温度测量控制系统的设计与制作实验报告(汇编)

合集下载

温控实训报告

温控实训报告

温度控制实训报告目录一、设计要求二、设计方案及框图三、单元电路的设计1、信号采样部分2、前级信号处理部分3、A/D转换模块4、主控部分5、数码管显示部分6、键盘输入部分7、高温报警及电机控制部分四、心得体会五、参考文献一、设计要求1.自动测量当前环境温度,并通过四位7段数码管显示(保留一位小数)。

2.显示精度≤0.5℃3.可设定一高温临界点,若当前环境温度超过此温度,系统发出报警并控制风扇电机转动。

4.可多路测量(选作)二、设计方案及框图1、框图2、设计方案○1.传感器对当前环境温度进行采样得到与之对应的模拟信号。

○2.信号处理电路多传感器采样所得的模拟信号进行处理。

○3.A/D转换电路对处理之后模拟信号数值化。

○4.将该数字信号送入单片机,经单片机处理后由七段数码管显示。

○5.键盘输入模块向单片机设定高温临界温度。

○6.当前环境温度若超过设定的高温临界温度,由单片机发出报警信号并驱动继电器使风扇电机转动。

三、单元电路的设计1、信号采样部分●温度传感器 AD590●主要特性●AD590是美国模拟器件公司生产的单片集成两端感温电流源。

它的主要特性如下:●流过器件的电流(μA)等于器件所处环境的热力学温度(开尔文)度数,即●μA/K 公式(2-2)●式中:—流过器件(AD590)的电流,单位为μA;●T—热力学温度,单位为K。

● AD590的测温范围为-55℃~+150℃。

● AD590的电源电压范围为4V~30V。

电源电压可在4V~6V范围变化,电流变化1μA,相当于温度变化1K。

AD590可以承受44V正向电压和20V 反向电压,因而器件反接也不会被损坏。

●输出电阻为710MΩ。

●精度高。

AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线性误差为±0.3℃。

● AD590的输出电流值说明如下:其输出电流是以绝对温度零度(-273℃)为基准,每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其输出电流Iout=(273+25)=298μA。

温控实验报告(范文)

温控实验报告(范文)

温控实验报告(范文)第一篇:温控实验报告(范文)篇一:温控电路实验报告温控电路实验报告一实习目的1,了解自锁,互锁的概念;2,掌握电动机自锁的工作原理及操作方法;3,掌握交流接触器互锁控制电路的工作原理及操作方法;4,掌握用时间继电器使y-△联结互换;5,掌握交流接触器的常用触电和常关触点在电路中的作用。

二材料工具继电器,红色发光二极管,绿色发光二极管,4148二极管,5.1伏二极管,热敏电阻,s9013三极管,1.2k欧电阻,20k欧电阻,1m 欧电阻各一个;5k欧电阻,3k欧电阻,3.6k欧电阻各两个。

四实习过程1,看懂温控电路原理图,合理规划电路板上的各元件布局,掌握色环电阻的数值读法,将所需的色环电阻找出;2,在电路板上安装各元器件,安装二极管时,注意它的正负极;3,将电烙铁连接电源,烙铁头加热到温度高于焊锡熔点后,左手拿焊锡丝,右手拿电烙铁,进行焊接;4,焊接完成后,认真,细致地检查焊接电路是否有误,检查无误后,将电路板接通12伏稳压直流电源,观察发光二极管是否正常工作,(红灯亮时,当调动可调电阻时,绿灯会亮也会熄灭),若发光二极管不正常工作,则用万用表检查各元件,找出故障原因,解决故障。

5 清理实验台,打扫卫生。

五总结我做这个实验还是蛮顺利的,上了认真听老师讲,记录下细节,焊接之前我还特意把我画的电路原理图给老师看,确保无误后再开始耐心焊接,所以,这次实验我总结出上课认真听讲的重要性,虽然事后自己可以专研出误区,但那要耗费大量时间精力,认真听老师说还是很有必要的。

电动机自锁控制电路跟正反转的控制一实验目的(1)了解三相电动机接触器联锁正反转控制的接线和操作方法;(2)理解互锁与自锁的概念;(3)掌握电动机接触器的正反转控制的基本原理与实物连接的要求;二实验器材三相异步电动机,万用表,空气开关,单相空气开关,交流接触器,组合按钮,导线若干,螺丝刀三实验原理三相异步电动机的旋转取决于磁场的旋转方向,而磁场的旋转方向取决于电源相序,所以电源的相序决定了电动机的旋转方向。

温度控制系统实验报告

温度控制系统实验报告

温度控制系统实验报告温度控制系统实验报告一、引言温度控制系统作为现代自动化领域的重要组成部分,广泛应用于工业生产、家电和环境控制等领域。

本实验旨在通过搭建一个简单的温度控制系统,了解其工作原理和性能特点。

二、实验目的1. 了解温度控制系统的基本原理;2. 掌握温度传感器的使用方法;3. 熟悉PID控制算法的应用;4. 分析温度控制系统的稳定性和响应速度。

三、实验装置本实验使用的温度控制系统由以下组件组成:1. 温度传感器:用于测量环境温度,常见的有热敏电阻和热电偶等;2. 控制器:根据温度传感器的反馈信号,进行温度控制;3. 加热器:根据控制器的输出信号,调节加热功率;4. 冷却装置:用于降低环境温度,以实现温度控制。

