3-2对数频率特性(精)

合集下载

第三章 对数频率特性(3-2)

第三章  对数频率特性(3-2)
1 T
说明
ω ωn
为二阶系统(振荡环节)的转折频率。
13


10
0.1
0.2 0. 3
L ( )
0
0 .7 1
10
dB
0
0.1
0. 2 0.3 0. 7
1
( ) 90
180 0.1
0.2
0.4
0.6 0.8
1
2
4
6
8
10
/n
14
可见:当频率接近 ω ω n 时,将产生谐振峰 值。阻尼比的大小决定了谐振峰值的幅值。 0 相角 是ω和ζ的函数。在ω=0, ω ;当 ω ωn 90 时,不管 ζ值的大小, ; ω当 ω=∞ 180 ω。相频曲线对 时, -90°的弯曲点是斜 对称的。 1 ω 振荡环节的对数幅频特性在转折频率 T 附近产生谐振峰值 Gjω 可通过下列计算得到:
20lg 1 ω2T 2 20lg1 0 dB
近似地认为,惯性环节在低频段的对数幅频特性 是与横轴相重合的直线。
6
在 时(高频段): 幅频特性: 2 2
ω
1 T
20lg 1 ω T 20lg ω T dB
ω 1 T
——表示一条经过 横轴处,斜率为-20dB/dec的直线 方程。 1 ω 综上所述:惯性环节的对数幅频特性可以用在 T 处相交于0分贝的两条渐近直线来近似表示: 1 ω 当 T 时,是一条0分贝的直线; 当 ω
Lω 20lg 1 T 2ω2 2ζ Tω
2



2
ω t g1
2ζ Tω 2 2 1 T ω

自动控制原理3第三节典型环节的频率特性

自动控制原理3第三节典型环节的频率特性

左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。
1 2T 1 T 2 T 5 T 10 T
1 5T
Saturday, November 05, 2016
15
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
05, 2016
12
振荡环节的波德图
2 T ( ) tg 相频特性: 1 T 2 2
1
几个特征点: 0, ( ) 0;
1 , ( ) ; , ( ) 。 T 2
由图可见:
K 10, T 1, 0.3 10 G ( j ) 2 s 0.6s 1 1 o T
1
幅频特性为: 相频特性为:
A( )
(1 T 2 2 )2 (2T )2 2 T ( ) tg 1 1 T 2 2
L( ) 20 log A( ) 20 log (1 T 2 2 ) 2 (2 T ) 2 对数幅频特性为:
低频段渐近线: T 1时,L( ) 0 高频段渐近线: T 1时, L( ) 20 log (T 2 2 ) 2 40 log T 1 两渐进线的交点 o 称为转折频率。斜率为-40dB/Dec。 T Saturday, November
1 2
T
时,无谐振峰值。当
M p A( p )

1 2
1 0.707时, p 0 。 2
时,有谐振峰值。
1 2 1 2
1 当 0 , A(0 ) , 。 L ( ) 20 lg 2 0 2

2第二节对数频率特性

2第二节对数频率特性
第二节 对数频率特性
1-Apr-21
1
一、对数频率特性曲线(波德图,Bode图)
Bode图由对数幅频特性和对数相频特性两条曲线组成。 ⒈波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标(称为频率轴)分度:它是以频率w 的对数值 logw 进行 线性分度的。但为了便于观察仍标以w 的值,因此对w 而言是 非线性刻度。w 每变化十倍,横坐标变化一个单位长度,称为 十倍频程(或十倍频),用dec表示。类似地,频率w 的数值变化
w L(w )
2 20 log
A(w )
20 log
K
w
40
K 10
20log K 20log w,
20
w 当K 1时,w 1, L(w) 0;
20 40
j (w)
1 10 100 K 1 w
当w 10时,L(w) 20 可见斜率为-20/dec 当K 1时,w 1, L(w) 20log K;
0.3
-120° 0.5
-150° 0.7
1.0
-180°
1
1
10T 5T
1
1
2
2T
T
T
对数幅频特性和对数相频特性
图。上图是不同阻尼系数情况
下的对数幅频特性实际曲线与
渐近线之间的误差曲线。
5 T
10 T
当0.3<<0.8,误差约为±4.5dB
1-Apr-21
16
振荡环节的波德图
相频特性:j
1-Apr-21
6
比例环节的bode图
二、典型环节的波德图 ⒈ 比例环节: G(s) K ;
G( jw) K
幅频特性:A(w) K;相频特性:j(w) 0

