数列·例题解析
等比数列·例题解析
等比数列·例题解析等比数列·例题解析【例1】已知Sn是数列{an}的前n项和,Sn=pn(p∈R,n∈N_),那么数列{an}.[ ]A.是等比数列B.当p≠0时是等比数列C.当p≠0,p≠1时是等比数列D.不是等比数列分析由Sn=pn(n∈N_),有a1=S1=p,并且当n≥2时,an=Sn-Sn-1=pn-pn-1=(p-1)pn-1但满足此条件的实数p是不存在的,故本题应选D.说明数列{an}成等比数列的必要条件是an≠0(n∈N_),还要注【例2】已知等比数列1,_1,_2,…,_2n,2,求_1·_2·_3·…·_2n.解∵1,_1,_2,…,_2n,2成等比数列,公比q∴2=1·q2n+1_1_2_3..._2n=q.q2.q3...q2n=q1+2+3+ (2)式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值.∴a4=2【例4】已知a>0,b>0且a≠b,在a,b之间插入n个正数_1,_2,…,_n,使得a,_1,_2,…,_n,b成等比数列,求证明设这n+2个数所成数列的公比为q,则b=aqn+1【例5】设a.b.c.d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.证法一∵a.b.c.d成等比数列∴b2=ac,c2=bd,ad=bc∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2=2(b2-ac)+2(c2-bd)+(a2-2bc+d2)=a2-2ad+d2=(a-d)2=右边证毕.证法二∵a.b.c.d成等比数列,设其公比为q,则:b=aq,c=aq2,d=aq3∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2=a2-2a2q3+a2q6=(a-aq3)2=(a-d)2=右边证毕.说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b.c的特点,走的是利用等比的条件消去左边式中的b.c的路子.证法二则是把a.b.c.d统一化成等比数列的基本元素a.q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】求数列的通项公式:(1){an}中,a1=2,an+1=3an+2(2){an}中,a1=2,a2=5,且an+2-3an+1+2an=0思路:转化为等比数列.∴{an+1}是等比数列∴an+1=3·3n-1 ∴an=3n-1∴{an+1-an}是等比数列,即an+1-an=(a2-a1)·2n-1=3·2n-1再注意到a2-a1=3,a3-a2=3·21,a4-a3=3·22,…,an-an-1=3·2n-2,这些等式相加,即可以得到说明解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{an+1}是等比数列,(2)中发现{an+1-an}是等比数列,这也是通常说的化归思想的一种体现.证∵a1.a2.a3.a4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a1.a2.a3为实数因而a1.a2.a3成等比数列∴a4即为等比数列a1.a2.a3的公比.【例8】若a.b.c成等差数列,且a+1.b.c与a.b.c+2都成等比数列,求b的值.解设a.b.c分别为b-d.b.b+d,由已知b-d+1.b.b+d与b-d.b.b+d+2都成等比数列,有整理,得∴b+d=2b-2d 即b=3d代入①,得9d2=(3d-d+1)(3d+d)9d2=(2d+1)·4d解之,得d=4或d=0(舍)∴b=12【例9】已知等差数列{an}的公差和等比数列{bn}的公比都是d,又知d≠1,且a4=b4,a10=b10:(1)求a1与d的值;(2)b16是不是{an}中的项?思路:运用通项公式列方程(2)∵b16=b1·d15=-32b1∴b16=-32b1=-32a1,如果b16是{an}中的第k项,则-32a1=a1+(k-1)d∴(k-1)d=-33a1=33d∴k=34即b16是{an}中的第34项.解设等差数列{an}的公差为d,则an=a1+(n-1)d解这个方程组,得∴a1=-1,d=2或a1=3,d=-2∴当a1=-1,d=2时,an=a1+(n-1)d=2n-3当a1=3,d=2时,an=a1+(n-1)d=5-2n【例11】三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一按等比数列设三个数,设原数列为a,aq,aq2由已知:a,aq+4,aq2成等差数列即:2(aq+4)=a+aq2①a,aq+4,aq2+32成等比数列即:(aq+4)2=a(aq2+32)解法二按等差数列设三个数,设原数列为b-d,b-4,b+d 由已知:三个数成等比数列即:(b-4)2=(b-d)(b+d)b-d,b,b+d+32成等比数列即b2=(b-d)(b+d+32)解法三任意设三个未知数,设原数列为a1,a2,a3由已知:a1,a2,a3成等比数列a1,a2+4,a3成等差数列得:2(a2+4)=a1+a3②a1,a2+4,a3+32成等比数列得:(a2+4)2=a1(a3+32)③说明将三个成等差数列的数设为a-d,a,a+d;将三个成简化计算过程的作用.【例12】有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析本题有三种设未知数的方法方法一设前三个数为a-d,a,a+d,则第四个数由已知条方法二设后三个数为b,bq,bq2,则第一个数由已知条件推得为2b-bq.方法三设第一个数与第二个数分别为_,y,则第三.第四个数依次为12-y,16-_.由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二设后三个数为:b,bq,bq2,则第一个数为:2b-bq所求四个数为:0,4,8,16或15,9,3,1.解法三设四个数依次为_,y,12-y,16-_.这四个数为0,4,8,16或15,9,3,1.【例13】已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解设成等差数列的三个数为b-d,b,b+d,由已知,b-d+b+b+d=126∴b=42这三个数可写成42-d,42,42+d.再设另三个数为a,aq,aq2.由题设,得解这个方程组,得a1=17或a2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】已知在数列{an}中,a1.a2.a3成等差数列,a2.a3.a4成等比数列,a3.a4.a5的倒数成等差数列,证明:a1.a3.a5成等比数列.证明由已知,有2a2=a1+a3①即a3(a3+a5)=a5(a1+a3)所以a1.a3.a5成等比数列.【例15】已知(b-c)logm_+(c-a)logmy+(a-b)logmz=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:_,y,z成等比数列.(2)设正数_,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(logm_-2logmy+logmz)=0 ∴logm_+logmz=2logmy∴y2=_z∵_,y,z均为正数∴_,y,z成等比数列(2)∵_,y,z成等比数列且公比q≠1∴y=_q,z=_q2代入已知条件得:(b-c)logm_+(c-a)logm_q+(a-b)logm_q2=0 变形.整理得:(c+a-2b)logmq=0∵q≠1∴logmq≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列。
数列的极限例题及详解
数列的极限例题及详解
极限是数学分析中的一个重要概念,它描述了某种函数在某点附近的行为趋势,同时提供了有效的技术来解决数列的极限问题。
我们本文将讨论数列的极限问题,包括定义和几个例子。
一.定义
极限是一个抽象的概念,它指的是一个数列中的每一项都趋近一定的值,这个值称为数列的极限。
另外,数列的极限也称为极限点或极限值。
当然,数学家们对极限的定义更加严格,但这些都不重要,我们只需要理解数列的极限概念即可。
二.例题
1.设a_n=(-1)^n/n,求a_n的极限。
解:
首先,由于(-1)^n为一个交替变化的算子,它的值在n变大时无论n的奇偶性如何,(-1)^n的值都保持不变,因此极限就是
(-1)^n/n的值。
考虑n变大时,(-1)^n/n的值接近于0,所以a_n
的极限就是0.
2.设a_n=(1+1/n)^n,求a_n的极限。
解:
这个例题比较特殊,因为算子(1+1/n)^n这里n和指数相关,考虑当n变大时,(1+1/n)^n的值就接近于e,所以a_n的极限就是e.
3.设a_n=1/n,求a_n的极限。
解:
由于1/n的值是从1开始逐渐减小,当n变大时,1/n的值就逐渐接近于0,所以a_n的极限就是0.
三.总结
本文讨论了数列的极限问题,先介绍了数列极限的定义,然后举例说明了3种数列的极限问题,这其中包含了数列算子计算中比较常见的概念,如交替系数,和指数极限等。
希望本文对读者有所帮助。
数列例题(含答案)
1.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n且(λ为常数).令c n=b2n(n∈N*)求数列{c n}的前n项和R n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由a2n=2a n+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①再由S4=4S2,得,即d=2a1②联立①、②得a1=1,d=2.所以a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)把a n=2n﹣1代入,得,则.所以b1=T1=λ﹣1,当n≥2时,=.所以,.R n=c1+c2+…+c n=③④③﹣④得:=所以;所以数列{c n}的前n项和.2.等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.3.已知数列{log2(a n﹣1)}(n∈N*)为等差数列,且a1=3,a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明++…+<1.【解答】(I)解:设等差数列{log2(a n﹣1)}的公差为d.由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.所以log2(a n﹣1)=1+(n﹣1)×1=n,即a n=2n+1.(II)证明:因为==,所以++…+=+++…+==1﹣<1,即得证.4.已知{a n}是正数组成的数列,a1=1,且点(,a n+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若列数{b n}满足b1=1,b n+1=b n+2an,求证:b n•b n+2<b n+12.【解答】解:解法一:(Ⅰ)由已知得a n+1=a n+1、即a n+1﹣a n=1,又a1=1,所以数列{a n}是以1为首项,公差为1的等差数列.故a n=1+(n﹣1)×1=n.(Ⅱ)由(Ⅰ)知:a n=n从而b n+1﹣b n=2n.b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=2n﹣1+2n﹣2+…+2+1=∵b n•b n+2﹣b n+12=(2n﹣1)(2n+2﹣1)﹣(2n+1﹣1)2=(22n+2﹣2n﹣2n+2+1)﹣(22n+2﹣2•2n+1+1)=﹣2n<0∴b n•b n+2<b n+12解法二:(Ⅰ)同解法一.(Ⅱ)∵b2=1b n•b n+2﹣b n+12=(b n+1﹣2n)(b n+1+2n+1)﹣b n+12=2n+1•bn+1﹣2n•bn+1﹣2n•2n+1=2n(b n+1﹣2n+1)=2n(b n+2n﹣2n+1)=2n(b n﹣2n)=…=2n(b1﹣2)=﹣2n<0∴b n•b n+2<b n+125.已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等6.设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.【解答】解:(1)设等差数列{a n}的公差为d.由已知得即解得.故a n=2n﹣1,S n=n2(2)由(1)知.要使b1,b2,b m成等差数列,必须2b2=b1+b m,即,(8分).移项得:=﹣=,整理得,因为m,t为正整数,所以t只能取2,3,5.当t=2时,m=7;当t=3时,m=5;当t=5时,m=4.故存在正整数t,使得b1,b2,b m成等差数列.7.设{a n}是等差数列,b n=()an.已知b1+b2+b3=,b1b2b3=.求等差数列的通项a n.【解答】解:设等差数列{a n}的公差为d,则a n=a1+(n﹣1)d.∴b1b3=•==b22.由b1b2b3=,得b23=,解得b2=.代入已知条件整理得解这个方程组得b1=2,b3=或b1=,b3=2∴a1=﹣1,d=2或a1=3,d=﹣2.所以,当a1=﹣1,d=2时a n=a1+(n﹣1)d=2n﹣3.当a1=3,d=﹣2时a n=a1+(n﹣1)d=5﹣2n.8.已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且S n=1﹣(1)求数列{a n},{b n}的通项公式;(2)记c n=a n b n,求证c n+1≤c n.【解答】解:(1)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{a n}的公差d>0,∴a3=5,a5=9,公差∴a n=a5+(n﹣5)d=2n﹣1.又当n=1时,有b1=S1=1﹣当∴数列{b n}是等比数列,∴(2)由(Ⅰ)知,∴∴c n+1≤c n.9.已知等差数列{a n}的前n项和为S n,S5=35,a5和a7的等差中项为13.(Ⅰ)求a n及S n;(Ⅱ)令(n∈N﹡),求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,因为S5=5a3=35,a5+a7=26,所以,…(2分)解得a1=3,d=2,…(4分)所以a n=3+2(n﹣1)=2n+1;S n=3n+×2=n2+2n.…(6分)(Ⅱ)由(Ⅰ)知a n=2n+1,所以b n==…(8分)=,…(10分)所以T n=.…(12分)10.已知等差数列{a n}是递增数列,且满足a4•a7=15,a3+a8=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(n≥2),b1=,求数列{b n}的前n项和S n.【解答】解:(1)根据题意:a3+a8=8=a4+a7,a4•a7=15,知:a4,a7是方程x2﹣8x+15=0的两根,且a4<a7解得a4=3,a7=5,设数列{a n}的公差为d由.故等差数列{a n}的通项公式为:(2)=又∴=11.设f(x)=x3,等差数列{a n}中a3=7,a1+a2+a3=12,记S n=,令b n=a n S n,数列的前n项和为T n.(Ⅰ)求{a n}的通项公式和S n;(Ⅱ)求证:;(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.【解答】解:(Ⅰ)设数列{a n}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12.解得a1=1,d=3∴a n=3n﹣2∵f(x)=x3∴S n==a n+1=3n+1.(Ⅱ)b n=a n S n=(3n﹣2)(3n+1)∴∴(Ⅲ)由(2)知,∴,∵T1,T m,T n成等比数列.∴即当m=1时,7=,n=1,不合题意;当m=2时,=,n=16,符合题意;当m=3时,=,n无正整数解;当m=4时,=,n无正整数解;当m=5时,=,n无正整数解;当m=6时,=,n无正整数解;当m≥7时,m2﹣6m﹣1=(m﹣3)2﹣10>0,则,而,所以,此时不存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列.综上,存在正整数m=2,n=16,且1<m<n,使得T1,T m,T n成等比数列.12.已知等差数列{a n}的前n项和为S n=pn2﹣2n+q(p,q∈R),n∈N+.