四、实验步骤1. 搭建温度控制系统:将温度传感器与控制器、加热器和冷却装置连接起来,确保各组件正常工作。

2. 设置控制器参数:根据实际需求,设置控制器的比例、积分和微分参数,以实现稳定的温度控制。

3. 测量环境温度:使用温度传感器测量环境温度,并将测量结果输入控制器。

4. 控制温度:根据控制器输出的控制信号,调节加热器和冷却装置的工作状态,使环境温度保持在设定值附近。

5. 记录数据:记录实验过程中的环境温度、控制器输出信号和加热器/冷却装置的工作状态等数据。

五、实验结果与分析通过实验数据的记录和分析,我们可以得出以下结论:1. 温度控制系统的稳定性:根据控制器的调节算法,系统能够在设定值附近维持稳定的温度。

但是,由于传感器的精度、控制器参数的选择等因素,系统可能存在一定的温度波动。

2. 温度控制系统的响应速度:根据实验数据,我们可以计算出系统的响应时间和超调量等参数,以评估系统的控制性能。

3. 温度传感器的准确性:通过与已知准确度的温度计进行对比,我们可以评估温度传感器的准确性和误差范围。

六、实验总结本实验通过搭建温度控制系统,探究了其工作原理和性能特点。

通过实验数据的分析,我们对温度控制系统的稳定性、响应速度和传感器准确性有了更深入的了解。

温度监测系统实验报告

温度监测系统实验报告

一、实验目的1. 熟悉温度监测系统的基本组成和原理。

2. 掌握温度传感器的应用和数据处理方法。

3. 学会搭建简单的温度监测系统,并验证其功能。

二、实验原理温度监测系统主要由温度传感器、数据采集器、控制器、显示屏和报警装置等组成。

温度传感器将温度信号转换为电信号,数据采集器对电信号进行采集和处理,控制器根据设定的温度范围进行控制,显示屏显示温度信息,报警装置在温度超出设定范围时发出警报。

本实验采用DS18B20数字温度传感器,该传感器具有体积小、精度高、抗干扰能力强等特点。

数据采集器采用单片机(如STC89C52)作为核心控制器,通过并行接口读取温度传感器输出的数字信号,并进行相应的处理。

三、实验器材1. DS18B20数字温度传感器2. STC89C52单片机3. LCD显示屏4. 电阻、电容等电子元件5. 电源模块6. 连接线四、实验步骤1. 搭建温度监测系统电路,包括温度传感器、单片机、显示屏、报警装置等。

2. 编写程序,实现以下功能:(1)初始化单片机系统;(2)读取温度传感器数据;(3)将温度数据转换为摄氏度;(4)显示温度数据;(5)判断温度是否超出设定范围,若超出则触发报警。

3. 连接电源,启动系统,观察温度数据变化和报警情况。

五、实验结果与分析1. 系统搭建成功,能够稳定运行,实时显示温度数据。

2. 温度数据转换准确,显示清晰。

3. 当温度超出设定范围时,系统能够及时触发报警。

六、实验总结1. 本实验成功地搭建了一个简单的温度监测系统,实现了温度数据的采集、处理和显示。

2. 通过实验,加深了对温度传感器、单片机、显示屏等电子元件的理解和应用。

3. 实验过程中,学会了如何编写程序,实现温度数据的处理和显示。

七、实验建议1. 在实验过程中,注意电路连接的准确性,避免因连接错误导致实验失败。

2. 在编写程序时,注意代码的简洁性和可读性,便于后续修改和维护。

3. 可以尝试将温度监测系统与其他功能结合,如数据存储、远程传输等,提高系统的实用性和功能。

温度测量控制系统的设计与制作实验报告

温度测量控制系统的设计与制作实验报告

北京电子科技学院课程设计报告( 2010 – 2011年度第一学期)名称:模拟电子技术课程设计题目:温度测量控制系统的设计与制作学号:学生姓名:指导教师:成绩:日期:2010年11月17日目录一、电子技术课程设计的目的与要求 (3)二、课程设计名称及设计要求 (3)三、总体设计思想 (3)四、系统框图及简要说明 (4)五、单元电路设计(原理、芯片、参数计算等) (4)六、总体电路 (5)七、仿真结果 (8)八、实测结果分析 (9)九、心得体会 (9)附录I:元器件清单 (11)附录II:multisim仿真图 (11)附录III:参考文献 (11)一、电子技术课程设计的目的与要求(一)电子技术课程设计的目的课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。

按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。

通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。

(二)电子技术课程设计的要求1.教学基本要求要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。

教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。

2.能力培养要求(1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。

(2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。

(3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。

温度检测与控制试验系统设计

温度检测与控制试验系统设计

温度检测与控制实验系统设计任务书设计参数:被测温度1200C,最大误差不超过±1℃,设计要求:(1).被控对象为小型加热炉,供电电压220VAC,功率2KW,用可控硅控制加热炉温度;(2).通过查阅相关设备手册或上网查询,选择温度传感器、调节器、加热炉控制器等设备(包括设备名称、型号、性能指标等);(3).设备选型要有一定的理论计算;(4).用所选设备构成实验系统,画出系统结构图;(5).列出所能开设的实验,并写出实验目的、步骤、要求等温度检测与控制实验系统设计一摘要本文介绍了一个简单的温度检测与控制系统的设计。