第五章频率特性法

第五章频率特性法

教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性

频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2

1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。

第三章 放大电路的频率特性

第三章 放大电路的频率特性
Ui Io Ai (dB ) = 20 lg (dB ) Ii
Po • 功率增益 Ap (dB ) = 10 lg P (dB ) i
• 式中, lg是以 为底的对数。 式中, 是以10为底的对数。 是以 为底的对数
• 值得指出的是,如果仅取以10为底的对数,例 值得指出的是,如果仅取以 为底的对数 为底的对数, 无单位”的 必须再乘以20后 如: = lg U o ,是“无单位 的,必须再乘以 后, 无单位 A
• 在横坐标采用 在横坐标采用Lgf时,对数频率特性的主要优点是 时 可以扩宽视野, 可以扩宽视野,在较小的坐标内表示宽广的频率 范围的变化情况, 范围的变化情况,同时将低频段和高频段的特性 都表示得很清楚,而且作图方便, 都表示得很清楚,而且作图方便,尤其对于多级 放大电路更是如此。 放大电路更是如此。因为多级放大电路的放大倍 数是各级放大倍数的乘积,故画对数幅频特性时 数是各级放大倍数的乘积, 只需将各级对数增益相加即可。 ,只需将各级对数增益相加即可。多级放大电路 总的相移等于各级相移之和, 总的相移等于各级相移之和,故对数相频特性的 纵坐标不再取对数。 纵坐标不再取对数。
3.1 频率特性的一般概念
• 3.1.1频率特性的概念 频率特性的概念
– 1.幅频特性和相频特性 幅频特性和相频特性 • 由于电抗性元件的作用,使正弦波信号通过放大 由于电抗性元件的作用, 电路时,不仅信号的幅度得到了放大, 电路时,不仅信号的幅度得到了放大,而且还将 产生一个相位移。此时,电压放大倍数A 产生一个相位移。此时,电压放大倍数 u可表示 为: • Au = Au (f)∠ϕ ( f ) )
• RC高通电路的对数相频特性如图 高通电路的对数相频特性如图3.1.3(b)所示, 高通电路的对数相频特性如图 ( )所示, 0 的直线; 在 f ≠ f ( f > 10 f L)时, ϕ 是一条 0 的直线;在 f = f L L 的直线; ( f < 0.1 f L)时,ϕ 是一条900 的直线;在 0.1 f L 之间, 与10 f L 之间,可用一条斜率为 −450 十倍频的直线 来表示。 来表示。由3条直线组成的折线就是它的相频特性 条直线组成的折线就是它的相频特性 曲线,图中的粗线也是加以修正后的实际相频特 曲线, 性曲线。 性曲线。

频率特性的基本概念

频率特性的基本概念

•表1-1 RC网络的幅频特性和相频0.707 0.45 0.196 0
() 0
45 63.4 78.69 90
图1-2 RC网络的幅频和相频特性 图1-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包括对数幅频特性 和对数相频特性两条曲线,其中,幅频特性曲线可以表示 一个线性系统或环节对不同频率正弦输入信号的稳态增益; 而相频特性曲线则可以表示一个线性系统或环节对不同频 率正弦输入信号的相位差。对数频率特性图通常绘制在半 对数坐标纸上,也称单对数坐标纸。
(3)利用对数运算可以将幅值的乘除运算化为加减运算, 并可以用简便的方法绘制近似的对数频率幅相特性,从而 大大简化系统频率特性的绘制过程。
自动控制原理
来求取。 (3)通过实验所测数据,进行分析求取。
G( j) G(s) s j
1.2频率特性的图形表示方法
频率特性函数最常用的两种图形表示 方法,分别为极坐标图和对数频率特 性图。
极坐标图,又称奈奎斯特图、幅相频 率特性图,其特点是将频率 作为参 变量。
当正弦信号的频率 由0 变化时, 系统频率特性向量的幅值和相位也随 之作相应的变化,其端点在复平面上 移动而形成的轨迹曲线称为幅相曲线, 其中曲线上的箭头表示频率增大的方 向。
自动控制原理
频率特性的基本概念
1.1频率特性的定义 频率特性反映了系统的频率响应与正弦
输入信号之间的关系。
图1-1 RC网络
控制系统频率特性的求解方法具有如下三种途径: (1)根据已知的系统方程,输入正弦函数求出其稳态解, 而后求解输出稳态分量和输入正弦信号的复数比。 (2)根椐系统传递函数,利用表达式
对数幅频特性图是表示环节的对数幅值 L() 20lg A()和频率 的关系曲线。

