识点航空工程是一门涉及航空器设计、制造、运行等方面的学科,涵盖了广泛的知识领域。

在本文中,将重点介绍航空工程中的几个重要知识点,帮助读者更好地了解这个领域。

1. 飞行器结构飞行器的结构设计是航空工程中的核心内容之一。

飞行器的结构主要由机身、机翼、动力装置等组成。

机身负责承受飞行过程中的各种载荷,保证乘客的安全;机翼则产生升力,支撑飞行器在空中的飞行;动力装置提供推进力,推动飞行器前进。

不同类型的飞行器有着不同的结构设计,需要根据具体情况进行调整。

2. 飞行原理飞行原理是航空工程中的基础知识。

飞行器利用空气动力学原理实现飞行,主要包括升力、阻力、推力等概念。

升力是飞行器在空中飞行时产生的支撑力,通过机翼的产生来实现;阻力是飞行器在飞行中受到的阻碍力,需要通过推力来克服;推力是飞行器前进的动力来源,通常由发动机提供。

了解这些原理对于飞行器设计和运行都具有重要意义。

3. 航空制导与控制航空制导与控制是保证飞行器正常飞行的重要手段。

飞行器通过舵面的调整,实现姿态的控制;通过发动机的调节,实现速度和高度的控制;通过导航系统的应用,实现航向和航线的控制。

这些手段需要飞行员和自动控制系统共同作用,确保飞行器在各种环境下都能安全飞行。

4. 航空材料与制造技术航空工程中的材料选择和制造技术也是至关重要的。

航空器需要具备轻量化、高强度、耐腐蚀等特点,通常采用铝合金、碳纤维等材料制造;制造技术方面,包括铆接、焊接、复合材料成型等技术。

良好的材料和制造技术能够保证飞行器的性能和安全。

5. 航空法规与标准航空工程涉及到航空器设计、运行等多个环节,需要遵守一系列航空法规和标准。

这些法规包括飞行规章、交通管理规定、飞行员资质要求等;标准包括飞行器设计标准、维护规范等。

遵守航空法规和标准是保障航空安全的重要保证,是航空工程中不可或缺的一部分。

通过对以上几个知识点的了解,可以更深入地了解航空工程这门学科,帮助读者对飞行器的设计、制造和运行有更全面的认识。

飞机结构原理

飞机结构原理

飞机结构原理
飞机结构原理介绍
飞机是一种能够在空中飞行的交通工具,其结构原理是实现飞行的基础。

飞机的结构原理主要包括以下几个方面:
1. 翼面结构:飞机翼面是飞机最重要的结构之一,它能够产生升力并支撑飞机的重量。

翼面通常由翼根、翼尖、翼肋、翼面板等部分组成,通过各部件的结合形成整体结构。

一般而言,飞机的翼面采用弯曲的形状,这样可以增加升力并减小阻力。

2. 机身结构:飞机的机身是飞机的主要承载结构之一,它连接并支撑起飞机的各个重要部件,如机翼、发动机、机尾等。

机身通常由铝合金、复合材料等构成,具有较强的刚性和轻量化的特点。

飞机的机身结构要求具有足够的强度和刚度,以便在飞行过程中承受各种力的作用。

3. 发动机结构:发动机是飞机的动力来源,其结构原理是实现发动机正常工作的基础。

发动机通常由机身、进气道、燃烧室、喷口等部分组成,机身用于承载和固定发动机各个部件,进气道用于引入空气供给燃烧室燃烧,燃烧室用于燃烧燃料产生高温高压的气体,喷口用于排出燃烧产生的高速气流。