该系统的被控对象为小 型加热炉,供电电压为220VAC,功率2KW,被测温度1200度,误差不超过±1℃。

本设计通过热电偶测量加热炉内液体的温度,将热电偶的输出信号直接传输到调 节器,该调节器内部集成有变送器,并且可设定给定温度值,本实验为1200度。

调节器将偏差信号变为标准的4-20MA 或l —5v 电信号。

该信号输出到调功器, 可改变晶闸管导通时间,从而调节输出平均电压的大小,实现加热炉温度的控制。

经验证此控制器的性能指标达到要求。

二系统框图本系统中,检测单元热电偶,调节器为集成变送器的数字调节器,执行器为 可控硅调功器,被控对象为加热炉,被控参数为温度。

三设备选型1热电偶热电偶要求测温度1200度,误差不超过±1℃,所以决定了只能用钳钱等贵 金属材料热电偶。

钳馅热电偶乂称高温贵金属热电偶,钳铭有单伯铭(钳铭 10-伯铭)和双祐钱(钳钱30-伯铭6)之分,它们作为温度测量传感器,通 常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以 直接测量或控制各种生产过程中0T800C 范围内的流体、蒸汽和气体介质 以及固体表面等温度。

钳籍热电偶的工作原理是伯铭热电偶是由两种不同成分的导体两 端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。

《温度检测的系统设计》实验报告

《温度检测的系统设计》实验报告

《温度检测的系统设计》实验报告《温度检测的系统设计》实验报告专业:电子信息工程学号:1228401083姓名:杨海艺指导老师:周鸣籁摘要温度检测系统是一种应用非常广泛且较热门的系统,对现代社会越来越重要。

此次温度检测系统设计在硬件方面主要采用STC89C52单片机作为主控核心并通过1602LCD液晶显示屏显示、蜂鸣器上下限温度报警实现温度显示;温度检测则是由铂电阻温度传感器PT100的热电效应产生的电动差通过桥式差分输入LM324组成的放大电路及低通滤波电路进行放大滤波,然后通过16位的高精度A/D1100数模转换到单片机进行处理。

STC89C52单片机是由Atmel公司推出的,功耗小,电压可选用4~6V电压供电;热电阻PT100电阻温度系数为3.9×10-3/℃,0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计。

关键词:STC89C52;LM324;A/D1100AbstractRecently,Temperature detection system is a widely used and more popular systems, more and more important in modern society. The temperature detection system design in terms of hardware used mainly as a master STC89C52 microcontroller core and through 1602LCD LCD display, a buzzer sound and temperature alarm limit for temperature display; the temperature is detected by the thermoelectric effect of platinum resistance temperature sensor PT100 power generated by the difference between the differential input bridge consisting LM324 amplifier and low pass filter circuit amplifies the filter, and then by 16 high-precision A / D1100 digital-analog conversion to the microcontroller for processing. STC89C52 SCM was introduced by Atmel's low power consumption, voltage can be selected 4 ~ 6V voltage power supply; RTD PT100 resistance temperature coefficient of 3.9 × 10-3 / ℃, 0 ℃ when the resistancevalue of 100Ω, resistance change was 0.3851 Ω / ℃ platinum resistance temperature sensor high accuracy, good stability, wide application temperature range is in the low temperature (-200 ℃ ~ 650 ℃) most commonly used temperature detector, not only widely used in industrial temperature measurement, and is made from a variety of standard thermometer.Key words: STC89C52; LM324;A/D1100目录第一章基于单片机温度检测系统的方案研究...............................1.1 系统基本方案选择和论证............................................1.1.1 测量温度传感器选择方案与论证.............................1.1.2 放大电路的选择方案与论...................................1.1.3 滤波电路的选择方案与论证.................................1.1.4 A/D模数转换的选择方案和论证..............................1.1.5 显示模块选择方案和论证...................................1.1.6 温度上限声光报警模块的选择方案与论证 .....................1.2 热电阻PT100,LM324,AD1100和LCD1602的原理及说明...................1.2.1 热电阻PT100工作原理及说明...............................1.2.2 LM324工作原理及说明......................................1.2.3 AD1100作原理及说明.......................................1.2.4 LCD1602的工作原理及说明..................................1.2.5 蜂鸣器工作原理及说明..................................... 第二章系统的硬件设计与实现.............................................2.1系统的设计框图....................................................2.2电路模块的设计和原理图............................................2.2.1温度采集模块的设计........................................2.2.2 A/D模数转换模块的设计....................................2.2.3放大电路模块的设计........................................2.2.4滤波电路模块的设计........................................2.2.5振荡电路原理图 ...........................................2.2.6蜂鸣器电路原理图..........................................2.2.7显示电路原理图 ...........................................第三章系统测试 .............................................3.1仿真调试 ...................................................3.2 硬件测试 .........................................................3.3 软件测试 ......................................................... 第五章实验数据分析...................................................... 参考文献.................................................................... 附录【程序代码】第一章基于单片机温度检测系统的方案研究1.1 系统基本方案选择和论证1.1.1 测量温度传感器选择方案与论证方案一:使用数字型DS18B20温度传感器。