3.2 放大电路的频率特性

3.2 放大电路的频率特性

U U o3 A A ... o A u1 u2 un U i3 U in
20 lg A 20 lg A 20 lg A 20 lg A u u1 u2 un
= 1 + 2 + · · ·+ n
例如:两级放大电路,假设每级具有相同的频率特性,即 中频区电压放大倍数Aum1、下限频率 f L1、上限频率 f H1 均相同。则总的中频区电压增益为
表3.2.1 电压放大倍数Au与分贝数的关系
Au 10–3 10–2 10–1 0.2 0.707 –3
1
0
2
6.0
3
0.477
9.5
10
102
103 104
lg Au
20lg Au/dB
–3
–60
–2
–40
–1
–20
–0.699
–14
–0.149 0 0.301
1
20
2
40
3
60
4
80
二、波特图
2. 上限频率 f H 的计算 (1)发射结电阻 Rs 26 mV 510 rb' e (1 ) I E (mA) U +
= 1.1 k
s
b
rbb’
30ቤተ መጻሕፍቲ ባይዱ
b’ Cb’e +
+ Ub’c
Cb’c
+ Ui


rb’e Rb 470 k 1.1 k
e
(Uo’)
c
Ub’e (1-A)Cb’c
三、共基极截止频率 — f 为 下降为 0.707 0 时对应的频率。

《对数频率特性》课件

《对数频率特性》课件

表示信号在传输过程中产生的相位偏移。
带宽参数则表示系统能够处理的信号频率范围,这些参数对于
03
理解和优化系统性能至关重要。
数学模型的适用范围
01
对数频率特性数学模型适用于 描述和分析各种类型的电子系 统和信号处理系统,如音频处 理、通信、雷达等。
02
该模型尤其适用于分析具有非 线性或非平坦频率响应的系统 ,这些系统在常规的线性频率 坐标系下难以准确描述。
优缺点对比分析
• 对数频率特性的优点主要在于其能够 提供较大的动态范围和接近人耳的感 知特性,使得音频信号的还原更加真 实和平衡。然而,其缺点在于可能会 产生非线性失真,不易于控制,并且 可能不适合所有应用场景。在选择使 用对数频率特性时,需要根据实际需 求进行权衡和考虑。
05 对数频率特性的未来发展
分析该对数频率特性,可以发现系统在低频段增益较高,而 在高频段增益迅速下降,具有良好的低通滤波器特性。
02
03
动态范围大
对数频率特性能够提供较 大的动态范围,使得音频 信号在低频和高频之间的 变化更加平滑。
接近人耳感知
对数频率特性与人耳的感 知特性较为接近,因此能 够更好地还原声音的真实 感。
计算步骤
01
确定系统的频率响应函数$H(f )$。
02 对$H(f)$取对数,得到对数频率特性$L(f)$。
03 分析$L(f)$的特性,如最大值、最小值、转折点 等,以了解系统在不同频率下的性能。
计算实例
假设一个系统的频率响应函数为$H(f) = 10 times frac{1}{10^3 + f^2}$,则其对应的对数频率特性为$L(f) = log(10 times frac{1}{10^3 + f^2})$。