(Ⅰ)求的q值;(Ⅱ)若a1与a5的等差中项为18,b n满足a n=2log2b n,求数列{b n}的前n和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=p﹣2+q当n≥2时,a n=S n﹣S n﹣1=pn2﹣2n+q﹣p(n﹣1)2+2(n﹣1)﹣q=2pn﹣p﹣2∵{a n}是等差数列,a1符合n≥2时,a n的形式,∴p﹣2+q=2p﹣p﹣2,∴q=0(Ⅱ)∵,由题意得a3=18又a3=6p﹣p﹣2,∴6p﹣p﹣2=18,解得p=4∴a n=8n﹣6由a n=2log2b n,得b n=24n﹣3.∴,即{b n}是首项为2,公比为16的等比数列∴数列{b n}的前n项和.13.已知等差数列{a n}的前n项和为S n,且满足:a2+a4=14,S7=70.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=,数列b n的最小项是第几项,并求出该项的值.【解答】解:(I)设公差为d,则有…(2分)解得以a n=3n﹣2.…(4分)(II)…(6分)所以=﹣1…(10分)当且仅当,即n=4时取等号,故数列{b n}的最小项是第4项,该项的值为23.…(12分)14.己知各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0(n∈N*),且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式a n;(2)若b n=a n a n,S n=b1+b2+…+b n,求S n+n•2n+1>50成立的正整数n的最小值.【解答】解:(Ⅰ)∵a n+12﹣a n+1a n﹣2a n2=0,∴(a n+1+a n)(a n+1﹣2a n)=0,∵数列{a n}的各项均为正数,∴a n+1+a n>0,∴a n+1﹣2a n=0,即a n+1=2a n,所以数列{a n}是以2为公比的等比数列.∵a3+2是a2,a4的等差中项,∴a2+a4=2a3+4,∴2a1+8a1=8a1+4,∴a1=2,∴数列{a n}的通项公式a n=2n.(Ⅱ)由(Ⅰ)及b n=得,b n=﹣n•2n,∵S n=b1+b2++b n,∴S n=﹣2﹣2•22﹣3•23﹣4•24﹣﹣n•2n①∴2S n=﹣22﹣2•23﹣3•24﹣4•25﹣﹣(n﹣1)•2n﹣n•2n+1②①﹣②得,S n=2+22+23+24+25++2n﹣n•2n+1=,要使S n+n•2n+1>50成立,只需2n+1﹣2>50成立,即2n+1>52,∴使S n+n•2n+1>50成立的正整数n的最小值为5.15.设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1,数列{b n}满足a1=b1,点P(b n,b n+1)在直线x﹣y+2=0上,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)由a n+1=2S n+1可得a n=2S n﹣1+1(n≥2),两式相减得a n+1﹣a n=2a n,a n+1=3a n(n≥2).又a2=2S1+1=3,所以a2=3a1.故{a n}是首项为1,公比为3的等比数列.所以a n=3n﹣1.由点P(b n,b n+1)在直线x﹣y+2=0上,所以b n+1﹣b n=2.则数列{b n}是首项为1,公差为2的等差数列.则b n=1+(n﹣1)•2=2n﹣1(Ⅱ)因为,所以.则,两式相减得:.所以=.。
数列通项公式的完整求法,还有例题详解
一.不雅察法例1:依据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:症结是找出各项与项数n的关系.二.公式法:当已知前提中有a n 和s n 的递推关系时,往往运用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式. 例1: 已知数列{a n }是公役为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公役位d,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a ,解得⎩⎨⎧±==243d a ,又{}n a 是递减数列,∴2-=d ,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D).例 3. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n na ab ,求数列{}n b 的通项公式.解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b ,∴)1()1(1+=⋅+=-q q q q q b n n n点评:当已知数列为等差或等比数列时,可直接运用等差或等比数列的通项公式,只需求得首项及公役公比.例4: 已知无限数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式?【解析】:1n n S a =-,∴111n n n n n a S S a a +++=-=-,∴112n n a a +=,又112a =, ∴12nn a ⎛⎫= ⎪⎝⎭.反思:运用相干数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设前提,树立递推关系,是本题求解的症结.{}n a 的前n 项和n S ,知足关系()1lg nS n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列.例5:已知数列{}n a 前n 项的和为s n =23a n -3,求这个数列的通项公式.剖析:用a n 调换s n -s 1-n (n ≥2)得到数列项与项的递推关系来求.解: a 1=23a 1-3, ∴ a 1=6s n =23a n -3 (n ∈N *) ① ∴s 1-n =23a 1-n -3 (n ≥2且n ∈N *) ②①- ②得:a n =23a n -23a 1-n∴21 a n =23a 1-n ,即1-n n a a =3(n ≥2且n ∈N *) ∴数列{}na 是以a 1=6,公比q 为3的等比数列. ∴a n=a 1q 1-n =6⨯31-n =2⨯3n.例6:已知正项数列{}n a 中,s n =21(a n +na 1),求数列{}n a 的通项公式.剖析:用s n -s 1-n (n ≥2)调换a n 得到数列n s 与1n s -的递推关系来求较易.解 s n =21(a n +na 1),∴a 1=21( a 1+11a )∴ a 1=1又a n = s n -s 1-n (n ≥2且n ∈N *)∴ s n =21(s n -s 1-n +1n s 1--n s )∴2s n =s n -s 1-n +1n s 1--n s∴sn+s 1-n =1n s 1--n s∴ s n2-s 1-n 2=1 (n ≥2且n ∈N *)∴数列{}2n s 是以a 21=1为首项,公役为1的等差数列. ∴ s n 2=1+(n -1)⨯1=n,即s n=n ,当n ≥2时,s n -s 1-n =a n =n -1-n 将n =1代入上式得a n =n -1-n演习:数列{}n a 前n 项和为n S ,已知n a =5n S -3(*n N ∈),求n a 三.累加法:求形如1n a +=n a +f(n)的递推数列的通项公式的根本办法.(个中f(n)能求前n 项和即可)运用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的办法称为累加法.累加法是求型如1()n n a a f n +=+的递推数列通项公式的根本办法(()f n 可求前n 项和).例1.已知数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,求这个数列的通项公式.剖析:由已知121n n a a n -=+-,得121n n a a n --=-,留意到数列{}n a 的递推公式的情势与等差数列的递推公式相似,因而,可累加法求数列的通项.解:数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,可得:以上各式相加,将n =1代入上式得228n a n =+演习:已知数列{}n a 中,113,2,(*)n n n a a a n N ==+∈+,求n a例2:已知数列6,9,14,21,30,…求此数列的一个通项. 解易知,121-=--n a a n n ∵,312=-a a ,523=-a a ,734=-a a ……,121-=--n a a n n各式相加得)12(7531-++++=-n a a n ∴)(52N n n a n ∈+=点评:一般地,对于型如)(1n f a a n n +=+类的通项公式,只要)()2()1(n f f f +++ 能进行乞降,则宜采取此办法求解.例3. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a . 解析:由na a n n +=+1得na a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a 所以n a =32)1(+-n n例4已知无限数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 知足11b =,(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+⋅⋅+112n -⎛⎫⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的症结是将递推公式变形为1()n n a a f n +=+.112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.3.累乘法:求形如1n a +=g(n)n a 的递推数列通项公式的根本办法.(个中g(n)可求前n 项 积即可).运用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的办法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的根本办法(数列()g n 可求前n 项积). 例1.若知足111,(*),1n n a na n N a n +==∈+求这个数列的通项公式. 剖析:由11n na n a n +=+知数列{}n a 不是等比数列,但其递推公式的情势与等比数列递推公式相似,因而,可累加法求数列的通项.解: 111,(*),1n n a na n N a n +==∈+ 以上各式相乘得:11231...234n a n a n -=⨯⨯⨯⨯1n a n∴=(2)n ≥∈*且n N将n =1代入上式得1n a n=变式演习:设{}n a 是首项为1的正数构成的数列,且2211(1)0(12)n n n n n a na a a n +++-+==,,…,则它的通项公式为n a =. 例2:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式.解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n ,1a an =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅ 所以n a n 1=例3 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a .解析:起首由n n a n n S )12(-=易求的递推公式:1232,)32()12(11+-=∴-=+--n n a a a n a n n n n n 5112521221=--=∴--a a n n a a n n 将上面n —1个等式相乘得:点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采取此办法.例四 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 【解析】:1()n n n a n a a +=-,∴11n n a n a n++=,又有321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥= 1×23n×××12n-1⋅⋅⋅=n ,当1n =时11a =,知足n a n =,∴n a n =. 反思: 用累乘法求通项公式的症结是将递推公式变形为1()n n a g n a +=.{}n a 知足11a =,123123(1)(2)n n a a a a n a n -=+++⋅⋅⋅+-≥.则{}n a 的通项公式是.4.结构新数列:经由过程变换递推关系,可将非等差数列或等比数列转化为等差或等比数列而求得通项公式的办法.(待定系数法)例题5:已知数列{}n a 中知足11a =,*123()n n a a n N +=-∈,求数列{}n a 的通项公式.剖析:将一阶线性递推关系形如1(0,1)n n a Aa B A B A B +=+≠≠、为常数,可转化为111(),111n n n n Ba B B A a A a A B A A a A +++-+=+=--+-即的一个新的等比数列或消常数项转化为212111()n n n n n n n na aa a A a a A a a ++++++--=-=-,即的一个等比数列.解法1:数列{}n a 中11=a ,321-=+n n a a (n 1≥)∴数列{}331--+n n a a 是以首项231-=-a ,公比为2的等比数列解法2: 数列{}n a 中11=a ,321-=+n n a a ① ∴3212-=++n n a a ②②-①得)(=-n n n n a a a a -++122又 21231a a =-=-∴数列{}1n n a a --是以首项212,a a -=-公比为2的等比数列∴11122,2n n n n n n a a a a ----⨯-=-=-即,(再运用累加法可求数列的通项公式,以下解法略)可求得()*23n n a n N =-∈+ (倒数法)例题6:已知数列{}n a 中知足11a =,131nn n a a a +=+,求数列的通项n a .剖析:可将形如一阶分式递推公式1nn n Ca a Aa B+=+,(A.B.C 为知足前提的常数),等式双方取倒数得:111.n n B Aa C a C+=+,又可运用求形如1''n n a A a B +=+(A ’.B ’为常数)的办法来求数列的通项.解:数列 {}n a 中, 11a =,131n n n aa a +=+∴1113n n a a +=+,即1113n na a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是以111,a =公役为3的等差数列.变式演习:知数列{}n a 中知足11a =,1231nn n a a a +=+,求数列的通项.例题7:已知数列{}n a 中知足11a =,122(n n n a a n N ++=+∈),求数列{}n a 的通项公式.剖析:形如递推公式1.(1,1)n n n a q a d q d d +=+≠≠、为非零常数,q 可转化为111.n n n n a a q d d d d ++=+,若令nnn a b d =,则转化为形如1.(n n a A a B A B +=+、为常数)的办法来求数列的通项.(提醒:将122(n n n a a n N ++=+∈)转化为111222n n n n a a ++-=,解法略.)别的,数列通项求法还稀有学归纳猜测法,可以先求出数列的前n 项,然后不雅察前n 项的纪律,再进行归纳.猜测出通项,最后予以证实,例如:数列{}n a 知足a 1=4,n a =4-14n a -(n ≥2),求n a (理科请求,解略);还有对数变换法,例如:形如1(0,0,01)p n n na Ca a Cpp +=≠且可转化为1lg lg lg n n a p a C +=+问题解决;当然还有特点方程法等等. 六.待定系数法:例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bq d n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11.已知数列{}n c 中,b b c +=11,bbc b c n n ++⋅=-11,个中b 是与n 无关的常数,且1±≠b .