温度测控系统设计报告

温度测控系统设计报告
{
ow_reset();
write_byte(0xcc);//跳过ROM
write_byte(0xbe);//读
temp.c[1]=read_byte();
temp.c[0]=read_byte();
ow_reset();
write_byte(0xcc);
write_byte(0x44); //开始
delay(100);
}
if(s||b)//十位显示
{
P2=0x04;
P0=~led_code[s];
delay(100);
}
else
{
P2=0x04;
P0=0xbf;
delay(100);
}
P2=0x08;
P0=~led_code[g]; //个位显示
}
}
void main()
{
uchar i=0,j,k=0;
{
DQ=0; delay(50);//低电平480us
DQ=1; delay(15);//DQ高电平等待
}
uchar read_byte() //从单总线上读取一个字节
{
uchar i,value=0;
for(i=0;i<8;i++)
{
value>>=1;
DQ=0;
DQ=1;
delay(1);
if(DQ) value|=0x80;
三、方案论证:
系统框图设计如图1所示:
四、系统硬件设计:
系统硬件设计图
五、软件设计:
(1)程序流程图如图3所示:
流程图如下所示开始时各个部件都是初始化,准备读取温度,如果设置温度,我们将设置上限温度和下限温度,并且在LED上面显示上限温度和下限温度。如果LED上显示的温度是大于上限温度则开启风扇停止加热也报警;如果LED上显示的温度是小于下限温度则关风扇加热也有报警。如果读取温度是介于当中则关闭报警,流程图如下所示:

仪表实验报告——温度控制系统

仪表实验报告——温度控制系统

实验四温度控制系统(一)一.实验目的:1.认识温度控制系统的构成环节和各环节的作用。

2.察看比率、积分、微分控制规律的作用,并比较其他差及稳固性。

3.察看比率度δ、积分时间T I、微分时间 T D对控制系统(闭环特征)控制品质的影响。

二.温度控制系统的构成:电动温度控制系统是过程控制系统中常有的一种,其作用是经过一套自动控制装置,见图 4-1 ,使炉温自动保持在给定值。

图 4-1温度控制系统炉温的变化由热电偶丈量,并经过电动温度变送器转变为DDZ-Ⅱ型表的标准信号0~10mA直流电流信号,传递到电子电位差计XWC进行记录,同时传递给电动控制器DTL,控制器按误差的大小、方向,经过预约控制规律的运算后,输出0~10mA直流电流信号给可控硅电压调整器ZK-50,经过控制可控硅的导通角,以调理加到电炉(电烙铁)电热元件上的沟通电压,除去因为扰乱产生的炉温变化,稳固炉温,实现自动控制。

三.实验内容与步骤:(一)察看系统各环节的构造、型号、电路的连结,熟习可控硅电压调整器和电动控制器上各开关、旋钮的作用。

(二)控制系统闭环特征的测定:在以下实验中使用以下详细数值:δ1(50%),δ2 (80%),T I 1(50s),T I 2 (40s),T D1(30s) 来察看比率与积分控制规律的作用(1)观察比率作用将δ置于某值 50%,记着δ旋钮在δ1的地点,积分时间置最大(T I=max),微分开关切向0,将扰乱开关从“短”切向“扰乱” ,产生一个阶跃扰乱(此时为反向扰乱),同时在记录仪的记录线上作一记号,以记录阶跃扰乱加入的时辰,察看并记录在纯比率作用下达到稳固的时间及余差大小。

(2)观察积分作用保持δ =δ1不变,置 T I =T I 1,同时在记录仪的记录线上作一记号,以记录积分作用加入的时辰,注意察看积分作用怎样除去余差,直到过程基本稳固。

2.观察 PI 控制作用下的过渡过程保持δ 1 ,T I 1 不变,将扰乱开关从“扰乱”切向“短” ,产生一个正向阶跃扰乱,察看过渡过程到基本稳固。

(完整word版)温度监控系统设计实验报告

(完整word版)温度监控系统设计实验报告

温度监控系统设计引言:温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。

随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。

利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。

作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。

传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。

因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

本文利用单片机结合传感器技术而开发设计了这一温度监控系统。

文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。

本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。

课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。

设计后的系统具有操作方便,控制灵活等优点。

本设计系统包括温度采集模块,单片机最小系统,显示模块,按键控制模块,报警模块和指示模块六个部分。

文中对每个部分功能、实现过程作了详细介绍。

整个系统的核心是进行温度监控,完成了课题所有要求。

方案设计:总体设计方案采用AT89C52单片机作控制器,温度传感器选用DS18B20来设计数字温度计,系统由6个模块组成:主控制器、测温电路、显示电路、报警电路、控制电路及指示电路。

温度检测与控制实验报告

温度检测与控制实验报告

实验三十二温度传感器温度控制实验一、实验目的1.了解温度传感器电路的工作原理2.了解温度控制的基本原理3.掌握一线总线接口的使用二、实验说明这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。

1.DALLAS最新单线数字温度传感器DS18B20简介Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。

光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

电子系统设计-温度控制系统实验报告

电子系统设计-温度控制系统实验报告

电子系统设计-温度控制系统实验报告电子系统设计实验报告温度控制系统的设计姓名:杨婷班级:信息21学校:西安交通大学一、问题重述本次试验采用电桥电路、仪表放大器、AD转化器、单片机、控制通断继电器和烧水杯,实现了温度控制系统的控制,达到的设计要求。