《自动控制原理》名词解释

《自动控制原理》名词解释

1.控制概念(1)开环控制:开环控制是最简单的一种控制方式。

它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。

闭环控制:凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制系统。

复合控制:是开、闭环控制相结合的一种控制方式。

(2)反馈:指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。

(3)传递函数:在零初始条件下,系统输出信号的拉手变换与输出信号的拉氏变换的比。

(4)被控对象:指需要给以控制的机器、设备或生产过程。

执行机构:一种能提供直线或旋转运动的驱动装置,它利用某种驱动能源并在某种控制信号作用下工作。

(5)线性化:a条件:连续且各阶导数存在 b方法:工作点附近泰勒级数展开。

2.时域指标(1)上升时间tr:响应从终值10%上升到终值90%所需时间;对有振荡系统亦可定义为响应从零第一次上升到终值所需时间。

上升时间是响应速度的度量。

峰值时间tp:响应超过其终值到达第一个峰值所需时间。

调节时间ts:响应到达并保持在终值内所需时间。

(2)超调量σ%:响应的最大偏离量h(tp)与终值h(∞)之差的百分比。

振荡次数:是在阶跃信号作用下,系统在达到指定deta范围下,系统所震荡的总次数。

(3)动态降落:系统稳定运行时,突然加一个扰动量N,在过度过程中引起输出量的最大降落值Cmax称为动态降落。

恢复时间:系统从波动回复到稳态时候所需要的时间。

(4)稳态误差:对单位负反馈系统,当时间t趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

3.频域特性(1)频率特性:对于线性系统来说,当输入信号为正弦信号时,稳态时的输出信号是一个与输入信号同频率的正弦信号,不同的只是其幅值与相位,且幅值与相位随输入信号的频率不同而不同。

5.3 对数频率特性(Bode图)

5.3 对数频率特性(Bode图)

(5-58)
式中, Li (ω) 和ϕi (ω ) 分别表示各典型环节的对数幅频特性和对数相频特性。 式(5-58)表明,只要能作出 G( jω ) 所包含的各典型环节的对数幅频和对数相频曲线,
将它们进行代数相加,就可以求得开环系统的 Bode 图。实际上,在熟悉了对数幅频特性的
性质后,可以采用更为简捷的办法直接画出开环系统的 Bode 图。具体步骤如下:
5.3 对数频率特性(Bode 图)
5.3.1 典型环节的 Bode 图
1.比例环节
比例环节 G( jω ) = K 的频率特性与频率无关,其对数幅
频特性和对数相频特性分别为
⎧L(ω) = 20 lg K ⎨⎩ϕ(ω) = 0o
(5-50)
相应 Bode 图如图 5-23 所示。
2.微分环节
微分环节 G( jω) = s 的对数幅频特性与对数相频特性
显然,当ω ωn = 1,即ω = ωn 时,是两条渐近线的相交点,所以,振荡环节的自然
频率ωn 就是其转折频率。
振荡环节的对数幅频特性不仅与ω ωn 有关,而且与阻尼比ξ 有关,因此在转折频率附
近一般不能简单地用渐近线近似代替,否则可能引起较大的误差。图 5-27 给出当ξ 取不同 值时对数幅频特性的准确曲线和渐近线,由图可见,当ξ < 0.707 时,曲线出现谐振峰值, ξ 值越小,谐振峰值越大,它与渐近线之间的误差越大。必要时,可以用图 5-28 所示的误
差修正曲线进行修正。
由式(5-55)可知,相角ϕ (ω ) 也是ω ωn 和ξ 的函数,当ω = 0 时,ϕ (ω ) = 0 ;当ω → ∞ 时,ϕ (ω ) = −180o ;当ω = ωn 时,不管ξ 值的大小,ωn 总是等于 − 90o ,而且相频特性 曲线关于 (ωn , − 90°) 点对称,如图 5-27 所示。