求出用n 和b 暗示的a n 的关系式.解析:递推公式必定可暗示为)(1λλ-=--n n c b c 的情势.由待定系数法知:bbb ++=1λλ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b.c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .七.帮助数列法例12:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .解:∵121+=+n n a a ∴)1(211+=++n n a a 令1+=n n a b 则帮助数列}{n b 是公比为2的等比数列∴11-=n n q b b 即n n n q a a 2)1(111=+=+-∴12-=n n a例13:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a . 解析:在n n n a a a 313212+=++双方减去1+n a ,得)(31112n n n n a a a a --=-+++ ∴{}n n a a -+1是认为112=-a a 首项,认为31-公比的等比数列,∴11)31(-+-=-n n n a a ,由累加法得na =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+---- =+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n 例14: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式.解:∵11+=+n n n a a a ∴11111+=+=+n n n n a a a a , 设nn a b 1=,则11+=+n n b b故{n b }是认为1111==a b 首项,1为公役的等差数列 ∴n n b n =-+=)1(1∴nb a n n 11==点评:这种办法相似于换元法, 重要用于已知递推关系式求通项公式.五 结构新数列: 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,运用累加法(逐差相加法)求解.例1:已知数列{}n a 知足211=a ,nn a a n n ++=+211,求n a .解:由前提知:111)1(1121+-=+=+=-+n n n n n n a a n n分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2 n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,运用累乘法(逐商相乘法)求解.例2:已知数列{}n a 知足321=a ,n n a n na 11+=+,求n a . 解:由前提知11+=+n na a n n ,分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a .解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---.变式:(2004,全国I,)已知数列{a n },知足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a aa a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n 类型3 q pa a n n +=+1(个中p,q 均为常数,)0)1((≠-p pq ).解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,个中pqt -=1,再运用换元法转化为等比数列求解. 例4:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所所以{}n b 认为41=b 首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________(key:321-=+n n a )类型 4 n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ). (或1n n n a pa rq +=+,个中p,q, r 均为常数) .解法:一般地,要先在原递推公式双方同除以1+n q ,得:q q a q p q a n n n n 111+•=++引入帮助数列{}n b (个中nnnq a b =),得:qb q pb n n 11+=+再待定系数法解决.例5:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a .解:在11)21(31+++=n n n a a 双方乘以12+n 得:1)2(32211+•=•++n n n n a a令n n n a b •=2,则1321+=+n n b b ,解之得:n n b )32(23-= 所以nn nn n b a )31(2)21(32-== 类型5 递推公式为n n n qa pa a +=++12(个中p,q 均为常数).解 (特点根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特点方程. 若21,x x 是特点方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A.B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A.B 的方程组).例6: 数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a 解(特点根法):的特点方程是:02532=+-x x .32,121==x x ,∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A .又由b a a a ==21,,于是⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n nb a a b a 演习:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .1731:()443n n key a -=--. 变式:(2006,福建,文,22)已知数列{}n a 知足*12211,3,32().n n n a a a a a n N ++===-∈求数列{}n a 的通项公式;(I )解: 112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+ 类型6 递推公式为n S 与n a 的关系式.(或()n n S f a =)解法:运用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解.例7:数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2214---=n n n a S 得:111214-++--=n n n a S于是)2121()(1211--++-+-=-n n n n n n a a S S所以11121-+++-=n n n n a a a nnn a a 21211+=⇒+.(2)运用类型4(n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ))的办法,上式双方同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n na 2是以2为首项,2为公役的等差数列,所以n n a n n 2)1(222=-+=12-=⇒n n na归纳法:。
数列求通项公式例题解析
题型1 已知数列前几项求通项公式此题主要通过学生观察、试验、合情推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生数学思维能力.相对于填空题或是选择题只需利用不完全归纳法进行猜想即可;对于解答题,往往还需要我们进一步加以证明.1. 在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表. 观察表中数据的特点,用适当的数填入表中空白( )内. 年龄(岁) 30 35 40 45 50 55 60 65 收缩压(水银柱 毫米) 110 115 120 125 130 135 (140)145 舒张压(水银柱 毫米) 70 73 75 78 80 83 ( 85)882. 根据下列5个图形及相应点的个数的变化规律,猜测第n 个图中有__n 2-n+1_个点.(1) (2) (3) (4) (5) 题型2 由a n 与S n 的关系求通项公式 3. 已知数列{}n a 的前n 项和21()2n S n n =+,则n a = n .4. 已知数列{}n a 的前n 项和32nn S =+,则n a = 152n -⎧⎨⎩12n n =≥,, .这类题目主要注意n s 与n a 之间关系的转化.即:n a =11n n S S S -⎧⎨-≥⎩ (n=1)(n 2)一般已知条件中含a n 与S n 的关系的数列题均可考虑用上述公式.点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.题型3定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.已知数列递推公式求通项公式5. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = 3n-2 .6. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=≥,则n a = 13n - .7. 等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >。
完整版)数列典型例题(含答案)
完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。
因此,前项和为。
⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。
8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。
1) 求 $a_5$ 和 $a_{10}$。
2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。
考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。
答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。
解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。
2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。
根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。
等比数列的前n项和例题详细解法
等比数列的前n项和例题详细解法・例题解析【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中最大的一项为54,又它的前2n项和为6560,求a和q.解:由S n=80,S2n=6560,故q≠1∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an.∴a n=aq n-1=54④将③代入①化简得a=q-1 ⑤由⑤,⑥联立方程组解得a=2,q=3证∵Sn=a1+a1q+a1q2+...+a1q n-1S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n)类似地,可得S3n=S n(1+q n+q2n)说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧.【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数.分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q.解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1.即公比为2,项数为8.说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.【例3】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}.[ ]A.是等比数列B.当p≠0时是等比数列C.当p≠0,p≠1时是等比数列D.不是等比数列分析:由S n=p n(n∈N*),有a1=S1=p,并且当n≥2时,a n=S n-S n-1=p n-p n-1=(p-1)p n-1但满足此条件的实数p是不存在的,故本题应选D.【例4】已知等比数列1,x1,x2,...,x2n,2,求x1・x2・x3*...・x2n.解∵1,x1,x2,...,x2n,2成等比数列,公比q∴2=1・q2n+1x1x2x3...x2n=q・q2・q3...q2n=q1+2+3+ (2)式;(2)已知a3・a4・a5=8,求a2a3a4a5a6的值.∴a4=2【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.证法一∵a、b、c、d成等比数列∴b2=ac,c2=bd,ad=bc∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2=2(b2-ac)+2(c2-bd)+(a2-2bc+d2)=a2-2ad+d2=(a-d)2=右边证毕.证法二∵a、b、c、d成等比数列,设其公比为q,则:b=aq,c=aq2,d=aq3∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2=a2-2a2q3+a2q6=(a-aq3)2=(a-d)2=右边证毕.说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d 统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】求数列的通项公式:(1){an}中,a1=2,a n+1=3a n+2(2){an}中,a1=2,a2=5,且a n+2-3a n+1+2a n=0思路:转化为等比数列.∴{a n+1}是等比数列∴a n+1=3・3n-1 ∴a n=3n-1∴{a n+1-a n}是等比数列,即a n+1-a n=(a2-a1)・2n-1=3・2n-1再注意到a2-a1=3,a3-a2=3・21,a4-a3=3・22,...,a n-a n-1=3・2n-2,这些等式相加,即可以得到说明解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n+1}是等比数列,(2)中发现{a n+1-a n}是等比数列,这也是通常说的化归思想的一种体现.证∵a1、a2、a3、a4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a1、a2、a3为实数因而a1、a2、a3成等比数列∴a4即为等比数列a1、a2、a3的公比.。
人教版高考数学一轮专项复习:数列题型11种(含解析)
数列题型11种(方法+例题+答案)1.作差法求通项公式2.累乘法求通项公式3.累加法求通项公式4.构造法求通项公式(一)5.构造法求通项公式(二)6.取倒法求通项公式7.分组求和法求前n项和8.错位相减法求前n项和9.裂项相消法求前n项和10.数列归纳法与数列不等式问题11.放缩法与数列不等式问题1、作差法求数列通项公式已知n S (12()n a a a f n +++= )求n a ,{11,(1),(2)n n n S n a S S n -==-≥注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015∙湛江)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015∙茂名)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015∙中山)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。