设计制作要求如下:1、要求能够测量的温度范围是环境温度到100o C。

2、以数字温度表为准,要求测量的温度偏差最大为±1o C。

3、能够对水杯中水温进行控制,控制的温度偏差最大为±2o C,即温度波动不得超过2o C,测量的精度要高于控制的精度。

4、控制对象为400W的电热杯。

5、执行器件为继电器,通过继电器的通断来进行温度的控制。

6、测温元件为铂热电阻Pt100传感器。

7、设计电路以及使用单片机学习板编程实现这些要求,并能通过键盘置入预期温度,通过LCD显示出当前温度。

二、方案论证1、关于R/V转化的方案选择方案一是采用单恒流源或镜像恒流源方式,但是由于恒流源的电路较复杂,且受电路电阻影响较大,使输出电压不稳定。

方案二是采用电桥方式,由电阻变化引起电桥电压差的变化,电路结构简单,且易实现。

2、关于放大器的方案选择方案一是采用减法器电路,但是会导致放大器的输入电阻对电桥有影响,不利于电路的调节。

方案二是采用仪表放大器电路,由于仪表放大器内部的对称,使电路影响较小,调整放大倍数使温度从0到100度,对应的电压为0-5V。

三、电路的设计1、电桥电路通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。

通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。

本次实验中:R1=R2=10KΩ,R3为500Ω的变阻器。

2、仪表放大器合理选择R1、 R2 、R3、 R4、 R5、 Rf,调节Rg可以实现放大倍数可变的电压差分放大。

温度控制实验报告

温度控制实验报告

篇一:温度控制器实验总结报告温度控制器实验总结报告一、功能及性能指标根据设计任务基本要求,本系统应具有以下几种基本功能。

(1)可以进行温度设定,并自动调节水温到给定温度值。

(2)可以调整pid控制参数,满足不同控制对象与控制品质要求。

(3)可以实时显示给定温度与水温实测值。

(4)可以打印给定温度及水温实测值。

系统主要性能指标如下:(1)温度设定范围40℃~90℃,最小区分度1℃。

(2)温度控制静态误差≤1℃。

(3)双3位led数码管显示,显示温度范围0.0℃~99.0℃。

(4)采用微型打印机打印温度给定值及一定时间间隔的水温实测值。

二、总体设计方案水温控制系统的控制对象具有热储存能力大,惯性也较大的特点,水在容器内的流动或热量传递都存在一定的阻力,因为可以将它归于具有纯滞后的一阶大惯性环节。

一般来说,热过程大多具有较大的滞后,它对于任何信号的响应都会推迟一些时间,使输出与输入之间产生相移。

对于这样存在大的滞后特性的过度过程控制,一般可以采用以下几种控制方案。

1)、输出开关量控制2)、比例控制(p控制)3)、比例积分控制(ip控制)4)、比例积分加微分控制(ipd控制)结合本例题设计任务与我们采用比例积分加微分(pid)控制。

其特点是微分的作用使控制器的输出与偏差变化的速度成比例,它对克服对象的容量滞后有显著地效果。

在比例基础上加入微分作用,使稳定性提高,同时积分作用可以消除余差。

采用pid的控制方式,可以最大限度地满足系统对诸如控制精度,调节时间和超调量等控制品质的要求。

三、系统组成本系统是一个典型的检测、信号处理、输入运算到输出控制电炉加热功率以实现水温控制的全过程。

因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。

另外,单片机的使用也为实现水温的只能化控制以及提供完善的人机界面及多机通信皆空提供了可能。

而这些功能在常规数字逻辑电路中往往难以实现。

所以本机采用以单片机为核心的直接数字控制系统(ddc)。

温度测量与控制系统课程设计报告

温度测量与控制系统课程设计报告

目录课程设计题目及要求: (2)一、任务可行性分析 (2)二、温度测量流程图及程序 (2)[1]主程序流程图 (2)[2] C语言程序的关键程序段及说明 (3)三、温度控制流程图及程序 (5)[1]主程序流程图 (5)[2] C语言程序的关键程序段及说明 (6)四、总结(对自己工作的评价、改进与提高的设想等) (9)课程设计报告课程设计题目及要求:温度测量与控制系统对于给定的硬件系统编写相应的软件,实现基本的温度测量与显示功能,测量精度为0.1度。

然后在此基础上利用电阻加温进行温度控制。

利用键盘操作实现温度的设定,使受控元件的温度可以保持在设定温度附近(30-99度)。

发挥部分(1):用不同的方法进行温度控制,并比较优缺点。

(2):在外界干扰下(小风扇吹风)能够尽快达到新的稳定点。

设计报告要求:(1)任务可行性分析(所需要的功能如何实现)。

(2)程序结构流程框图。

(3) C语言程序的关键程序段及说明。

(4)总结(对自己工作的评价、改进与提高的设想等)。

(5)源程序电子文档。

一、任务可行性分析本设计利用温度传感器DS18B20将读取温度并将数据传递给中央处理模块SST89E516RD2,然后通过数码管将读取的温度显示出来,显示温度为四位,前两位为整数,后两位为小数。

在此基础上利用热电阻加温进行温度控制,先用短路块接通J5(如下图)的两个引脚,给电路板上电之后,电阻R6、R7便开始加热,温度传感器DS18B20就置于两个加热电阻之间,实时读取热电阻的温度,并写入SST89E516RD2中,利用单片机提供的四个按键实现对控制参数的设定,起初显示设定温度,可以通过按键增减来修改设定温度,确认后,数码管显示测量所得温度。