自动控制原理5第二节对数频率特性

自动控制原理5第二节对数频率特性

19
② 一阶微分: A(w) 1 T 2w2,(w) tg1Tw
一阶微分环节的波德图
L(w) 20lg 1 T 2w2 对数幅频特性(用渐近线近似):
低频段渐近线:当Tw 1时,A(w) 1, 20 log A(w) 0 高频段渐近线:当Tw 1时,A(w) Tw,L(w) 20 log Tw
第二节 对数频率特性
1
一、对数频率特性曲线(波德图,Bode图)
Bode图由对数幅频特性和对数相频特性两条曲线组成。 ⒈波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标(称为频率轴)分度:它是以频率w 的对数值 logw 进行 线性分度的。但为了便于观察仍标以w 的值,因此对w 而言是 非线性刻度。w 每变化十倍,横坐标变化一个单位长度,称为 十倍频程(或十倍频),用dec表示。类似地,频率w 的数值变化
来计算只能求出±90°之间的值(tg-1函数的主值范围),也就是
说当 w ( 1 , ) 时,用计算器计算的结果要经过转换才能得到 。 即当 w (T1 , ) 时,用计算器计算的结果要减180°才能得到 。
T
或用下式计算
(w) tg1 Tw 1 2 tg1 Tw 1 2
17
微分环节的频率特性
(w) K
0 180
K 0 K 0
180
7
K 0
⒉ 积分环节的频率特性:G(s) K
s
频率特性:
G( jw )
K
j
K
K
e2
jw w w
积分环节的Bode图
L(w) / dB
40 20w ) tg1( K 0)
w
2
L(w) 20log A(w) 20log K

频率特性的几种表示方法-2022年学习资料

频率特性的几种表示方法-2022年学习资料
第二节频率特性的几种表示方法
频率特性可以写成复数形式:Gjo=Po+jQo,也可-以写成指数形式:GjoGjo川∠Gjo。其中,Po为 -频特性,Qo为虚频特性;IGjo为幅频特性,∠Gjo为相频-特性。-在控制工程中,频率分析法常常是用图解 进行分析和设-计的,因此有必要介绍常用的频率特性的三种图解表示。-极坐标频率特性曲线(又称奈魁斯特曲线)对数频率特性曲线(又称波德图)-口对数幅相特性曲线(又称尼柯尔斯图)-2
二、对数频率特性曲线(又称波德图)-它由两条曲线组成:幅频特性曲线和相频特性曲线。-波德图坐标(横坐标是频 ,纵坐标是幅值和相角)的分度:-口-横坐标分度:它是以频率o的对数值logω进行分度的。所-以横坐标(称为 率轴)上每一线性单位表示频率的十倍变化,-称为十倍频程(或十倍频,用Dec表示。如下图所示:-Deci D c Deci Deci-+logω--00..--2--1--0.01--0.1-10-100-由于0以对 分度,所以零频率线在-∞处。-4
使用对数坐标图的优点:-了-可以展宽频带;频率是以10倍频表示的,因此可以清楚的-表示出低频、中频和高频段 幅频和相频特性。-了可以将乘法运算转化为加法运算。-所有的典型环节的频率特性都可以用分段直线(渐进线)-近 表示。-了对实验所得的频率特性用对数坐标表示,并用分段直线近-似的方法,可以很容易的写出它的频特性表达式。 三、对数幅相特性曲线(又称尼柯尔斯图-尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成-一条曲线。横坐标 相角特性,单位度或弧度。纵坐标为对数-幅频特性,单位分贝。横、纵坐标都是线性分度。
一、极坐标频率特性曲线-(又称奈魁斯特曲线-它是在复平面上用一条曲线表示o由0→∞时的频率特性。-即用矢量 jo的端点轨迹形成的图形。o是参变量。在曲线-的上的任意一点可以确定实频、虚频、幅频和相频特性。-根据上面 说明,可知-Nyquist图-0.4-频率特性曲线是S平面-2w-0.3-System:h-上变量s沿正虚 变化-Real:0.126-0.2-lmag:0,314-Freq rad/sec:-3.05-时在Gs平 上的映射。-A-蓝-0=0-P@-由于1Gjo是偶函数,--0.1-所以当0从-∞→0--02-s+1-和 →o变化时,奈魁-32+s+1-斯特曲线对称于实轴。-0.6-实部

对数幅频特性

对数幅频特性
放大电路的对数频率特性称为波特图。
0.01 0.1 0.707 1 2 2 10 100 - 40 - 20 - 3 0 3 6 20 40
一、RC 高通电路的波特图
Au
UO Ui
R
R
1
jC
+
1
1 1
jRC
_ 图 3.1.2
令:
C
+
R _
RC 高通电路
Au
1
1
fL f
2
20lg Au -20lg
二、混合 参数与 h 参数的关系
低频时,不考虑极间电容作用,混合 等效电路
和 h 参数等效电路相仿,即:
b
c
b
c
e
e
图 3.3.1 混合 参数与 h 参数之间的关系
通过对比可得