(1)求数列}{n a ,}{n b 的通项公式4、(2015∙揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a (1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014∙汕头)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014∙肇庆)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014∙江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。
数列经典例题
数列与线性规划1.已知数列{}n a 的前n项和为nS ,满足()()211122,3n n nS n S n n n N a *+-+=+∈=,则数列{}n a 的通项n a =( )A .41n - B.21n + C .3n D.2n + 【答案】A 【解析】试题分析:当1n =时,()2213234,7a a ⋅+-⋅==,故A 选项正确. 考点:数列求通项.2.已知数列{}n a 中, 45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=( )A. 14n- B . 41n- C. 143n - D. 413n -【答案】B【解析】试题分析:依题意有124,3q b a =-==-,故()()134n n b -=--,所以134n n b -=⋅,这是一个等比数列,前n 项和为()3144114n n -=--.考点:等比数列的基本性质.3.设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95SS =( ) A.1 B.2 C.3 D .4 【答案】A 【解析】试题分析:199515539()9215()52a a S a a a S a +===+.故选A. 考点:等差数列的前n 项和.4.在等比数列{}n a 中,1401a a <<=,则能使不等式12312311110n n a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+-≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立的最大正整数n 是( )A.5 B.6 C .7 D .8 【答案】C 【解析】试题分析:设公比为q ,则1231231111n n a a a a a a a a +++⋅⋅⋅+≤+++⋅⋅⋅+,即()111111111n n a q a q q q⎛⎫-⎪-⎝⎭≤--,将131a q =代入得:7n q q ≤,1,7q n >∴≤.考点:(1)数列与不等式的综合;(2)数列求和.【方法点晴】本题考查数列和不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.将不等式转化为两个等比数列之和,解不等式,对于在选择题中,该题还可以计算出721,a a a ,可得0111772211=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-a a a a a a ,可得不等式成立的最大整数n .5.数列{}n a 中,11++=n n a n ,9=n S ,则=n ( )A.97B.98C.99D.100【答案】C 【解析】 试题分析:由nn n n a n -+=++=111,∴)(11n S n =++++19==,所以99=n ,故选C.考点:数列求和.6.已知()()*111,n n n a a n a a n N+==-∈,则数列{}n a 的通项公式是( )A .n B.11n n n -+⎛⎫⎪⎝⎭C.2n D .21n -【答案】A 【解析】试题分析:由已知整理得()11+=+n n na a n ,∴n a n a n n =++11,∴数列⎭⎬⎫⎩⎨⎧n a n 是常数列.且111==a n a n ,∴n a n =,故选项为A. 考点:数列的递推式. 【一题多解】当2≥n 时,11-=-n n a a n n ,2121--=--n n a a n n ,…,2323=a a ,1212=a a , 两边分别相乘得n a a n=1.又∵11=a ,∴n a n =. 7.在数列{}n a 中,1112,1nn na a a a ++=-=-,则2016a =( ) A .-2 B .13- C .12D.3 【答案】D 【解析】试题分析:由条件可得:21-=a ,312-=a ,213=a ,34=a ,25-=a ,316-=a ,…,所以数列{}n a 是以4为周期的数列,所以342016==a a ,故选项为D. 考点:数列的函数特性.8.已知数列{}n a 满足11a =,12(2,)n n a a n n N *-=≥∈,则数列{}n a 的前6 项和为( )A.63 B .127 C .3263 D .64127【答案】C【解析】 试题分析:11122n n n n a a a a --=∴=,所以数列是等比数列,公比为12()616163132a q S q -∴==- 考点:等比数列求和9.三个实数,,a b c 成等比数列,且3a b c ++=,则b 的取值范围是( )A.)0,1[- B . ]10,(C. ]3,0()0,1[⋃- D . ]1,0()0,3[⋃- 【答案】D 【解析】试题分析:设此等比数列的公比为q ,∵3a b c ++=,∴3bb bq q++=,∴311b q q=++.当0q >时,3121b ≤=+,当且仅当1q =时取等号,此时(]01b ∈,;当0q <时,3321b ≥=--+,当且仅当1q =-时取等号,此时[)30b ∈-,.∴b 的取值范围是[)(]3001-⋃,,.故选:D.考点:等比数列的性质. 【思路点睛】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力;解答本题时,首先设此等比数列的公比为q ,由3a b c ++=,可得3b b bq q++=,变形为311b q q=++.对q 分类讨论,再利用基本不等式的性质即可得出.10.等比数列}n a {中,已知对任意正整数n ,m a a a a nn +=++++2321 ,则2232221n a a a a ++++ 等于( )A.)4(31m n +B. )12(31-nC. )14(-nD. 2)2(m n + 【答案】A 【解析】试题分析:∵当2n =时,124a a m +=+,当1n =时,12a m =+,∴22a =,∴公比22q m =+,∴等比数列{}n a 是首项是1,公比是22m+的等比数列,∵()2221224a m a =+=,,∴等比数列2{}n a 是首项是1,公比是222m ⎛⎫⎪+⎝⎭的等比数列,∴()222221222321122(4)3212n n n m m m m a a a a ⎛⎫⎛⎫- ⎪⎪+⎝⎭ ⎪++ ⎪⎛⎫- ⎪ ⎪+⎝⎭⎝+⎭++⋯+==,故选A . 考点:等比数列的性质.11.已知数列{}n a 的各项均为正数,其前n 项和为n S ,若{}2log n a 是公差为1-的等差数列,且638S =,则1a 等于( ) A.421 B.631 C.821D.1231【答案】A【解析】试题分析:因为{}2log n a 是公差为1-的等差数列,所以21log 112211log log 1,22a n n n n a a n a a -+-+=-+==,61111131...,24328S a a ⎛⎫=++++== ⎪⎝⎭421,故选A .考点:1、等差数列的通项公式;2、等比数列前n 项和公式.12.已知等比数列}{n a 满足421=+a a ,1232=+a a ,则=5a ( ) A .64 B.81 C .128 D.243【答案】B 【解析】试题分析:设等比数}{n a 的公比为q ,由421=+a a ,1232=+a a ,得11211412a a q a q a q +=⎧⎨+=⎩,解得113a q =⎧⎨=⎩,所以4451381a a q ===,故选B.考点:等比数列的通项公式. 13.设}{n a 为等差数列,若11101a a <-,且它的前n 项和S n 有最小值,那么当Sn 取得最小正值时,nA.18 B.19 C.20 D .21 【答案】C 【解析】试题分析:∵n S 有最小值,∴d >0,故可得1011a a <, 又11101a a <-:()()20120101110100S a a a a =+=+>, 1910190S a =<∴20S 为最小正值考点:等差数列的通项公式;等差数列的前n项和 14.数列{}n a 满足11a =且1122--=-n n n n a a a a()2≥n 则n a =( )A.21n + B .22n + C .2()3n D.12()3n - 【答案】A 【解析】试题分析:由递推公式可得111112n n n a a a -⎧⎫-=∴⎨⎬⎩⎭为等差数列,公差为12,首项为1,所以通项公式为()111211221n n n n a a n +=+-⨯=∴=+ 考点:等差数列15.已知等比数列{}n a 中, 262,8a a ==,则345a a a =( )A.64±B.64C.32D.16【答案】B 【解析】试题分析:由等比数列的性质可知226416a a a ⋅==,而246,,a a a 同号,故44a =,所以3345464a a a a ==.考点:等比数列的性质.16.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为( ) A. 4 B.16 C. 9 D.3【答案】B 【解析】试题分析:依题意()3133310b a m a b a b a b ⎛⎫≤++=++⎪⎝⎭,331016b a a b ++≥,故16m ≤.考点:不等式.17.若正数y x ,满足xy y x 53=+,则y x 43+的最小值是( ) A.524 B. 528 C. 5 D. 6【答案】C【解析】试题分析:535xy x y =+≥≥,243455x y +≥≥=.由xy y x 53=+两边除以5xy 得13155y x +=,()131********3455555555x y x y y x y x ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当31255x y y x =即11,2x y ==时等号成立. 考点:基本不等式.【思路点晴】本题考查基本不等式.基本不等式需要满足一正二定三相等,也就是说,利用基本不等式必须确保每个数都是正数,必须确保右边是定值,必须确保等号能够成立.本题若不不小心忘记检验等号是否成立,会产生如下的错解:535xy x y =+≥≥,243455x y +≥=.连用两次基本不等式,等号不是同时成立.18.已知0,0a b >>,则33a b+的最小值是( )A.10 B. C .12 D .20 【答案】C 【解析】试题分析:3312a b +≥≥.故选C. 考点:基本不等式.【易错点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.19.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤,1,1,y y x x y 且y x z +=2的最大值和最小值分别为m和n ,则=-n m ( )A .5 B.6 C.7 D.8 【答案】B 【解析】试题分析:画出可行域如下图所示,将交点代入2z x y =+可求得最大值为3,最小值为3-,差为8.考点:线性规划.20.点(),M x y 是不等式组0333x y x y⎧≤≤⎪⎪≤⎨⎪≤⎪⎩表示的平面区域Ω内的一动点,且不等式20x y m -+≥恒成立,则m 的取值范围是( )A .323m ≥-B .3m ≥ C.0m ≥ D.123m ≥- 【答案】B【解析】试题分析:若20x y m -+≥总成立,即2m y x ≥-总成立,设2z y x =-即求z 的最大值即可,作出不等式组的平面区域如图,由2z y x =-得2y x z =+,则图象可知当直线经过点(0,3)C 时,直线的截距最大,此时z 最大,303,3z m =-=∴≥,故选B.考点:简单的线性规划.21.变量,x y 满足约束条件12314y x y x y ≥-⎧⎪-≥⎨⎪+≤⎩,若使z ax y =+取得最大值的最优解有无数个,则实数a的取值集合是( )A .{}3,0- B.{}3,1- C .{}0,1 D .{}3,0,1- 【答案】B 【解析】试题分析:不等式对应的平面区域如图:由z ax y =+得y ax z =-+,若0a =时,直线y ax z z =-+=,此时取得最大值的最优解只有一个,不满足条件,若0a ->,则直线y ax z =-+截距取最大值时,z 取最大值,此时满足直线y ax z =-+与与2y x =-平行,此时1a ->解得1a =-,若0a -<,则直线y ax z =-+截距取最大值时,z 取最大值,此时满足直线y ax z =-+与314y x =-+平行,此时3a -=-解得3a =.综上满足条件的1a =-或3a =,故选B.考点:简单线性规划.【易错点睛】作出不等式对应的平面区域,利用z ax y =+的取得最大值的最优解有无穷个,得到目标函数的对应的直线和不等式对应的边界的直线的斜率相同,解方程即可得到结论.本题主要考查了线性规划的应用,利用z 的几何意义,结合z ax y =+取得最大值的最优解有无穷个,利用数形结合是解决本题的根据.22.已知变量y x ,满足约束条件Ω:⎪⎩⎪⎨⎧≤-≥+≤a y x y x y 12,若Ω表示的区域面积为4,则y x z -=3的最大值为( )A.5- B.3 C.5 D .7 【答案】D 【解析】试题分析:如图所示,因为区域面积为4,可求得1=a ,由此得平面区域,可知当y x z -=3过点)2,3(时有最大值,为7.故选D .考点:简单的线性规划.23.设变量y x ,满足⎪⎩⎪⎨⎧≤≤≤+≤≤-15020010y y x y x ,则y x 32+的最大值是( )A.20 B .35 C.45 D.55 【答案】D 【解析】试题分析:画出可行域,如上图阴影部分.令23z x y =+,当0z =时,23y x =-,将此直线向右上方平移,当经过C 点时,直线的纵截距有最大值,z 有最大值,而(5,15)C ,所以max 2531555z =⨯+⨯=,选D.考点:简单的线性规划.24.已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A.9[,6]5 B .9(,][6,)5-∞+∞ C.(,3][6,)-∞+∞ D .[3,6] 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx表示点(,)x y 与原点连线的斜率,OABCDxy易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965yx ≤≤.故选A.考点:简单的线性规划的非线性应用.25.已知变量x ,y 满足约束条件01x x y x y ≥⎧⎪≤⎨⎪+≤⎩,则z 122x y =+-的最大值是A.-12 B.0 C .12 D .1 【答案】D 【解析】试题分析:作出不等式组对应的平面区域如图:(阴影部分).由z =2x+y -12得y=-2x+z+ 12,平移直线y=-2x+z+ 12, 由图象可知当直线y=-2x+z + 12经过点B 时,直线y=-2x+z+ 12的截距最大,此时z最大.由1x y x y =⎧⎨+=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,即B 11,22⎛⎫ ⎪⎝⎭,代入目标函数z=2x+y- 12得z=2×12+ 12- 12=1. 即目标函数z=2x+y - 12的最大值为1考点:线性规划问题26.若不等式组20,,02,x y y m x -+≥⎧⎪≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则m 的取值范围是( )A .[2,4)B .[2,)+∞C .[2,4]D .(2,4] 【答案】A 【解析】试题分析:由不等式组可得可行域(如图),当直线m y =在2=y 与4=y (不包括4=y )时,平面区域是一个三角形,可知m ∈[2,4).考点:简单线性规划.【方法点睛】本题主要考查简单线性规划问题,属于基础题.处理此类问题时,首先应明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围等.本题考查方向为可行域的确定,通过对不等式中参数的可能取值而确认满足条件的可行域.27.若变量,x y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则22x y +的最大值是( )A .12B .10 C.9 D.4 【答案】B 【解析】试题分析:由约束条件2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩,作出可行域,如图所示,因为(0,3),(0,2)A C -,所以OA OC>,联立2239x y x y +=⎧⎨-=⎩,解得(3,1)B -,因为2222(3(1))10OB =+-=,所以22x y +的最大值是10,故选B.考点:简单的线性规划.28.已知x ,y ∈R ,且满足⎪⎩⎪⎨⎧-≥≤+≥,2,,43,x y x x y 则y x z 2+=的最大值是( )A .10 B.8 C .6 D .3 【答案】C 【解析】试题分析:如图,画出可行域,设52y x z +=',z '表示可行域内的点到直线02=+y x 的距离,那么z y x '=+52,根据图像,很显然,点()22--,A 到直线02=+y x 的距离最大,最大值为()562122222=+-⨯+-=d ,所以y x 2+的最大值就是6565=⨯,故选C.考点:线性规划29.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤-≤+03045y x y x y x ,则下列目标函数中,在点)1,4(处取得最大值的是 A.y x z -=51 B.y x z +-=3 C.15z x y =--D .y x z -=3【答案】D 【解析】试题分析:在直角坐标系内作出可行域如下图所示,由线性规划知识可知,目标函数15z x y =-与3z x y =-+均是在点(5,1)A --处取得最大值,目标函数15z x y =--在点(1,4)C 处取得最大值,目标函数y x z -=3在点(4,1)B 处取得最大值,故选D.考点:线性规划.30.如图所示,表示满足不等式()(22)0x y x y -+->的点()x y ,所在的区域为【答案】B 【解析】试题分析:线性规划中直线定界、特殊点定域。