然后通过软件控制的方式控制电阻的加热与否,即若温度低于设定温度,则电阻加热,反之不加热。

二、温度测量流程图及程序[1]主程序流程图[2] C语言程序的关键程序段及说明(1)DS18B20的初始化:初始化是DS18B20的底层基本操作之一。

温度检测与控制实验报告

温度检测与控制实验报告

实验三十二温度传感器温度控制实验一、实验目的1.了解温度传感器电路的工作原理2.了解温度控制的基本原理3.掌握一线总线接口的使用二、实验说明这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。

1.DALLAS最新单线数字温度传感器DS18B20简介Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。

光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

温控检测技术实习报告

温控检测技术实习报告

一、实验目的1、掌握温度控制系统工作原理2、掌握温度传感器PT100及温度变送器的接线及安装3、掌握PLC读入温度变送器信号的标定4、掌握PID温度控制及其调节的工作原理及过程5、掌握PLC程序的梯形图编制方法6、掌握EM231模拟量输入模块的设置及接线二、实验内容1、根据实验目的,了解PT100、温度变送器、单片机EM226CN、模拟量扩展模块EM231、A/D转换器、固态继电器等实验器材的结构及原理;2、了解温度测控系统原理,设计控制系统的电气原理图;3、对温度测控系统的整体电路进行线路连接,并进行检查;4、熟悉简单的人机交互软件界面,了解测控系统单片机程序,设计PLC温度控制(开关控制、PWM控制和PID调节及参数整定)程序,并对PLC程序的进行下载与调试,检测整个系统的测控性能;5、完成相应的实验报告。

三、实验方案设计1、电气原理图2、方案分析:该测控系统由温度采集电路、控制电路、加热电路三部分组成。

通过热电阻采集水的温度,然后通过温度变送器将采集到的温度信号转换成模拟电流信号,通过电阻进行I/V转换,得到模拟电压信号,再通过A/D转换器将模拟电压信号转换为数字信号,然后输入单片机中,根据单片机中的程序控制,使输出的电信号发生改变,以控制固态继电器的闭合,而固态继电器直接控制加热电路的通闭,从而控制水的加热,继而影响水的温度。

四、元件工作原理1、热电阻PT100该电阻为一种接触电阻式敏感元件,属于铂热电阻,随着水的温度变化,其电阻值也会发生相应的变化。

其电阻和温度变化的关系式为:Rt = R0 [1 + A T + B T2 + C( t - 100) T3 ]式中: R0 为0 ℃下的电阻值,R0 = 100 Ω; T 为摄氏温度。

A=3.9X10-3 B=-5.8X10-7T>=0时C=0;T<0时C=-4.183X10-12电阻与温度呈非线性关系,但当测量精度要求较低时,电阻值与温度的函数关系可以简化为:Rt = R0 (1 + A T)2、温度变送器其基本工作原理是将热电阻以三线制方式连接在电桥中,其电阻值的改变会改变测量电压,在通过转换将其变为电流信号再输出。

_温度控制器系统设计报告

_温度控制器系统设计报告

自动化学院智能仪表课程设计报告专业电子信息技术及仪器班级08062912学号08061939学生姓名马佳俊指导教师学期大四上完成日期2011.9.9一、目的智能仪表课程设计是一项综合性的专业实践活动,目的是让学生将所学的基础理论和专业知识运用到具体的工程实践中,以培养学生综合运用知识能力、实际动手能力和工程实践能力,为此后的毕业设计打下良好的基础。

二、任务本次智能仪表课程设计的任务是设计一个温度控制器,并完成相关的编程工作。

基本任务是利用AT89C51单片机、ADC0809模数转换器等芯片设计一个具有温度测量显示和开关控制输出的装置。

三、温度控制系统具体设计要求电路设计、软件编程的功能和要求:1)该装置要求利用Proteus仿真软件完成软件编程与实现。

2)用6只共阴极的八段数码管来分别显示工作状态、设定温度和实际温度温度。

如下图所示:实际温度设定温度工作状态:“1”“1”表示开机“0”“0”表示关机3)用3只按钮来分别作为开机/关机键、温度设定上升键和下降键。

4)用1只LED发光二极管来表示加热器开关量控制输出,所有发光二极管均要求用2003达林顿管或三极管放大驱动。

5)温度设定范围0~99℃,在装置处于开机状态情况下,当实际温度高于等于设定温度时,加热器控制输出“关”;当实际温度低于设定温度5℃时,加热器控制输出“开”。

6)上电后,自动显示关机状态、设定温度50℃和实际室内温度,这时用户可以设定温度进行设定,但只有在按下启动/关闭键后,控制器正式工作;在运行期间,若对温度状态进行设定,则控制器按新设定开始。

若关机后(非断电)重新启动控制器,则自动进入上次关机前的设定状态。

7)温度传感器采用AT502热敏电阻(Proteus软件中用滑动变阻器代替)。

8)完成电路原理图设计,请注意:只设计本课题要求相关的电路;9)完成2)~ 5)所规定功能的软件流程图和编程工作;10)完成软硬件调试四、硬件设计部分1、系统设计整体框架图如图4-1所示图4-1 温度控制系统框架图本系统总体框架如图4-1所示,主要是基于AT89C51单片机和其他四个模块组成,四个模块即:LED显示模块、加热器控制模块、按键扫描/处理模块和基于ADC0808芯片的数据采集模块。