则 rbb 几十至几百欧;
一般小功率三极管 rbe 1 k; gm 几十毫西门子 .
三、混合 型等效电路中电容
C1 可认为交流短路;极间电容可视为交流断路。 1. 中频段等效电路
b
+
+
Rs
+
Rb
~
-
c
+ 由图可得
Rc
e
图 3.3.6 中频段等效电路
Uo
- gmUbe Rc
-
Ri Rs Ri
rbe rbe
gm RcUs
2. 中频电压放大倍数
已知
gm
rbe
,则
结论:中频电压放大倍数的表达式,与利用简化 h 参数等效电路的分析结果一致。
:可从器件手册中查到;并且
(估算,fT 要从器件手册中查到)
注意:

自动控制原理--典型环节的频率特性

自动控制原理--典型环节的频率特性
j
j 1
0j 1
Im
0
Re
0
积分与微分环节
L(dB) 40
积分环节
0
微分环节
40
( )
90
微分环节
0 90
积分环节
20dB / dec
20dB / dec
6
三、微分环节
传递函数: G s s
频率特性:
G(j)
j
ej
π 2
➢1. 幅频特性 A及相频特性
A ,
A
( )
0
1
T
4
2
L,
0
1
T 3dB
4
20lg 2T 2 1
2
近似曲线 精确曲线
对数幅频特性和相频特性:
L() 20 lg 1 (T )2 () tg1 T
0 L0 0
1 L 20 lg 1 3
T
2
4
L
2
L()(dB) 0 0.1 5
10 15 20
0.2
0.3 0.4
0.6 0.8 1
T
2
34
6 8 10
七、一阶不稳定环节
传递函数: G s 1
Ts 1
➢1. 幅相频率特性
频率特性: G j 1
jT 1
G j
1
jT 1
1
1 T2
T
j1 T2
U
jV
U
1 2
2
V
2
1 2
2
一阶不稳定系统的幅相频
率特性是一个为(-1,j0)
为圆心,0.5为半径的半圆。
180O 90O
Im
1

放大电路的频率特性分析解析

放大电路的频率特性分析解析
0.1fL
fL
10fL
-90°
-135°
f
0.01fL
0.1fL
fL
10fL
20dB/十倍频
在高频段,耦合电容C1、C2可以可视为短路,三极管的极间电容不能忽略。 这时要用混合π等效电路,画出高频等效电路如图所示。
3. 高频段
用“密勒定理”将集电结电容单向化。
用“密勒定理”将集电结电容单向化:
定义当 下降为中频α0的0.707倍时的频率fα为共基极截止频率。
(3-7)
fα、fβ、 fT之间有何关系? 将式(3 - 3)代入式(3 - 7)得
一.BJT的混合π型模型
混合π型高频小信号模型是通过三极管的物理模型而建立的。
rbb' ——基区的体电阻
1.BJT的混合π型模型
rb‘e——发射结电阻
b'是假想的基区内的一个点。
Cb‘e——发射结电容
rb‘c——集电结电阻
Cb‘c——集电结电容
——受控电流源,代替了
3.3 单管共射极放大电路的频率特性
(2)用 代替了 。因为β本身就与频率有关,而gm与频率无关。
2.BJT的混合π等效电路
放大电路对不同频率信号的相移不同,使输出波形产生失真 --相位频率失真(相频失真)
图 频率失真
4、分析方法
由对数幅频特性和对数相频特性两部分组成; 横轴 f 采用对数坐标 ; 幅频特性的纵轴采用20lg|Àu|,单位是分贝(dB); 相频特性的纵轴仍用表示。
用近似折线代替实际曲线画出的频率特性曲线称为波特图,是分析放大电路频率响应的重要手段。
相频响应 :
f
0.1fH
-180°
fH
10fH