数列经典例题(裂项相消法)知识讲解
数列裂项相消求和的典型题型1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .1011002.数列,)1(1+=n n a n 其前n 项之和为,109则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距为( )A .-10B .-9C .10D .93.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设,log log log 32313n n a a a b +++=Λ求数列}1{nb 的前n 项和. 4.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,211*2211N n a b a b a b n n n ∈-=+++Λ求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a na a 211)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;(Ⅱ)令,211n n n a a b -=+求数列}{n b 的前n 项和n S ; (Ⅲ)求数列}{n a 的前n 项和n T .8.已知等差数列}{n a 的前3项和为6,前8项和为﹣4. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设),,0()4(*1N n q q a b n n n ∈≠-=-求数列}{n b 的前n 项和n S .9.已知数列}{n a 满足,2,021==a a 且对*,N n m ∈∀都有211212)(22n m a a a n m n m -+=+-+--.(Ⅰ)求53,a a ;(Ⅱ)设),(*1212N n a a b n n n ∈-=-+证明:}{n b 是等差数列;(Ⅲ)设),,0()(*11N n q q a a c n n n n ∈≠-=-+求数列}{n c 的前n 项和n S .10.已知数列}{n a 是一个公差大于0的等差数列,且满足16,557263=+=a a a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 和数列}{n b 满足等式),(2222*33221N n b b b b a n n n ∈++++=Λ求数列}{n b 的前n 项和n S . 11.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列. (1)求数列}{n a 的通项公式; (2)令,4)1(112+--=n n n a a nb 求数列}{n b 的前n 项和n T .12.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ; (2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T . 答案:1.A ;2.B3.解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6有a 32=9a 42,∴q 2=. 由条件可知各项均为正数,故q=. 由2a 1+3a 2=1有2a 1+3a 1q=1,∴a 1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣.4.解:(Ⅰ)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0,可有(a n﹣2n)(a n+1)=0∴a n=2n.(Ⅱ)∵a n=2n,b n=,∴b n===,T n===.数列{b n}的前n项和T n为.5.解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解有a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减有:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.6.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴有,解有a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n;(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.7.解:(Ⅰ)由条件有,又n=1时,,故数列构成首项为1,公式为的等比数列.∴,即.(Ⅱ)由有,,两式相减,有:,∴.(Ⅲ)由有.∴T n=2S n+2a1﹣2a n+1=.8.解:(Ⅰ)设{a n}的公差为d,由已知有解有a1=3,d=﹣1故a n=3+(n﹣1)(﹣1)=4﹣n;(Ⅱ)由(Ⅰ)的解答有,b n=n•q n﹣1,于是S n=1•q0+2•q1+3•q2+…+n•q n﹣1.若q≠1,将上式两边同乘以q,有qS n=1•q1+2•q2+3•q3+…+n•q n.上面两式相减,有(q﹣1)S n=nq n﹣(1+q+q2+…+q n﹣1)=nq n﹣于是S n=若q=1,则S n=1+2+3+…+n=∴,S n=.9.解:(Ⅰ)由题意,令m=2,n=1,可有a3=2a2﹣a1+2=6再令m=3,n=1,可有a5=2a3﹣a1+8=20(Ⅱ)当n∈N*时,由已知(以n+2代替m)可有a2n+3+a2n﹣1=2a2n+1+8于是[a2(n+1)+1﹣a2(n+1)﹣1]﹣(a2n+1﹣a2n﹣1)=8即b n+1﹣b n=8∴{b n}是公差为8的等差数列(Ⅲ)由(Ⅰ) (Ⅱ)解答可知{b n}是首项为b1=a3﹣a1=6,公差为8的等差数列则b n=8n﹣2,即a2n+1﹣a2n﹣1=8n﹣2另由已知(令m=1)可有a n=﹣(n﹣1)2.∴a n+1﹣a n=﹣2n+1=﹣2n+1=2n于是c n=2nq n﹣1.当q=1时,S n=2+4+6++2n=n(n+1)当q≠1时,S n=2•q0+4•q1+6•q2+…+2n•q n﹣1.两边同乘以q,可有qS n=2•q1+4•q2+6•q3+…+2n•q n.上述两式相减,有(1﹣q)S n=2(1+q+q2+…+q n﹣1)﹣2nq n=2•﹣2nq n=2•∴S n =2•综上所述,S n =.10.解:(Ⅰ)设等差数列{a n }的公差为d , 则依题意可知d >0由a 2+a 7=16, 有,2a 1+7d=16①由a 3a 6=55,有(a 1+2d )(a 1+5d )=55② 由①②联立方程求,有d=2,a 1=1/d=﹣2,a 1=(排除)∴a n =1+(n ﹣1)•2=2n ﹣1 (Ⅱ)令c n =,则有a n =c 1+c 2+…+c na n+1=c 1+c 2+…+c n+1 两式相减,有a n+1﹣a n =c n+1,由(1)有a 1=1,a n+1﹣a n =2∴c n+1=2,即c n =2(n ≥2), 即当n ≥2时,b n =2n+1,又当n=1时,b 1=2a 1=2 ∴b n =于是S n =b 1+b 2+b 3+…+b n =2+23+24+…2n+1=2n+2﹣6,n ≥2,.11.解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1. (2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)12.(1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n (n ∈N *). n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式. ∴a n =2n (n ∈N *).(2)证明 由a n =2n (n ∈N *)得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2T n =116⎣⎡ ⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+…⎦⎥⎤+⎝ ⎛⎭⎪⎫1(n -1)2-1(n +1)2+⎝ ⎛⎭⎪⎫1n 2-1(n +2)2 =116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564(n ∈N *). 即对于任意的n ∈N *,都有T n <564.。
数列全集
1、256 ,269 ,286 ,302 ,()解析: 2+5+6=13 256+13=269 2+6+9=17 269+17=286 2+8+6=16 286+16=302 302+3+2=3072、72 , 36 , 24 , 18 , ( )解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/=5/4. 选C(方法二)6×12=72, 6×6=36, 6×4=24, 6×3 =18, 6×X 现在转化为求X12,6,4,3,X12/6 ,6/4 , 4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4 可解得:X=12/5 再用6×12/5=3、8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264、3 , 11 , 13 , 29 , 31 ,()分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5、-2/5,1/5,-8/750,()。
A 11/375B 9/375C 7/375D 8/375解析: -2/5,1/5,-8/750,11/375=> 4/(-10),1/5,8/(-750),11/375=>分子 4、1、8、11=>头尾相减=>7、7分母 -10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2 答案为A1. 16 , 8 , 8 , 12 , 24 , 60 , ( )分析:相邻两项的商为,1,,2,,3,所以选1802. 2 ,3 ,6 ,9 ,17 ,()分析:6+9=15=3×53+17=20=4×5 那么2+?=5×5=25 所以?=23 所以选B3. 3 ,2 ,5/3 ,3/2 ,()5 6 5 4分析:通分 3/1 4/2 5/3 6/4 ----7/5所以选A4. 20 ,22 ,25 ,30 ,37 ,()分析:它们相差的值分别为2,3,5,7。
奥赛数列经典例题(含详解)
奥赛数列经典例题(含详解)1.给定正数p ,q ,a ,b ,c ,其中p ≠q 。
若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程022=+-c ax bx ( )A .无实根B .有两个相等实根C .有两个同号相异实根D .有两个异号实根2.等比数列3log 2+a ,3log 4+a ,3log 8+a 的公比是_________。
3.设n S n +++=Λ21,n ∈N 。
求1)32()(++=n n S n S n f 的最大值。
4. PC505型文曲星具有选定一组或多组英文单词,根据科学记忆曲线在十四天内进行初记和强化复习的功能。
对于每一组单词(词量自定),初记完成后,文曲星提示“立即复习一遍”,然后在第二、第四天、第七天、第九天、第十天、第十四天,“每天复习一遍”该组单词,其他天无须复习,当你在这十四天内,按时正确地拼写这组单词后,文曲星就不再提示对该组单词的记忆。
高中《英语》第一册(下)生词表中,UNIT17~UNIT20共99个单词,请你将这99个单词适当分组,利用文曲星的强化复习功能,制定一个在20天内记忆99个单词的计划,把每天需要初记的单词数和每天需要初记和复习的单词总数填入下表中,使得每天初记和复习的单词总数不少于10个,且不多于50个。
5.在一圆周上给定2000个点,取其中一点标记上数1,从这点开始按顺时针方向到第二个点标记上数2,从标记上2的点开始按顺时针方向数到第三个点标记上数3(如图3-3),继续这个过程直到1,2,3,…,1993都被标记到点上,圆周上这些点中有些会标记上不止一个数,也有一些点未标记上任何数,在标上1993的那一点上所有标数中最小的数是什么?6.电子器件厂兼营生产和销售某种电子器件,流水线启动后每天生产p =500个产品,可销售q =400个产品,未售出的产品存入库房,每件产品在库房内每过一夜将支付存储费用r =0.2元。
2022年高考数学一轮复习专题 专题47 数列基础知识与典型例题(解析版)
an bn
的表达式,结合
an bn
为整数求得正整数 n 的值.
【详解】
由题意可得 S2n1 T2n1
2n 1 a1 a2n1
2
2n 1 b1 b2n1
2n 2n
1 an 1bn
an bn
,
2
则
an bn
S2n1 T2n1
32n 1 39 2n 1 3
3n 18 n 1
3
15
,
n 1
2n2
4n
故选:D.
6.已知an 为等差数列, Sn 为其前 n 项和.若 a5 S5 5 ,则 a1 ( )
A. 5
B. 4
C. 3
D. 2
【答案】C
【分析】
根据等差数列的公式,列方程求解.
【详解】
设等差数列的首项为 a1 ,公差为 d ,
因为
a5
S5
5
,所以
5a1a141d0d
5
5
,解得:
由递增数列和无穷数列的定义知 D 项正确.
答案:D
等差数列
1、定义:(1)文字表示:如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个
常数,则这个数列称为等差数列,这个常数称为等差数列的公差.
(2)符号表示: an an1 d (n 2)或an1 an d (n 1)
2、通项公式:若等差数列an 的首项是 a1 ,公差是 d ,则 an a1 n 1d .
专题 47:数列基础知识与典型例题(解析版) 一、基本概念
1、数列:按照一定次序排列的一列数. 2、数列的项:数列中的每一个数. 3、数列分类:有穷数列:项数有限的数列.
无穷数列:项数无限的数列.