温度控制系统设计实验

温度控制系统设计实验

温度控制系统设计实验项目背景温度是一个和人们生活环境有密切关系的物理量,也是一个人们在科学实验和生产生活中经常需要加以监测和控制的重要物理量。

温度控制技术是一种比较重要的工业技术,不仅应用在化工、医疗、航空、航天等高科技领域,还应用在人们的日常生活中。

在现代化电器装置中,许多设备需要根据不同的情况来完成温度控制。

比如学校澡房的温度控制系统,夏天天气比较热,需要的水温稍微较低,冬天需要的水温较高,所以需要设计这样一个可以根据输入温度来调节温度的系统,使得生活更加方便。

项目指标设计并制作一个水温自动控制系统,水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。

主要性能指标有:(1)温度设定范围为40~90℃,最小区分度为1℃(2)环境温度降低时温度控制的静态误差≤1℃(3)用十进制数码管显示水的实际温度。

项目设计思路实验分为以下几个模块:1、测温模块主要是温度传感器。

使用DS18B20数字式温度传感器直接测量,它无需外加其他的电路,可以直接将测得的两位八进制温度数据传送到单片机的I/O口,由对单片机的软件设计将两位八进制温度数值转化为十进制数据。

2、功率模块使用电炉加热,使用继电器监控。

当温度过高时,功率增大,继电器断开;温度过低,功率减小,继电器闭合。

温度高低通过功率大小来反映3、控制电路和显示模块控制部分主要是用于设定温度,由三个按键组成,三个按键的作用分别为对设定的温度进行温度增加、温度减小、停止/确认。

显示方面,选用液晶显示模块。

测得的温度经过转换之后可以直接显示在液晶屏上,同时设定的温度也可以显示在液晶屏上。

项目中会遇到的问题以及解决方案:1、功率模块中继电器的选择问题。

因为以前没有使用过继电器,并且继电器的分类很多,不同型号的继电器噪声、动作频率等等都不同,为了达到目标效果得选择适合的继电器,选择时如何正确选择继电器是一个问题。

解决预设:网上查找相关项目资料,看看其他人曾经使用过何种继电器,查找相关继电器的数据手册,经过对比得出最合适的继电器2、功率加热模块需要将温度转化为电量并且需要有反馈,其中需要注意反馈时间的长度,需要加一个缓冲时间,缓冲时间多少为宜?通过计算来看适宜的缓冲时间,并且后期经过实际操作调整来确定缓冲时间3、温度增加通过加热电炉实现,温度减小通过关闭加热阀和使用风扇来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京电子科技学院课程设计报告( 2010 – 2011年度第一学期)名称:模拟电子技术课程设计题目:温度测量控制系统的设计与制作学号:学生姓名:指导教师:成绩:日期:2010年11月17日目录一、电子技术课程设计的目的与要求 (3)二、课程设计名称及设计要求 (3)三、总体设计思想 (3)四、系统框图及简要说明 (4)五、单元电路设计(原理、芯片、参数计算等) (4)六、总体电路 (5)七、仿真结果 (8)八、实测结果分析 (9)九、心得体会 (9)附录I:元器件清单 (11)附录II:multisim仿真图 (11)附录III:参考文献 (11)一、电子技术课程设计的目的与要求(一)电子技术课程设计的目的课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。

按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。

通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。

(二)电子技术课程设计的要求1.教学基本要求要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。

教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。

2.能力培养要求(1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。

(2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。

(3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。

(4)综合应用课程中学到的理论知识去独立完成一个设计任务。

(5)培养严肃认真的工作作风和严谨的科学态度。

二、课程设计名称及设计要求(一)课程设计名称设计题目:温度测量控制系统的设计与制作(二)课程设计要求1、设计任务要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。

2、技术指标及要求:(1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。

(2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。

输出端1电压小于3V并大于2V时,输出端2保持不变。

三、总体设计思想使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。

因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。

接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。

输出端1电压小于3V并大于2V时,输出端2保持不变。

)中的要求,选用了555定时器LM555CM。

通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。

最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

四、系统框图及简要说明(一)系统框图的简要说明1、温度传感器AD590作用是将温度信号转化为电流信号。

2、一个10K 的电阻,将电流信号转化为电压信号,即2.73~3.23v3、电压跟随器1是为了隔离10K 电阻对后续电路的影响。

4、加减运算电路是为了将电压信号调整到0~5V 。

5、电压跟随器2、电压跟随器3,均是为了防止前面的电路对后续电路的影响。

6、555定时器LM555CM ,利用它的CON 端实现功能(2)的要求。

(二)系统框图图1 温度测量控制系统框图五、单元电路设计(原理、芯片、参数计算等)(一)温度信号转化为电流信号部分1、本部分应用了集成温度传感器AD590。

AD590是美国ANALO G DEV ICES 公司的单片集成两端感温电流源,是电流型温度传感器, 通过对电流的测量可得到所需要的温度值。

电路外形如图2所示,它采用金属壳3 脚封装, 其中1 脚为电源正端V+ ; 2 脚为电流输出端I0 ;3 脚为管壳,一般不用。

图2 AD590管脚图AD590的主要特性:(1)流过器件的电流(μA )等于器件所处环境的热力学温度(K ),即:A/K 1/μ=T I r式中:Ir 为器件AD590的电流,单位为:μA 。