4. 起落架结构:起落架是飞机在地面行驶和起降过程中支撑飞机重量和减震的重要部件。

起落架一般由主起落架和前起落架组成,主起落架用于支撑飞机的重量,前起落架用于控制飞机的转向。

起落架结构需要具备足够的强度和稳定性,以应对飞机在地面行驶和起降时的复杂工况。

综上所述,飞机的结构原理是实现飞行的基础,包括翼面结构、机身结构、发动机结构和起落架结构等方面。

这些结构通过各自的设计和组合,使得飞机能够在空中自由飞行,并实现人类的空中旅行和运输。

飞机飞行的基本原理

飞机飞行的基本原理

飞机飞行的基本原理飞机飞行的基本原理主要包括三个方面:升力、阻力和重力。

1.升力:升力是由空气动力学原理产生的,它是由翼面上的气流产生的。

当翼面运动时,空气会在翼面上形成高压区和低压区,高压区下方产生升力,使飞机向上升。

2.阻力:阻力是飞机穿过空气时产生的阻碍力,包括空气阻力和摩擦阻力。

空气阻力是由飞机前进时空气对飞机表面的摩擦产生的,而摩擦阻力则是由飞机表面摩擦空气产生的。

3.重力:重力是由地球对物体产生的向下的引力。

飞机在飞行过程中需要不断产生升力来抵消重力的作用,以维持飞行。

当飞机的升力大于阻力和重力的总和时,飞机就会上升,而当升力小于阻力和重力的总和时,飞机就会下降。

飞机的驾驶员通过调整飞机的姿态和动力系统来控制飞机的升降和飞行速度。

除了升力、阻力和重力这三个基本原理之外,飞机飞行还需要考虑其他因素。

4.气流:空气的流动对飞机的飞行有重要影响。

飞机在飞行中会遇到不同类型的气流,如下推气流、上升气流和下沉气流等。

飞机的驾驶员需要根据气流的类型和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。

5.气压: 气压的变化会对飞机的飞行产生影响。

飞机在飞行中会经历高气压和低气压,高气压会使飞机升高,而低气压则会降低飞机。

飞机的驾驶员需要根据气压的变化来调整飞机的姿态和动力系统。

6.温度:温度的变化也会对飞机的飞行产生影响。

高温会使飞机升高,而低温则会降低飞机。

飞机的驾驶员需要根据温度的变化来调整飞机的姿态和动力系统。

7.风:风的方向和强度会对飞机的飞行产生影响。

飞机的驾驶员需要根据风的方向和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。

这些因素都需要飞行员经过严格的训练和经验积累来掌握,并在飞行过程中不断监测和调整,以确保飞机的安全飞行。

另外,飞机的结构和控制系统也对飞行有重要影响。

飞机的翼和机尾设计会影响飞机的升降和飞行速度,而飞机的动力系统会影响飞机的推进力和油耗。

总之,飞机飞行的基本原理需要结合空气动力学、气象学、航空工程等多个领域的知识来理解和掌握。

飞机结构及飞行原理

飞机结构及飞行原理
14 第 三 章 飞 机 结 构 及 飞 行 原 理
机身的主要结构
第二节 飞机结构
2.机翼 机翼是飞机的重要部件之一,安装在机
身上,用于产生升力,也起到一定的稳定和 操纵作用。机翼的一些部位(主要是前缘和 后缘)可以活动,飞行员操纵这些部位控制 机翼升力或阻力的分布,以达到增加升力或 改变飞机姿态的目的。
飞机的机体轴
第三节 飞机飞行原理
3.飞机的平衡 飞机处于平衡状态时,飞行
速度和方向都保持不变,也不绕 重心转动。飞机的平衡包括作用 力平衡和力矩平衡两种。
(1)作用力平衡 作用力平衡包括升力和重力 平衡、阻力和推力平衡
40 第 三 章 飞 机 结 构 及 飞 行 原 理
2.机翼 2)副翼。副翼是指安装在机翼后缘外侧的一小块可动的翼面,飞
行员利用左右副翼差动偏转所产生的滚转力矩进行滚转操纵,如飞行员 向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降,右机翼上的 副翼向下偏转,右机翼升力增加,在两个机翼升力差作用下飞机向左滚 转。
17 第 三 章 飞 机 结 构 及 飞 行 原 理
成,它在飞机上主要起方向平衡和方向操纵的作用。
22 第 三 章 飞 机 结 构 及 飞 行 原 理
第二节 飞机结构
4.动力装置 动力装置是指为飞机飞行提供动力的整个系统,是飞机的核心部分,
主要包括发动机、辅助动力装置及其他附件,其中最主要的部件是发动 机。发动机的主要作用是提供推力或拉力。
23 第 三 章 飞 机 结 构 及 飞 行 原 理
7
第三章 飞机结构及飞行原理
第一节 飞机与航空器
2.按发动机类型分类 按照发动机类型不同,飞机可以分为螺旋桨式飞机和喷气式飞机两
类。螺旋桨式飞机利用螺旋桨的转动将空气向后推动,借其反作用力推 动飞机前进。喷气式飞机利用空气与燃料混合燃烧后产生大量气体推动 涡轮运转,然后以高速度将气体排出体外,借其反作用力使飞机前进。 喷气式飞机包括涡轮喷气式飞机、涡轮风扇喷气式飞机和涡轮螺旋桨式 飞机三种。