数列经典例题
类型一:迭加法求数列通项公式1.在数列中,,,求.解析:∵,当时,,,,将上面个式子相加得到:∴(),当时,符合上式故.总结升华:1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列.2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法得.举一反三:【变式1】已知数列,,,求.【答案】【变式2】数列中,,求通项公式.【答案】.类型二:迭乘法求数列通项公式2.设是首项为1的正项数列,且,求它的通项公式.解析:由题意∴∵,∴,∴,∴,又,∴当时,,当时,符合上式∴.总结升华:1. 在数列中,,若为常数且,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列.2.若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得.举一反三:【变式1】在数列中,,,求.【答案】【变式2】已知数列中,,,求通项公式.【答案】由得,∴,∴,∴当时,当时,符合上式∴类型三:倒数法求通项公式3.数列中,,,求.思路点拨:对两边同除以得即可.解析:∵,∴两边同除以得,∴成等差数列,公差为d=5,首项,∴,∴.总结升华:1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项.2.若数列有形如的关系,则可在等式两边同乘以,先求出,再求得.举一反三:【变式1】数列中,,,求.【答案】【变式2】数列中,,,求.【答案】.类型四:待定系数法求通项公式4.已知数列中,,,求.法一:设,解得即原式化为设,则数列为等比数列,且∴法二:∵①②由①-②得:设,则数列为等比数列∴∴∴法三:,,,……,,∴总结升华:1.一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法.2.若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得.举一反三:【变式1】已知数列中,,求【答案】令,则,∴,即∴,∴为等比数列,且首项为,公比,∴,故.【变式2】已知数列满足,而且,求这个数列的通项公式.【答案】∵,∴设,则,即,∴数列是以为首项,3为公比的等比数列,∴,∴.∴.类型五:和的递推关系的应用5.已知数列中,是它的前n项和,并且, .(1)设,求证:数列是等比数列;(2)设,求证:数列是等差数列;(3)求数列的通项公式及前n项和.解析:(1)因为,所以以上两式等号两边分别相减,得即,变形得因为,所以由此可知,数列是公比为2的等比数列.由,,所以, 所以,所以.(2),所以将代入得由此可知,数列是公差为的等差数列,它的首项,故.(3),所以当n≥2时,∴由于也适合此公式,故所求的前n项和公式是.总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略.举一反三:【变式1】设数列首项为1,前n项和满足.(1)求证:数列是等比数列;(2)设数列的公比为,作数列,使,,求的通项公式.【答案】(1),∴∴,又①-②∴,∴是一个首项为1公比为的等比数列;(2)∴∴是一个首项为1公比为的等差比数列∴【变式2】若, (),求.【答案】当n≥2时,将代入,∴,整理得两边同除以得(常数)∴是以为首项,公差d=2的等差数列,∴,∴.【变式3】等差数列中,前n项和,若.求数列的前n项和. 【答案】∵为等差数列,公差设为,∴,∴,∴,若,则,∴.∵,∴,∴,∴,∴①②①-②得∴类型六:数列的应用题6.在一直线上共插13面小旗,相邻两面间距离为10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少?思路点拨:本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一面旗处走的路程,然后求和.解析:设将旗集中到第x面小旗处,则从第一面旗到第面旗处,共走路程为了,回到第二面处再到第面处是,回到第三面处再到第面处是,,从第面处到第面处取旗再回到第面处的路程为,从第面处到第面处取旗再回到第面处,路程为20×2,总的路程为:∵,∴时,有最小值答:将旗集中到第7面小旗处,所走路程最短.总结升华:本题属等差数列应用问题,应用等差数列前项和公式,在求和后,利用二次函数求最短路程.举一反三:【变式1】某企业2007年12月份的产值是这年1月份产值的倍,则该企业2007年年度产值的月平均增长率为()A.B.C.D.【答案】D;解析:从2月份到12月份共有11个月份比基数(1月份)有产值增长,设为,则【变式2】某人2006年1月31日存入若干万元人民币,年利率为,到2007年1月31日取款时被银行扣除利息税(税率为)共计元,则该人存款的本金为()A.1.5万元B.2万元C.3万元D.2.5万元【答案】B;解析:本金利息/利率,利息利息税/税率利息(元),本金(元)【变式3】根据市场调查结果,预测某种家用商品从年初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是() A.5月、6月B.6月、7月C.7月、8月D.9月、10月【答案】C;解析:第个月份的需求量超过万件,则解不等式,得,即.【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少)【答案】设汽车使用年限为年,为使用该汽车平均费用.当且仅当,即(年)时等到号成立.因此该汽车使用10年报废最合算.【变式5】某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2007年底和2008年底的住房面积;(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)【答案】(1)2007年底的住房面积为1200(1+5%)-20=1240(万平方米),2008年底的住房面积为1200(1+5%)2-20(1+5%)-20=1282(万平方米),∴2007年底的住房面积为1240万平方米;2008年底的住房面积为1282万平方米.(2)2007年底的住房面积为[1200(1+5%)-20]万平方米,2008年底的住房面积为[1200(1+5%)2-20(1+5%)-20]万平方米,2009年底的住房面积为[1200(1+5%)3-20(1+5%)2-20(1+5%)-20]万平方米,…………2026年底的住房面积为[1200(1+5%)20―20(1+5%)19―……―20(1+5%)―20] 万平方米即1200(1+5%)20―20(1+5%)19―20(1+5%)18―……―20(1+5%)―20≈2522.64(万平方米),∴2026年底的住房面积约为2522.64万平方米.。
数列知识点归纳及例题分析
数列知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: 10,-3,8,-15,24,....... 221,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化求通项例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:定义法;函数单调性法 (2)最大小项问题:单调性法;图像法(3)数列的周期性:注意与函数周期性的联系例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列例4等差数列的判定或证明:已知数列{a n}中,a1=错误!,a n=2-错误!n≥2,n∈N,数列{b n}满足b n=错误!n∈N.1求证:数列{b n}是等差数列;2求数列{a n}中的最大项和最小项,并说明理由.1证明∵a n=2-错误!n≥2,n∈N,b n=错误!.∴n≥2时,b n-b n-1=错误!-错误!=错误!-错误!=错误!-错误!=1.∴数列{b n}是以-错误!为首项,1为公差的等差数列.2解由1知,b n=n-错误!,则a n=1+错误!=1+错误!,设函数fx=1+错误!,易知fx在区间错误!和错误!内为减函数.∴当n=3时,a n取得最小值-1;当n=4时,a n取得最大值3.例5等差数列的基本量的计算设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn ,满足S5S6+15=0.1若S5=5,求S6及a12求d的取值范围.解1由题意知S6=错误!=-3,a6=S6-S5=-8. 所以错误!解得a1=7,所以S6=-3,a1=7.2方法一∵S5S6+15=0,∴5a 1+10d 6a 1+15d +15=0, 即2a 错误!+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-810d 2+1=d 2-8≥0, 解得d ≤-2错误!或d ≥2错误!. 方法二 ∵S 5S 6+15=0, ∴5a 1+10d 6a 1+15d +15=0, 9da 1+10d 2+1=0.故4a 1+9d 2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-2错误!或d ≥2错误!.例6前n 项和及综合应用1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;2已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 方法一 ∵a 1=20,S 10=S 15,∴10×20+错误!d =15×20+错误!d ,∴d =-错误!. ∴a n =20+n -1×错误!=-错误!n +错误!. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+错误!×错误!=130.方法二 同方法一求得d =-错误!.∴S n =20n +错误!·错误!=-错误!n 2+错误!n =-错误!错误!2+错误!. ∵n ∈N,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 2∵a n =4n -25,a n +1=4n +1-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令错误!由①得n <6错误!;由②得n ≥5错误!,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n =错误! =错误!例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . 先求an/bn n=5,13,35例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为 ()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例1111a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: 1倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________2错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列; 3裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=4拆项分组法:形如n n n c b a ±=,如:n n n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为 B A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________;4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a100502=⨯=. 四、求数列通项式2ln n+1公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等 2累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 3累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 4待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1型5转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn变化1已知0),(11=--n n a S f ;2已知0),(1=--n n n S S S f (6)猜想归纳法慎用练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和n n S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭*N n ∈,则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是 DA .)1(22++=n n a nB .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 ;30年2、在一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初同时被甲、乙公司录取,试问:1若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元2若该人打算连续工作10年,且只考虑工资收入的总量,该人应该选择哪家公司为什么精确到1元解:1设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元 则2301270n a n =+,120001.05n n b -=⋅ 2设工作10年在甲公司的总收入为S 甲,在甲公司的总收入为S 乙由于S S >乙甲,所以该人应该选择甲公司.等比数列模型例 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据计划,本年度投入800万元,以后每年投入将比上一年度减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加41;1设n 年内本年度为第一年总投入为n a 万元,旅游业总收入为n b 万元,写出n a 、n b 的表达式;2至少经过几年旅游业的总收入才能超过总投入精确到整数 参考解答:112511800511800511800800-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=n n a2解不等式n n a b >,得5≥n ,至少经过5年,旅游业的总收入才能超过总投入.六、2017年高考题一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 2017年新课标Ⅰ 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为2. 2017年新课标Ⅱ卷理 我国古代数学名着算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.2017年新课标Ⅲ卷理 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为4. 2017年浙江卷 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是“5642S S S >+”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.2017年新课标Ⅰ 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 二、填空题将正确的答案填在题中横线上6. 2017年北京卷理 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a ,22a b =_______.7.2017年江苏卷等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =_______________.8. 2017年新课标Ⅱ卷理 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk kS ==∑. 9.2017年新课标Ⅲ卷理设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __. 