对数频率特性曲线

对数频率特性曲线
自动控制原理
第五章 频域分析法-频率法
第五章 线性系统的频域分析法
5.1 频率特性 一、基本概念 信号可表示成不同频率正弦信号的合成。频率特性 能够反映不同频率的正弦信号作用下系统的性能。
r(t) 系统 css(t)
自动控制原理
第五章 频域分析法-频率法
一个稳定的系统,假设有一正弦信号输入
r(t ) Ar sint
A
自动控制原理
第五章 频域分析法-频率法
(1)幅相频率特性曲线(极坐标图/幅相曲线)
频率特性
(j ) (j ) (j ) M( )( )
幅相曲线:从0→∞变化时,φ(jω)在复平面
上划过的轨迹。
复 G( j)与G( j)
平 面
关于实轴对称。
自动控制原理
第五章 频域分析法-频率法
• 1)对数幅频曲线关于0dB线(ω轴)对称, • 2)对数相频曲线关于0°线(ω轴)对称。 •如
1 s 1 Ts 1
与s 与 Ts 1
自动控制原理
第五章 频域分析法-频率法
• (3)振荡环节和二阶微分环节
稳定系统的频率特性可由实验的方法确定。
自动控制原理
第五章 频域分析法-频率法
频率特性、传递函数、微分方程间的关系:
图5-4 线性系统数学模型间的关系
自动控制原理
第五章 频域分析法-频率法
• 例 设系统的传递函数为
G(s) 1 0.5s 1
• 试求输入信号 r(t) 10sin 6.28t时,系统的稳态输
1
s s j j
j 1 1 90o

j
0
a、幅相频率特性曲线
A 1 L( )=-20lg

对数 频率特性

对数 频率特性
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
当幅制特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20 log(幅值)
幅值A()
1.0 0
1.2 6
1.5 6
2.0 0
2.5 1
3.1 6
5.6 2
10. 0
Dec Dec Dec Dec
log
... 2 1 0 1 2
0
0.01 0.1
1
10 100
由于 以对数分度,所以零频率线在-∞处。
Thursday, September
10, 2020
2
更详细的刻度如下图所示
1
2
3 4 5 6 7 8 910
20
一倍频程 一倍频程 一倍频程
一倍频程
30 40 50 60 80 100 一倍频程
十倍频程 十倍频程
十倍频程
一倍频程 十倍频程
lg
0
1
2
ω 1 2 3 4 5 6 7 8 9 10
lgω
0.00 0
0.30 1
0.47 7
0.60 2
0.69 9
0.77 8
0.84 5
0.90 3
0.95 4
1.00 0
Thursday, September
10, 2020
3
纵坐标分度:对数幅频特性曲线的纵坐标以 L() 20log A() 表 示。其单位为分贝(dB)。直接将 20log A()值标注在纵坐标上。
第三节 对数频率特性
Thursday, September
10, 2020
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
10
L ( )
dB
20
20 0
( )
90
1 10T
1 T
10 T

45 0
1 10T
1 T
10 T

一阶微分环节高频渐近线的斜率是+20dB/dec, 其相位变化范围由0°(ω=0)经+45°至90° (ω=∞)
11
6。振荡环节 对数幅频特性 对数相频特性
G jω
1 2 T 2 jω 2ζ T jω 1
20
0
20
0.1 20
1
10

( )
90
0
0.1
1
10

5
4。惯性环节 惯性环节的幅频特性为
G jω 1 1 jω T
惯性环节的幅频特性
20 lg 1 1 20 lg 20 lg 1 2T 2 1 jT 1 2T 2
1 在 ω T 时(低频段):
第三节 对数频率特性
1
一、对数坐标图
1. 幅频特性图: 纵坐标:幅值的对数20lg(dB),采用线性分度; 横坐标:用频率ω的对数lgω分度。 2.相频特性图 纵坐标:频率特性的相移,以度为单位,采用线性分度; 横坐标:用频率ω的对数lgω分度。
( )
60 180
L ( ) dB
40
90
1 T
说明
ω ωn
为二阶系统(振荡环节)的转折频率。
13