简述飞机的飞行原理

简述飞机的飞行原理

简述飞机的飞行原理
飞机是一种可以在天空中翱翔的特殊机器,它不仅需要动力,还必须利用空气力学原理,以便实现飞行。

空气力学了解飞机飞行原理,其最基本的原理是洛伦兹力学,洛伦兹力学表明,空气会对物体施加很多的力,物体的运动会受到这些力的影响。

洛伦兹力学帮助我们了解飞机的飞行原理,它的最基本原理是升力、阻力和推力的平衡。

升力是由飞机本身的结构产生的,当飞机在空中飞行时,飞机的机翼会按照一定角度去切割空气,空气会被切削,形成一个下洗流,从而在机翼下面形成一股升力,使飞机在空中保持上升。

阻力是空气对物体施加的阻力,当飞机在空中飞行时,空气会减慢它的速度,从而造成阻力,使飞机无法继续飞行。

在飞机设计中,通过空气动力学,可以减小飞机的阻力,以提高飞行效率、降低能耗。

推力是飞机发动机产生的动力,它可以把洛伦兹力学中的阻力减少至最低,使飞机能够实现不断维持速度、升高高度的动力。

发动机是最关键的部分,它可以产生大量的动力,使飞机的速度、高度和方向可以控制,从而实现飞行的目的。

另外,飞机还需要其他的设备和系统来支持它的飞行,比如航空电子系统、机载计算机系统以及气象参数传感器等等,它们分别负责不同的功能,如导航系统负责导航,气象参数传感器负责收集实时气象参数,机载计算机实现飞行参数的自动计算和控制等。