三、解答题应写出必要的文字说明、证明过程或演算步骤10. 2017年新课标Ⅱ文已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n 1若533=+b a ,求}{n b 的通项公式; 2若213=T ,求3S . 11.2017年新课标Ⅰ文 记nS 为等比数列{}n a 的前n 项和,已知.6,232-==S S1求{}n a 的通项公式; 2求n S ,并判断21,,++n n n S S S 是否成等差数列; 12. 2017年全国Ⅲ卷文设数列{}n a 满足()123+212n a a n a n ++-=…1求数列{}n a 的通项公式; 2求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;13.2017年天津卷文已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. 1求{}n a 和{}n b 的通项公式; 2求数列2{}n n a b 的前n 项和*()n ∈N . 14.2017年山东卷文已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.1求数列{}n a 的通项公式;2{}n b 为各项非零等差数列,前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭前n 项和n T15. 2017年天津卷理已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.1求{}n a 和{}n b 的通项公式; 2求数列221{}n n a b -的前n 项和()n *∈N . 16. 2017年北京卷理 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数. 1若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; 2证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.17.2017年江苏卷对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.1证明:等差数列{}n a 是“(3)P 数列”;2若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 18.本小题满分12分已知}{n x 是各项均为正数的等比数列,且.2,32321=-=+x x x x Ⅰ求数列}{n x 的通项公式;Ⅱ如图,在平面直角坐标系xOy 中,依次连接点)1,(,),2,(),1,(11211+⋯++n x P x P x P n n 得到折线121+⋯n P P P ,求由该折线与直线11,,0+===n x x x x y 所围成的区域的面积n T .19.2017年浙江卷已知数列}{n x 满足:).)(1ln(,1*111N n x x x x n n n ∈++==++证明:当*N n ∈时,1n n x x <<+10; 22211++≤-n n n n x x x x ; 3212121++≤≤n n n x .。
数列经典例题及解析
数列经典例题及解析
《数列经典例题及解析》
一、数列的定义及定义域
定义:数列是以一定规律的把某些数按顺序排成的表格或列表。
定义域:数列常用数学定义域是自然数(正整数)、正数(正实数)、实数(实数)等。
二、数列及其特点
1、等差数列
所谓等差数列,是指数列中每一项与它的前一项的差值均相等的数列。
例题:
已知数列{an}满足a1=7,an+1-an=2,求a7的值
解析:由题意可知数列{an}是一个等差数列,公差d=2;
根据等差数列的第n项公式a_n=a_1+(n-1)d,有a7 =
7+(7-1)2=15
2、等比数列
所谓等比数列,是指数列中每一项与它的前一项的比值均相等的数列。
例题:
已知数列{an}满足a1=4,a2=8,求a7的值
解析:由题意可知数列{an}是一个等比数列,公比q=2。
- 1 -。
等差数列 例题解析
等差数列 例题解析【例1】 在100以内有多少个能被7个整除的自然数?解 ∵100以内能被7整除的自然数构成一个等差数列,其中a 1=7,d =7,a n =98. 代入a n =a 1+(n -1)d 中,有98=7+(n -1)·7解得n =14答 100以内有14个能被7整除的自然数.【例2】 在-1与7之间顺次插入三个数a ,b ,b 使这五个数成等差数列,求此数列. 解 设这五个数组成的等差数列为{a n }由已知:a 1=-1,a 5=7∴7=-1+(5-1)d 解出d =2所求数列为:-1,1,3,5,7.【例3】 53122在等差数列-,-,-,-,…的相邻两项之间12插入一个数,使之组成一个新的等差数列,求新数列的通项.解 d =312 (5) d =d =34原数列的公差-=,所以新数列的公差′,期通项为--3212 a n n n n =-+-=--534134234234()即 a =34n 【例4】 在[1000,2000]内能被3整除且被4除余1的整数共有多少个?解 设a n =3n ,b m =4m -3,n ,m ∈N令,则=-=为使为整数,令=,a =b 3n 4m 3n n m 3k n m ⇒-433m 得n =4k -1(k ∈N),得{a n },{b m }中相同的项构成的数列{c n }的通项c n =12n -3(n ∈N). 则在[1000,2000]内{c n }的项为84·12-3,85·12-3,…,166·12-3∴n =166-84+1=83 ∴共有83个数.【例5】 三个数成等差数列,其和为15,其平方和为83,求此三个数.解 设三个数分别为x -d ,x ,x +d .则-+++-+++(x d)x (x d)=15(x d)x (x d)=83222⎧⎨⎩ 解得x =5,d =±2∴ 所求三个数为3、5、7或7、5、3说明 注意学习本题对三个成等差数列的数的设法.【例6】 已知a 、b 、c 成等差数列,求证:b +c ,c +a ,a +b 也成等差数列.证 ∵a 、b 、c 成等差数列∴2b=a +c∴(b +c)+(a +b)=a +2b +c=a +(a +c)+c=2(a +c)∴b +c 、c +a 、a +b 成等差数列.说明 如果a 、b 、c 成等差数列,常化成2b =a +c 的形式去运用;反之,如果求证a 、b 、c 成等差数列,常改证2b=a +c .本例的意图即在让读者体会这一点.【例7】 a b a b 若、、成等差数列,且≠,求证:、、、不111a b cc 可能是等差数列.分析 直接证明a 、b 、c 不可能是等差数列,有关等差数列的知识较难运用,这时往往用反证法.证 假设a 、b 、c 是等差数列,则2b=a +c又∵、、成等差数列,∴,即=+.111211a b c b a c=+2ac b(a c) ∴2ac =b(a +c)=2b 2,b 2=ac .又∵ a 、b 、c 不为0,∴ a 、b 、c 为等比数列,又∴ a 、b 、c 为等差数列,∴ a 、b 、c 为常数列,与a ≠b 矛盾,∴ 假设是错误的.∴ a 、b 、c 不可能成等差数列.【例8】 解答下列各题:(1)已知等差数列{a n },a n ≠0,公差d ≠0,求证:①对任意k ∈N ,关于x 的方程a k x 2+2a k+1x +a k+2=0有一公共根;②若方程的另一根为,求证数列是等差数列;在△中,已知三边、、成等差数列,求证:、、也成等差数列.x (2)ABC a b c k {}cotcot cot 11222+x A B C k分析与解答(1)a k x 2+2a k+1x +a k+2=0∵{a n }为等差数列,∴2a k+1=a k +a k+2∴a k x 2+(a k +a k+2)x +a k+2=0∴(a k x +a k+2)(x +1)=0,a k ≠0∴=-或=-x 1x k a a x a a a a a a dk k k k k k k k k ++++=-=-=-22211112 ∵{a n }为等差数列,d 为不等于零的常数∴方程有一公共根-,数列是等差数列1{}11+x k(2)由条件得 2b=a +c∴4RsinB =2RsinA +2RsinC ,2sinB =sinA +sinC∴∵++=π∴∴4sin B 2cos B 2=2sin A +C 2cos A C 2A B C sin A +C 2=cos B 22sin B 2=cos A 2--C 分析至此,变形目标需明确,即要证2cot B 2=cot A 2cot C 2+ 由于目标是半角的余切形式,一般把切向弦转化,故有cot cot cossin cos sin sin sin sin sin (cos cos )()cos sin sin cot A C A A C C A C A C A C A C A C B B B B 222222222212222222222+=+=+=+-+--=--=将条件代入 ∴、、成等差数列.cot A 2cot B 2cot C 2【例9】 若正数a 1,a 2,a 3,…a n+1成等差数列,求证:1111223111a a a a a a n a a n n n ++++++=+-+… 分析11111a a a a a a a a d n n n n n n n n +=--=--++++ 证明 设该数列的公差为d ,则a 1-a 2=a 2-a 3=…=a n -a n+1=-d ∴a 1-a n+1=-nd∴-左式…d =a =a 11---+--++--+++a n a a a a a a a a a a a n n n n n 1212232311 =--=--=+=++++a a d a a a a nn a a n n n n 11111111右式 ∴ 原等式成立.【例10】 设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x , b b y b 234,,,均为等差数列,求.b b a a 4321-- 分析解 d =y x 51(1)=y x 52(2)可采用=由a a m na ab b m n----------21433264 (2)(1)÷,得b b a a 432183--=。
等差数列的前项和例题解析
等差数列的前n 项和·例题分析【例 1】等差数列前10 项的和为140,此中,项数为奇数的各项的和为125,求其第 6 项.解依题意,得10a1+ 10(10 1) d = 1402a1+a3+a5+a7+ a9 = 5a1+ 20d = 125解得 a1=113, d= - 22.∴ 其通项公式为a n=113+ (n- 1)· (- 22)=- 22n+ 135∴a6=- 22× 6+ 135= 3说明此题上面给出的解法是先求出基本元素a1、 d,再求其余的.这类先求出基本元素,再用它们去构成其余元素的方法,是常常用到的一种方法.在本课中假如注意到 a6=a1+5d,也能够不用求出 a n而直接去求 a6,所列方程组化简后可得2a1+ 9d = 28相减即得 a1+ 5d = 3,a1+ 4d = 25即 a6= 3.可见,在做题的时候,要注意运算的合理性.自然要做到这一点,一定以对知识的娴熟掌握为前提.【例 2】在两个等差数列2, 5, 8,, 197 与 2, 7, 12,, 197 中,求它们同样项的和.解由已知,第一个数列的通项为a n= 3n - 1;第二个数列的通项为b N=5N -3若 a m= b N,则有 3n- 1=5N -3即 n= N +2(N 1)3若知足 n 为正整数,一定有N = 3k+ 1(k 为非负整数 ).又 2≤ 5N- 3≤ 197,即 1≤ N≤ 40,因此N =1, 4, 7,, 40 n=1, 6, 11,, 66∴ 两数列同样项的和为2+ 17+32+ + 197=1393【例 3】 选择题:实数 a , b ,5a , 7, 3b , , c 构成等差数列,且 a +b + 5a + 7+ 3b + + c = 2500,则 a ,b , c 的值分别为[]A .1,3,5B .1,3,7C . 1, 3, 99D .1, 3,9解 C 由题设 2b = a +5ab = 3a又∵ 14= 5a + 3b , ∴a = 1,b = 3 ∴首项为 1,公差为 2又 S n = na 1+ n(n 1)d 2∴2500= n + n( n 1) · 2 ∴ =2 n 50∴ a 50=c=1+ (50- 1)· 2=99∴ a = 1,b = 3, c =99【例 4】 在 1 和 2 之间插入 2n 个数, 构成首项为 1、末项为 2 的等差数 列,若这个数列的前半部分的和同后半部分的和之比为9∶ 13,求插入的数的个数.解 依题意 2= 1+(2n + 2- 1)d ①前半部分的和 S n+1 = (n + 1) +(n1)n d②2后半部分的和 S ′n+1 = (n + 1) · 2+(n 1) n· ( - d) ③2(n1)(1ndS n 1)92由已知,有nd 13S ′n 1( n 1)( 2)2nd1化简,得29nd1322解之,得5 ④nd =11由①,有 (2n + 1)d=1 ⑤1由④,⑤,解得 d =,n = 5∴共插入 10 个数.【例 5】在等差数列{a n}中,设前m项和为S m,前n项和为S n,且S m =S n, m≠ n,求 S m+n.解∵ S m+n = (m+ n)a1 +1(m+ n)(m+ n- 1)d 2=(m+ n)[a 1+1(m+ n- 1)d] 2且 S m= S n, m≠ n∴ma1+1m(m- 1)d= na1+1n(n- 1)d 22d整理得 (m- n)a1+(m- n)(m+ n- 1) = 0即 (m- n)[a1+1(m+n-1)d] =0 2由 m≠n,知 a1+1(m+ n- 1)d= 0 2∴S m+n= 0【例6】已知等差数列 {a }中,S =21, S =64 ,求数列{ |a |}的前 nn 3 6 n项和 T n.剖析等差数列前 n项和 S = na + n( n 1)d,含有两个未知数 a ,n 1 2 1d,已知 S 和 S 的值,解方程组可得 a 与 d,再对数列的前若干项的正3 6 1负性进行判断,则可求出T n来.解 设公差为 d ,由公式 S n =na 1 +n( n1)d 23a 1 + 3d = 21 得ba 1 +15d = 24解方程组得: d =- 2, a 1=9∴ a n = 9+(n - 1)(n - 2)=- 2n +11由 a n =- 2n + 11> 0 得 n < 11,故数列 {a n } 的前 5项为正,2其余各项为负.数列 {a n } 的前 n 项和为:n(n1)2S n = 9n +( - 2) = - n + 10n∴当 n ≤ 5 时, T n =- n 2+ 10n当 n > 6 时, T n = S 5+ |S n - S 5|= S 5- (S n - S 5)=2S 5- S n∴ T n = 2(- 25+ 50)- (-n 2+ 10n)= n 2- 10n + 50即T n = -n 2 + 10n n ≤ 5 n ∈ N *n2- 10n + 50n > 6说明 依据数列 {a n } 中项的符号,运用分类议论思想可求{|a |}的前 nn项和.【例 7】 在等差数列 {a } 中,已知 a +a + a +a = 34,求前 20 项n 6 9 12 15之和.解法一 由 a 6+ a 9+ a 12+ a 15= 34得 4a 1+38d = 34又 S 20= 20a 1+20×19d 2= 20a 1+190d1解法二 S 20 =(a 1 + a 20 ) × 201+ a 20 )= 10(a2由等差数列的性质可得:a 6+ a 15=a 9+ a 12= a 1+a 20∴ a 1+ a 20=17S 20=170【例 8】已知等差数列 {a n } 的公差是正数,且 a 3·a 7=- 12,a 4+a 6=-4,求它的前 20 项的和 S 20 的值.解法一设等差数列 {a n } 的公差为 d ,则 d >0,由已知可得(a 1 + 2d)(a 1+ bd)=- 12 ① a 1+ 3d + a 1+ 5d = - 4②由②,有 a 1=- 2-4d ,代入①,有 d 2=4再由 d > 0,得 d =2∴ a 1=- 10最后由等差数列的前 n 项和公式,可求得 S 20= 180解法二由等差数列的性质可得:a + a = a + a即 a + a =- 4 4 6 3 73 7又 a 3· a 7=- 12,由韦达定理可知:a 3, a 7 是方程 x 2+ 4x - 12= 0 的二根解方程可得 x 1=- 6, x 2=2∵d >0 ∴ {a n } 是递加数列∴ a 3=- 6, a 7=2d =a7a 3= 2, a 1=- 10, S 20 =1807 3【例 9】等差数列 {a n } 、 {b } 的前 n 项和分别为 S n 和 T ,若n nS n 2n ,则a100等于T n3n 1b100[ ]A . 