10
0.1
0.2 0. 3
L ( )
0
0 .7 1
10
dB
0
0.1
0. 2 0.3 0. 7
1
( ) 90
180 0.1
0.2
0.4
0.6 0.8
1
2
4
6
8
10
/n
14
可见:当频率接近 ω ω n 时,将产生谐振峰 值。阻尼比的大小决定了谐振峰值的幅值。 0 相角 是ω和ζ的函数。在ω=0, ω ;当 ω ωn 90 时,不管 ζ值的大小, ; ω当 ω=∞ 180 ω。相频曲线对 时, -90°的弯曲点是斜 对称的。 1 ω 振荡环节的对数幅频特性在转折频率 T 附近产生谐振峰值 Gjω 可通过下列计算得到:
2



2
高频段,即ωT>>1时
L ( ) 20 lg( 2T 2 ) 40 lg( T )
当ω增加10倍
L( ) 40lg10T ω 40 40lgT ω
ω ωn
即高频渐近线是一条斜率为-40dB/dec的直线。 当 ωω 1 时
n
T
L( ) 40 lg T 40 lg 1 0(dB )
20
0

0.1 -20 -40 1 2 3 4 5 6 7 8 10
90
180
-60
2
一、 典型环节的伯德图
1。放大环节
L ( )
G(jω)=K
20
10
20 lg K
0
( )
10 0
10
100


10 100
放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行 于横轴的直线,相频特性是一条和横轴重合的直线。 K>1时,20lgK>0dB;K<1时,20lgK<0dB。
3
2. 积分环节
1 G jω jω
Lω 20lgG jω 20lg
1 20lg ω dB jω
当ω=1时 当ω=10时
L ω 20lg1 0 dB
Lω 20lg10 20 dB
ω每增加10倍,L(ω)则衰减20dB,记为: -20dB/十倍频程,或-20dB/dec。或直接写成-20。
L ( )
20 0
20 0.1 10
1

( )
0 90 0.1
1
10

4
说明积分环节的对数幅频曲线是一条经过横轴上ω=1这一 点,且斜率为-20的直线。 相频与ω无关,值为-90°且平行于横轴的直线,
3。微分环节
L ( )
G jω jω
微分环节是积分环节的倒数,它们的曲线斜率和相位移也 正好相差一个负号。
o
o
n
r
15

振荡环节的幅频 特性为
G jω
1 T ω 2ζ
2 2 2
1


Lω 20lg 1 T 2ω2 2ζ Tω
2



2
ω t g1
2ζ Tω 2 2 1 T ω
低频段,即ωT<<1时
Lω 20lg1 =0 dB
——低频渐近线为一条0dB的水平直线。
12
Lω 20lg 1 T 2ω2 2ζ Tω
20lg 1 ω2T 2 20lg1 0 dB
近似地认为,惯性环节在低频段的对数幅频特性 是与横轴相重合的直线。
6
在 时(高频段): 幅频特性: 2 2
ω
1 T
20lg 1 ω T 20lg ω T dB
ω 1 T
——表示一条经过 横轴处,斜率为-20dB/dec的直线 方程。 1 ω 综上所述:惯性环节的对数幅频特性可以用在 T 处相交于0分贝的两条渐近直线来近似表示: 1 ω 当 T 时,是一条0分贝的直线; 当 ω
o
分析表明:惯性环节具有低通特性,对低频输入能 精确地复现,而对高频输入要衰减,且产生相位迟后。 因此,它只能复现定常或缓慢变化的信号。

9
5。一阶微分环节 G jω 1 jω
T
一阶微分环节的频率特性(1+jωT) 与惯性环节的频率特性互为倒数关系,此 其对数幅频曲线和相频曲线仅差一负号。 即 20lg 1 jω T 20lg 1 ω T ω tg1ω T
1 T
时,是一条斜率为-20dB/dec的直线。
7
两条渐近线相交处的频率 或交接频率。
L ( )
ω
1 T称为转折频率来自dB01 T
精确曲线 20
10
( )
0


45 90
8
惯性环节的相频特性 ω tg1ω T
1 当ω=0时, ω 0o,当 ω T 时, ω -45 ;当 ω趋于 ω 趋于-90°。 无穷时, 采用渐近线在幅频曲线上产生的误差是可以计算 1 的。幅值的最大误差发生在转折频率 ω T 处,近似等 于3dB。 dB 20lg 1 1 10lg2 3.01
相关文档
最新文档