以上就是飞机的飞行原理简介,它包括洛伦兹力学的升力、阻力
和推力以及其他辅助系统。

通过了解这些原理,我们可以更好地认识飞机的飞行原理,更好地掌握飞机的安全操作技术,实现安全、高效的飞行。

飞机能飞的原理是什么

飞机能飞的原理是什么

飞机能飞的原理是什么
飞机能够飞行的原理是多方面的,涉及到空气动力学、引擎推进、机翼设计等多个方面的知识。

首先,我们来看看飞机的机翼设计。

飞机的机翼采用了空气动力学的原理,机翼的上表面比下表面要凸出,这样就形成了一个所谓的卡门涡,使得上表面的气压比下表面小,从而产生了升力。

而升力是飞机能够飞行的重要原因之一。

其次,飞机的推进系统也是飞行的重要原理之一。

飞机通常采用喷气发动机或者螺旋桨发动机来提供推进力。

喷气发动机通过压缩空气、燃烧燃料来产生高速气流,从而产生推力,推动飞机前进。

而螺旋桨发动机则是通过旋转螺旋桨提供推进力,使飞机飞行。

此外,飞机的飞行还涉及到空气动力学的原理。

当飞机在空中飞行时,空气对飞机的作用力包括升力、阻力、重力和推进力。

通过合理的机翼设计和飞机结构设计,飞机能够克服阻力,产生足够的升力,从而保持飞行姿态。

另外,飞机的飞行还需要考虑飞行稳定性和操纵性。

飞机的稳定性是指飞机在飞行过程中能够保持平衡的能力,而操纵性则是指飞机在飞行中能够按照飞行员的指令进行各种动作。

为了保证飞机的稳定性和操纵性,飞机需要设计合理的飞行控制系统和自动驾驶系统,以及进行严格的飞行测试和模拟训练。

总的来说,飞机能够飞行的原理是多方面的,涉及到空气动力学、引擎推进、机翼设计、飞行稳定性和操纵性等多个方面的知识。

只有这些原理相互配合,飞机才能够安全、稳定地在空中飞行。

飞机的飞行原理是航空工程和航空科学的重要内容,也是现代航空技术的基础。

飞机的构造原理

飞机的构造原理

飞机的构造原理
飞机的构造原理是基于伯努利定律和牛顿第三定律的基础上设计的。

飞机的主要组成部分包括机翼、机身、动力装置和控制装置。

首先,机翼是飞机上最重要的部分之一。

它通常采用翼型设计,具有一个上弯曲的形状,以产生升力。

机翼上面的空气流动速度较快,而下面的空气流动速度较慢,在上下表面之间形成了压力差,这就是伯努利定律的作用。

压力差使得飞机产生向上的升力,使得飞机能够离开地面并保持在空中平稳飞行。

其次,机身是飞机的主体结构,它包含了机组人员、载货舱和燃料贮存等。

机身一般呈长条形,这样的设计能够降低空气阻力,并提高飞机的速度和燃油效率。

第三,飞机的动力装置通常是使用喷气发动机或螺旋桨发动机。

喷气发动机通过喷出高速排气流产生推力,推动飞机前进。

螺旋桨发动机则通过螺旋桨的旋转产生推力,驱动飞机前进。

这些动力装置提供了飞机所需的推力,使得飞机能够克服阻力并实现飞行。

最后,控制装置是飞机的操纵系统,包括了操纵杆、脚蹬和舵面等。

飞行员通过操纵这些控制装置来改变飞机的姿态、方向和速度。

例如,向上推动操纵杆可以使飞机升高,向左或向右转动操纵杆可以使飞机改变方向。

总之,飞机是通过利用伯努利定律和牛顿第三定律的原理来实
现飞行的。

机翼产生的升力、推力装置提供的推力以及操纵装置对飞机进行控制,使得飞机能够安全、高效地在空中飞行。

飞行原理

飞行原理

1、飞机的组成:机翼、机身、尾翼、起落架、动力装置2、后掠角:机翼1/4弦线与机身纵轴垂直线之间的夹角,表示机翼的平面形状向后倾斜程度。

3、展弦比:机翼翼展b与平均弦长C AVG的比值,用符号AR表示,AR=b/C AVG4、国际标准大气参数:海平面温度为288.15°K、15℃或59℉对流层内标准温度递减率:每增加1㎞温度递减6.5℃,每增加1000ft温度递减2℃5、相对气流:空气相对于物体的运动,方向与物体运动方向相反。

6、迎角:相对气流方向(飞行速度方向)与翼弦之间的夹角成为迎角,用α表示。

7、驻点:机翼压力分布中,在机翼前缘,流速减小到零,正压最大的点,叫驻点;吸力最大的点,称为最低压力点。

P268、压力中心:机翼升力的着力点。

9、升力是怎样产生的?在机翼上表面的压强低于大气压,对机翼产生吸力;在机翼下表面的压强高于大气压,对机翼产生压力。

由于上下表面的压力差,产生了垂直于相对气流方向的分量,就是升力。

10、L =C L·1/2ρv2·S11、阻力分类:摩擦阻力、压差阻力、干扰阻力、诱导阻力(前三种与空气粘度有关,诱导阻力与升力有关)12、附面层:是指紧贴在物体表面,气流速度从物面速度为零处逐渐增大到99%主流速度的很薄的空气流动层。