T 为所处环境的热力学温度,单位为:K 。

(2)AD590的测温范围为-55℃~+150℃。

(3)AD590的电源电压范围为4V ~30V 。

电源电压可在4V ~6V 范围变化,电流Ir 变化为1μA ,相当于温度变化为1K 。

AD590可承受44V 正向电压和20V 反向电压,因而器件反接也不会被损坏。

(4)输出电阻为710M Ω。

(5)精度高。

共分I 、J 、K 、L 、M 五档,M 档精度最高,在-55℃~+150℃范围内,非线性误差仅为AD590串接一个10千欧电阻电压跟随器用5V 电源通过电位计分压得到2.73V 电压电压跟随器加减运算电路将2.73~3.23V 电压转换成0~5V 输出555电路构成2~3V 滞回电压比较器分压电路实现高低电平的输出灯输出端10~5V 输出产生2.73~3.23V 电压±0.3℃。

2、参数计算本设计要求在室温0~50℃范围内变化,所以由:t T +=273(K )有:12730273T =+=,227350323T =+=,且 A/K 1/μ=T I r 所以,有:A I r μ2731= ,1323r I A μ=3、AD590的封装及应用电路 (1)AD590的封装图3 AD590封装(2)AD590的应用电路图4 AD590应用电路在multisim 中,用一个直流电流源代替AD590传感器。

为了在仿真中方便表示温度的变化对输出电压的影响,故使用输出电流变化的直流电流源。

硬件安装时:AD590的安装时要注意引脚安装正确。

AD590的管脚图由图3所示,安装时管脚1接高电源,此处用12V 。

2号引脚是直流输出,3号脚悬空即可。

用电烙铁接触一下AD590随即放开,然后再点一下这样来加热,使温度升高,温度传感器将感受到的温度变化转化为电流信号。

(二)电流信号转化为电压信号部分1、原理:根据AD590的电流输出特性,当温度在0℃~50℃变化时,输出电流从273uA ~323uA 之间线性变化。

则通过电压跟随器2输出的电压将为2.73V ~3.23V 。

如图5-2。

2、参数计算:由欧姆定律:I=U/R ,U=IR 123得:VK A R I U r r 73.21027311=Ω⨯==μ2232310 3.23r r U I R A K V μ==⨯Ω=(三)加减运算电路部分1、原理:因为要实现输出电压1在0~5V 变化,所以必须通过加减运算电路将输入电压2.73~3.23V 转化为0~5V 。

连接电路如图5所示:图5 加减运算电路电路图2、所用芯片:四运放LM324CM 。

3、参数计算:因为输出1的电压范围是0~5V ,根据加减运算电路公式:012()f U U U R R R +-=-2378////R R R R =假定反馈电阻10f R K =Ω,输入端电阻121R R K ==Ω,0 2.7310()11U U +=-而U +的范围是2.73V~3.23V , 即min max 2.73, 3.23U V U V ++==,因此,得出0U 的范围为0~5V 。

(四)电压跟随器部分本系统中所搭接的三个电压跟随器的作用均是防止前面所接电路对后续电路的影响,即起到一个隔离的作用。

具体电路图如下(图6):图6 电压跟随器电路2、所用芯片:LM324N。

(五)555定时器部分1、原理:这部分应用的是555定时器的CON端。

当CON端电压值给定后,THR端电压大于等于CON端的电压时,输出低电平;TRI端电压小于等于CON/2时,输出高电平。

(如图5-5)图7 555定时器部分电路图2、参数计算:先设定CON=3V,当Ui≥3V时,OUT端输出低电平;当Ui≤1.5V时,OUT端输出高电平。

但题目中是当Ui≤2V, 输出高电平,所以,在运放的输出端和TRI端之间接了一个电位器,调到3/4处,即使得Ui≤2V时,U TRI≤2×3/4=1.5V。

将前面的放大电路的输出电压直接作为555定时器的VTH输入,而将VTH经过分压电路分出3/4的电压后作为555定时器的VTR输入,这样,由于555定时器的基本特性,就可以实现设计的要求,即当输出1的电压小于2V时输出2为高电平,当输出1的电压大于3V时输出2为高电平,当输出1在2V与3V之间变化时,输出2的电平保持不变。

六、总体电路图8 温度测量控制系统总体电路图七、仿真结果1、加减运算电路正常工作时仿真结果。

通道A为ad590输出电压,通道B为输出电压。

(即要求(1)的仿真结果)图9 电平变换仿真结果2、电平变换仿真结果。

通道A为输出电压,通道B为电平变换结果(即要求(2)的仿真结果)图10 电平变换仿真结果八、实测结果分析1、依照下表进行测试:表1 结果测试表第一组:项目温度输出1 输出2 理论数值20℃2V 高电平实测数值20.1℃ 1.97V 高电平误差0.5% 1.5% 无第二组:项目温度输出1输出2理论数值18.5℃ 1.85V高电平实测数值18.4℃ 1.84V 高电平误差0.5%0.5% 无第三组:项目温度输出1输出2理论数值30℃3V 低电平实测数值30.1℃ 3.01V 低电平误差0.5% 0.5% 无在误差允许的范围内,实验结果符合要求。

此系统的精确度达到题目要求。

九、设计总结1、成果评价温度测量控制系统的设计与制作要完成和实现的电路其稳定性和准确度的要求都很高,虽然用multisim仿真软件实现了其全部功能,但模拟电路与实际电路的差距还是很大的。

相关文档
最新文档