转悷:层流变紊流,分离:顺流变倒流紊流附面层比层流附面层的摩擦力大附面层的分离点越靠前阻力越大13、诱导阻力的形成:由于翼尖涡的诱导,导致气流下洗,使得机翼产生的升力方向向后偏移。

升力在平行于相对气流方向的分量起着阻碍飞机前进的作用,这就是诱导阻力。

诱导阻力主要受机翼形状、展弦比、升力大小、飞行速度的影响。

椭圆翼的诱导阻力最小;展弦比↑诱导阻力↓;升力大诱导阻力大;诱导阻力与飞行速度的平方成反比。

低速是诱导,高速是废阻力图5.314、增升的目的、分类、原理目的:增大最大升力系数缩短飞机在地面的滑跑距离分类:前缘缝翼、前缘襟翼、后缘襟翼(分裂襟翼、简单襟翼、开缝襟翼、后退襟翼、后退开缝襟翼)原理(方法):1.增加翼型弯度,增大机翼上下翼面压强差;2.延缓上翼面气流分离,提高临界迎角和最大升力系数;3.增大机翼面积,从而增大升力系数15、稳定力矩:物体受扰偏离原平衡状态后,自动出现的、试图使物体回到原平衡状态的、方向始终指向原平衡位置的力矩,称为稳定力矩。

飞机各个系统的组成及原理

飞机各个系统的组成及原理

飞机各个系统的组成及原理一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。

在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。

机翼通常有平直翼、后掠翼、三角翼等。

机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。

近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。

即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。

为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。

襟翼平时处于收上位置,起飞着陆时放下。

3)尾翼尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。

飞行员利用方向舵进行方向操纵。

当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。

同样,蹬左舵时,方向舵左偏,机头左偏。

某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。

低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。

即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。

飞机的工作原理

飞机的工作原理

飞机的工作原理飞机的工作原理是人类利用空气动力学和航空工程原理,通过创建升力和推力,实现飞行的一种交通工具。

飞机的工作原理可以细分为气动原理、机械原理和控制原理。

一、气动原理1. 气动力学气动力学是研究空气对物体运动的作用力和运动状态的科学。

在飞机中,空气流动产生的力是飞行的基础。

通过改变飞机的翼面形状和机身外形,可以使空气分离和压力分布形成升力。

升力是支持飞机上升和保持空中平衡的关键。

2. 升力的产生机翼是产生升力的主要部件。

机翼上方的气流流速较快,下方较慢,形成的压力差就是产生升力的源泉。

翼型的曲率和机翼的前缘后掠角度等因素决定了升力的大小。

同时,弯曲翼尖和剪切翼尖等设计可以减小阻力。

3. 阻力的影响阻力是飞机飞行中需要克服的力,它由空气对飞机各部件的阻碍形成。

阻力主要包括气阻力和产生升力时的感应阻力。

降低飞机的阻力对提高速度和燃料效率非常重要。

飞机设计中使用流线型的外形、减小空气摩擦等技术来降低阻力。

二、机械原理1. 推进系统推进系统是飞机前进的力源。

常见的推进系统是喷气式发动机。

喷气式发动机通过燃烧燃料和空气产生高温高压气流,通过喷射和反冲产生推力。

另外,螺旋桨和涡轮螺旋桨等旋翼也可以作为推进系统,它们通过空气动力学原理转动产生推力。

2. 起落架起落架是飞机在地面行驶、起飞和着陆时支撑和运动的装置。

起落架的设计需要考虑飞机在不同运动状态下的稳定性和安全性。

起落架由车轮、悬挂装置、舵及防滞装置等组成。

3. 结构设计飞机的结构设计需要考虑到飞机所承受的载荷,如飞行状态下的气动载荷和地面行驶时的静态载荷。

飞机的结构主要由机身、机翼、尾翼和连接这些部件的梁等构成。

飞机的材料选择和结构设计保证了飞机在各种运行状态下的强度和刚度。

三、控制原理1. 飞行控制系统飞行控制系统是飞机操纵和控制的核心。

飞行员通过操纵杆和脚踏板来控制飞机的姿态和移动方向。

飞行控制系统包括副翼、升降舵、方向舵和襟翼等,通过改变这些控制舵面的位置和角度,可以调整飞机的姿态和航向。

民航飞机的原理

民航飞机的原理

民航飞机的原理民航飞机的原理是基于科学和工程的原则,包括空气动力学、力学、热力学等多个学科的知识。

下面我将详细介绍民航飞机的原理。

1. 空气动力学原理:民航飞机的动力来源于对空气的作用力。

飞机的机翼利用空气动力学原理产生升力。

机翼的上表面比下表面更为凸起,空气从上表面流过时速度加快,气压减小,而从下表面流过时速度减慢,气压增加。

这样就形成了机翼上下两侧的气压差,产生一个向上的升力。

升力的方向垂直于机翼的平面,使得飞机能够克服重力,实现飞行。

2. 力学原理:民航飞机利用牛顿第三定律,通过喷射高速气流产生反作用力。

飞机的发动机燃烧燃料产生高温高压气体,推动涡轮转动,进而带动风扇旋转。

风扇加速大气的流动速度,通过喷射气流,产生反作用力推动飞机向前飞行。

3. 热力学原理:民航飞机的燃料燃烧产生的热能,经过热能转换系统转化为机械能,推动飞机发动机旋转,并进一步转化为推进力。

同时,热能还可用于提供舒适的客舱环境并供应飞机系统的需要。

4. 控制原理:民航飞机的飞行控制涉及到姿态控制、航向控制和高度控制。

姿态控制主要通过改变机翼表面的副翼、升降舵和方向舵等来调整飞机的姿态。

航向控制则利用方向舵和偏航阻尼器来调整飞机的行进方向。

高度控制则通过改变发动机推力和机翼的攻角来调整飞机的飞行高度。

5. 电子技术原理:民航飞机使用复杂的电子系统来监控和控制各个部件。

飞机的航电系统包括飞行仪表、导航系统、通信系统、自动驾驶系统等。

这些系统利用电子传感器、计算机等先进的电子技术,实时监测飞机的状态、位置和各种参数,并提供准确的数据和信息。

6. 结构设计原理:民航飞机的结构设计基于材料力学原理,力求既要保证飞机结构的强度和刚度,又要尽量减轻飞机的重量,提高飞机的性能。

常见的材料包括铝合金、钛合金、复合材料等。

飞机的结构设计还需要考虑飞机的气动布局、振动特性、抗疲劳和碰撞安全等方面的问题。

综上所述,民航飞机的原理涉及空气动力学、力学、热力学等多个学科,通过空气动力学原理产生升力和推力,利用力学原理和热力学原理实现发动机工作和飞机推进,通过控制原理实现飞行各项动作,利用电子技术实现飞行监测和控制,通过结构设计原理保证飞机的结构强度和性能。

模块固定翼飞机的结构及飞行原理

模块固定翼飞机的结构及飞行原理

模块固定翼飞机的结构及飞行原理固定翼飞机是目前世界上使用最广泛的民用飞行器,它是以翼面固定的机翼为主要承载结构的飞行器。

本文将详细介绍固定翼飞机的结构及飞行原理。

一、固定翼飞机的结构1.机身结构:固定翼飞机的机身包括机头、机身集装箱、货仓区、座舱等部分。

机身通常采用铝合金或碳纤维复合材料制作,以保证机身的轻量化和强度。

2.机翼结构:固定翼飞机的机翼是飞机最重要的承载部分,其主要由前缘翼和后缘翼组成。

前缘翼靠近机头,负责产生升力;后缘翼位于机翼的后部,用于提高飞机的操纵性能。

机翼大部分由铝合金构成,具有一定的柔韧性和强度。

3.尾翼结构:固定翼飞机的尾翼包括升降舵和方向舵。

升降舵位于飞机的尾部,负责控制飞机的上升和下降;方向舵位于升降舵的上方,用于控制飞机的方向。

4.着陆装置:固定翼飞机的着陆装置由起落架和车轮组成。

起落架能够在起飞和降落时收起和伸展,以减小飞机的阻力。

车轮通常由高强度合金钢制成,能够抵抗大量的冲击力。

5.动力装置:固定翼飞机的动力装置通常由发动机和推进器组成。

发动机可采用涡轮螺旋桨发动机、涡喷发动机或喷气发动机等。

推进器则将发动机产生的动力转化为推力,推动飞机前进。

二、固定翼飞机的飞行原理1.升力产生:固定翼飞机的翼面通过空气动力学原理产生升力。

当机翼上方的气流速度较快时,机翼的气压较低,下方的气流速度较慢时,机翼的气压较高。

因此,在机翼的上表面产生低压区,下表面产生高压区,从而形成向上的升力。

2.驱动力产生:固定翼飞机的驱动力主要由发动机和推进器提供。

发动机产生的动力通过推进器转化为推力,推动飞机前进。

3.操纵性:固定翼飞机通过控制升降舵和方向舵来实现操纵。

升降舵的操作可以改变机翼的攻角,从而控制飞机的升降。

方向舵的操作可以改变飞机的姿态,实现飞机的转向。

4.稳定性:固定翼飞机通过设计合理的重心位置和稳定装置,以及采取相应的飞行控制手段来保持飞机的稳定。

例如,采用重心靠近机头的设计可以提高飞机的稳定性。

飞机的工作原理

飞机的工作原理

飞机的工作原理
飞机的工作原理是通过利用空气动力学的原理,以及产生升力和推力来实现飞行。

飞机的主要组成部分包括机翼、发动机和尾部控制面。

首先,机翼是飞机最重要的部分之一。

机翼的形状和构造使得飞机能够产生升力。

机翼的上表面相对较长且呈弯曲状,而下表面则相对平直。

当飞机在飞行中,空气的流动速度在上表面比下表面快,这就导致了气压的差异。

上表面的气压较小,下表面的气压较大,从而产生了升力。

升力是使得飞机能够克服重力并保持在空中的力。

其次,发动机是提供飞机推力的关键部分。

飞机的推力主要来自于燃烧室中燃烧燃料产生的高温高压气体。

这些气体流经喷嘴,通过喷嘴的喷射作用产生反作用力,即推力。

推力的大小取决于喷射气流的速度和质量。

飞机的发动机通常采用喷气式发动机或涡扇发动机,它们能够提供足够的推力以克服飞机的空气阻力并实现飞行。

最后,尾部控制面是用来控制飞机飞行姿态和方向的部分。

尾部控制面包括水平尾翼和垂直尾翼。

水平尾翼由升降舵组成,用于控制飞机的升降运动。

升降舵通过改变机翼的迎角来影响升力的产生。

垂直尾翼由方向舵组成,用于控制飞机的左右方向。

方向舵通过改变气流的方向来产生转向力。

综上所述,飞机的工作原理是通过机翼产生升力,发动机提供
推力,以及尾部控制面调整飞机的飞行姿态和方向。

这些部分的相互作用使得飞机能够在空中飞行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 飞机结构
飞机分类 飞机构成 飞机结构特点 基本飞行原理
01-01
飞机分类
飞机分类方法
按用途 按重量 按机身 按机翼 按发动机数 按起落方式 按…
飞机组成
飞机组成
1. 机体 2. 机翼 3. 起落装置 4. 动力装置 5. 稳定操纵装置
飞行操纵
俯仰——升降舵 偏航——方向舵 滚转——副翼
思考题:飞机转弯如何操纵?机体结构Fra bibliotek飞机结构
木、布结构(构架式)布蒙皮 金属结构 机身构件
– 隔框 – 大梁 – 桁条 – 蒙皮 – 桁梁式 – 桁条式 – 薄壁式
机翼构件(与机身类似)
飞机载荷
水平飞行 升力产生 机动飞行(垂直、水平) 过载(升力/重力)
水平飞行
升力产生
垂直机动飞行
θ
水平盘旋
Y=G/ cosβ β
相关文档
最新文档