1B .23C .199299剖析D . 200301a100S n2n n 项该题是将与发生联系,可用等差数列的前b100T n3n 1和公式 S n =n(a 1+ a n )把前 n 项和的值与项的值进行联系.2解法一 ∵ S nn(a 1a n), Tnn(b 1 b n )22∴Sna 1 a n∴a1a n 2n T nb 1 b nb 1b n 3n 1∵ 2a 100=a 1+ a 199,2b 100= b 1+ b 199∴ a 100= a 1a 199 = 2× 199 =199选C .b100b 1b1993×199 + 1 299解法二 利用数列 {a } 为等差数列的充要条件:S = an 2+nnbnS n 2n∵3n 1T n可设 S n = 2n 2k ,T n = n(3n + 1)ka n S n S n 12n 2 k 2( n 1) 2 k∴T nTn 1n( 3n 1)k( n 1)[ 3(n1) 1]kb n4n 22n 16n 23n 1a 100 2× 100 1 199∴3× 100 1 299b 100说明 该解法波及数列 {a } 为等差数列的充要条件S =an 2+ bn ,由 n n已知Sn2n ,将 S n 和 T n 写成什么?若写成 S n = 2nk , T n = (3n +1)k , T n3n 1k 是常数,就不对了.【例 10】 解答以下各题:(1) 已知:等差数列 {a n } 中 a 2=3, a 6=- 17,求 a 9;(2) 在 19 与 89 中间插入几个数,使它们与这两个数构成等差数列,而且此数列各项之和为 1350,求这几个数;(3) 已知:等差数列 {a n } 中, a 4+ a 6+ a 15+a 17= 50,求 S 20;(4) 已知:等差数列 {a n } 中, a n =33 - 3n ,求 S n 的最大值.剖析与解答(1)a 6 = a 2 + (6- 2)d 17 3d = = - 54a 9=a 6+ (9- 6)d=- 17+ 3×(- 5)= - 32(2)a 1=19, a n+2 =89, S n+2= 1350∵ Sn+2 (a 1 + a n+2 )(n + 2)= 2∴ +2 = 2×1350 = 25 n = 23n 19+8935a n+2 = a 25= a 1+ 24d d =12故这几个数为首项是 21 11,末项是 861,公差为 35的 23个数.12 12 12(3) ∵a 4+ a 6+ a 15+ a 17=50又因它们的下标有 4+ 17=6+ 15=21∴ a 4+ a 17=a 6+ a 15=25S 20(a 1 + a 20 ) × 2010× (a 4 a 17 ) 250=2(4) ∵a =33 - 3n ∴ a = 307S n (a 1 + a n ) · n (63 3n)n3263 =2nn2223 21 23× 212( n)822∵ n ∈ N ,∴当 n=10 或 n=11 时, S n 取最大值 165.【例 11】 求证:前 n 项和为 4n 2+ 3n 的数列是等差数列.证设这个数列的第 n 项为 a n ,前 n 项和为 S n .当 n ≥ 2 时, a n = S n - S n-1∴ a n = (4n 2+3n)- [4(n - 1)2+ 3(n - 1)]=8n - 1当 n=1 时, a 1=S 1=4+ 3=7由以上两种状况可知,对全部的自然数n ,都有 a =8n - 1n又 a n+1 -a n = [8(n + 1)- 1]- (8n -1) =8∴这个数列是首项为 7,公差为 8 的等差数列.说明这里使用了“ a n =S n - S n-1”这一关系.使用这一关系时,要注意,它只在 n ≥ 2 时成立.因为当n =1 时, S n-1=S 0,而 S 0 是没有定义的.因此,解题时,要像上面解答同样,补上 n = 1 时的状况.【例 12】 证明:数列 {a n } 的前 n 项之和 S = an 2+ bn(a 、 b 为常数 )是这n 个数列成为等差数列的充足必需条件.证由 S n =an 2+ bn ,得当 n ≥ 2 时, a n = S n - S n-1= an 2+ bn - a(n - 1)2- b(n - 1) =2na + b - aa 1= S 1=a + b∴对于任何 n ∈ N , a n =2na + b -a且 a n - a n-1=2na + (b - a)- 2(n - 1)a -b + a= 2a(常数 )∴ {a n } 是等差数列.若 {a n } 是等差数列,则S n = na 1 + n( n 1) d2 (1n) ·n= d ·+ n(a 1 - d)= dn 2n(a 1d ) 22若令 d = a ,则 a 1 - d= b ,即22S n =an 2+bn综上所述, S n =an 2+ bn 是{a n } 成等差数列的充要条件.说明由此题的结果,从而能够获得下边的结论:前n 项和为 S n =an 2+bn + c 的数列是等差数列的充足必需条件是c =0.事实上, 设数列为 {u n } ,则:2充足性 c = 0S n =an +b n {u n } 是等差数列.【例 13】等差数列 {a n } 的前 n 项和 S n =m ,前 m 项和 S m = n(m > n),求前 m + n 项和 S m+n .解法一设{a n } 的公差 d按题意,则有S n = na 1+ n(n 1)d = m① 2S m = ma 1 +m(m 1)d = n②2①-②,得 (m - n) · a 1+( m n)( m n 1)· d = n - m2即 a 1 + m n2∴ S m n (m (m=- (m + n)1d =n)a 1n)( a 1 -1(m n)( m n 1) · d2mn 1 · d)2解法二 设 S = Ax 2+Bx(x ∈ N)xAm 2+ Bm = n ① An 2 + Bn = m②①-②,得 A(m 2- n 2)+ B(m - n)= n - m ∵ m ≠ n ∴ A(m + n)+ B= - 1故 A(m + n)2+ B(m + n)=- (m + n)即 S m+n =- (m +n)说明a 1, d 是等差数列的基本元素,往常是先求出基本元素,再解决其余问题,但此题重点在于求出了a 1+m n 1d =- 1,这类设而不2解的“整体化”思想,在解相关数列题目中值得借鉴.解法二中,因为是 等差数列,由例 22,故可设 S x =Ax 2+Bx . (x ∈N)【例 14】 在项数为 2n 的等差数列中, 各奇数项之和为 75,各偶数项之和为 90,末项与首项之差为27,则 n 之值是多少?解 ∵ S 偶项 -S 奇项 =nd∴ nd=90- 75=15又由 a 2n - a 1= 27,即 (2n - 1)d=2710nd = 15 ∴ n = 5(2n - 1)d = 27【例 15】 在等差数列 {a} 中,已知 a = 25,S = S ,问数列前多少项n 1 9 17和最大,并求出最大值.解法一成立 S n 对于 n 的函数,运用函数思想,求最大值.依据题意: S 17 ×d ,S 9 = 9a 1+ 9 ×8 d = 17a 1+ 17 1622∵ a =25, S 17 = S解得 d =- 219∴ S n = 25n +n(n 1)( - 2) = - n 2 + 26n = - (n -13) 2 +169 2∴当 n=13 时, S n 最大,最大值 S 13= 169解法二因为 a 1=25> 0, d =- 2< 0,因此数列 {a n } 是递减等差数列,若使前 a n ≥ 0,可解出 n .n 项和最大,只要解a n+1 ≤ 0∵ a 1= 25, S 9= S 17∴ 9× 25+9× 8d = 17× 25+17×16d ,解得 d = - 222∴ a n =25+ (n - 1)(- 2)= - 2n + 27- 2n + 27≥ 0n ≤∴∴ n = 13- 2(n + 1) + 27 ≥ 0n ≥即前 13 项和最大,由等差数列的前 n 项和公式可求得 S 13=169 .解法三 利用 S=S 找寻相邻项的关系. 9 17由题意 S 9=S 17 得 a 10+ a 11+ a 12+ + a 17=0而 a 10+a 17=a 11+ a 16=a 12+ a 15=a 13+a 14∴ a 13+ a 14= 0, a 13=- a 14∴a 13≥ 0, a 14≤ 011∴ S 13=169 最大.解法四 依据等差数列前 n 项和的函数图像,确立取最大值时的 n .∵ {a n } 是等差数列∴可设 S n = An 2+ Bn二次函数 y=Ax 2+ Bx 的图像过原点,如图3.2- 1 所示∵ S 9=S 17,∴ 对称轴 x =9 +17= 13 2∴取 n=13 时, S 13= 169 最大12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列·例题解析
【例1】 求出下列各数列的一个通项公式
(1)14(2)23,,,,,…,,,,…38516732964418635863 (3)(4)12--13181151242928252
,,,,…,,,,… 解 (1)所给出数列前5项的分子组成奇数列,其通项公式为2n -1,而前5项的分母所组成的数列的通项公式为2×2n ,所以,已知数列的
通项公式为:.a =2n 12
n n+1- (2)从所给数列的前四项可知,每一项的分子组成偶数列,其通项公式为2n ,而分母组成的数列3,15,35,63,…可以变形为1×3,3×5,5×7,7×9,…即每一项可以看成序号n 的(2n -1)与2n +1的积,也即(2n -1)(2n +1),因此,所给数列的通项公式为:
a n n n n =-+22121()()
. (3)从所给数列的前5项可知,每一项的分子都是1,而分母所组成的数列3,8,15,24,35,…可变形为1×3,2×4,3×5,4×6,5×7,…,即每一项可以看成序号n 与n +2的积,也即n(n +2).各项的符号,奇数项为负,偶数项为正.因此,所给数列的通项公式为:
a n n n n =-+()()
112·. (4)所给数列可改写为,,,,,…分子组成的数列为124292162252
1,4,9,16,25,…是序号n 的平方即n 2,分母均为2.因此所
给数列的通项公式为.a =n n 2
2
【例2】 求出下列各数列的一个通项公式.
(1)2,0,2,0,2,…
(2)10000,,,,,,,, (131517)
(3)7,77,777,7777,77777,…
(4)0.2,0.22,0.222,0.2222,0.22222,…
解 (1)所给数列可改写为1+1,-1+1,1+1,-1+1,…可以看作数列1,-1,1,-1,…的各项都加1,因此所给数的通项公式a n =(-1)n+1+1.
所给数列亦可看作2,0,2,0…周期性变化,因此所给数列的
通项公式为奇数为偶数这一题说明了数列的通项公式不唯一.a =2(n )0(n )n ⎧⎨⎩
(2)100012345所给数列,,,,,,,…可以改写成,,,,,,…分母组成的数列为,,,,,,,…是自然13151711021304150617
67 数列n ,分子组成的数列为1,0,1,0,1,0,…可以看作是2,
02020,,,,,…的每一项的构成为,因此所给数列的通项公式为.1211211211()()-+=-+++n n n a n (3)7777777777777779所给数列,,,,,…可以改写成×,79 7979797979
79797979
79
×,×,×,×…,可以看作×-,×-,×-,×-,×-,…因此所给数列的通项公式为-.99999999999999(101)(1001)(10001)(100001)(1000001)a = (101)n n (4)所给数列0.2,0.22,0.222,0.2222,0.22222,…可以改写
成×,×,×,×,×,…可以看作×-,×-,×-,×-,×-,…因此所给数列的通式公式为.2929292929
2929292929
291110
0.90.990.9990.99990.99999(10.1)(10.01)(10.001)(10.0001)(10.00001)a =n ()-n
说明
1.用归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律.对于项的结构比较复杂的数列,可将其分成几个部分分别考虑,然后将它们按运算规律结合起来.
2.对于常见的一些数列的通项公式(如:自然数列,a n =n ;自然数的平方数列,a n =n 2;奇数数列,a n =2n -1;偶数数列,a n =2n ;
倒数数列,=要很熟悉,由联想将较复杂的数列通过合理的转化归a n 1n
) 纳出数列的通项公式.
3.要掌握对数列各项的同加、同减、同乘以某一个不等于零的数的变形方法,将其转化为常见的一些数列.
【例3】 已知数列,,,,…则是这个数列的第25221125 几项.
解 4a =3n 1n n 77n 由所给数列的前项,,,可归纳得通项公式为.此时运用方程的思想问题转化为解关于正整数的方程,解得=,即是该数列的第项.
252211253125-=-n 【例4】 已知下面各数列{a n }的前n 项和S n 的公式,求数列的通项公式.
(1)S n =2n 2-3n (2)S n =n 2+1
(3)S n =2n +3 (4)S n =(-1)n+1·n
解 (1)当n=1时,a 1=S 1=-1;
当n ≥2时,a n =S n -S n-1=(2n 2-3n)-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,因此a n =4n -5.
(2)当n =1时,a 1=S 1=1+1=2;
当n ≥2时,a n =S n -S n-1=n 2+1-[(n -1)2+1]=2n -1,由于a 1不适合于此等式,
因此,≥且∈.a = 2 n =12n 1
n 2n N *n -⎧⎨⎩ (3)当n =1时,a 1=S 1=2+3=5;
当n ≥2时,a n =S n -S n-1=2n +3-(2n-1+3)=2n-1,由于a 1不适合于此等式,
因此,=≥且∈.a 5 n =12 n 2n *n 1n N -⎧⎨⎩
(4)当n =1时,a 1=S 1=(-1)2·1=1;
当n ≥2时,a n =S n -S n-1=(-1)n+1·n -(-1)n ·(n -1)=(-1)n+1(2n -1),由于a 1也适可于此等式,因此a n =(-1)n+1(2n -1),n ∈N*.
说明 已知S n 求a n 时,要先分n =1和n ≥2两种情况分别进行计算,然后验证能否统一.
【例5】 a =a
1n(n 1)
(n 2)a 1n n 11已知+≥,=,-- (1)写出数列的前5项;
(2)求a n . 解 (1)a =a (n 2)a =1a a n n 1123由已知+≥,得=·=·--+-=+=+=111122132
3213291653
n n ()
() a a 45=·=·53143
531122112747415474120362095
+=+==+=+== (2)由第(1)小题中前5项不难求出.
a n n a n
n n =-=-2121()或
【例6】 数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.
(1)求a 3+a 5;
(2)256225
是此数列中的项吗? 解 由已知:a 1·a 2·a 3·…·a n =n 2得
a a a a a a a a a n n N a n n n n n n n ==--1231231
2
2212···……····……·≥,∈,≥.由于=不适合于此等式.因此(*)()
a 11
a = 1 n =1 n n 2n *n 2
()n N -⎧⎨⎪⎩⎪12,≥且∈
(1)a a =3(2)n =16n 16*16352+令,解方程可得∵=∈,∴是此数列的第项.254
61162562251256225
2222
2
+==-n n N () 说明 (1)“知和求差”、“知积求商”是数列中常用的基本方法.
(2)运用方程思想求n ,若n ∈N*,则n 是此数列中的项,反之,则不是此数列中的项.
【例7】 已知数a n =(a 2-1)(n 3-2n)(a=≠±1)是递增数列,试确定a 的取值范围.
解法一 ∵数列{a n }是递增数列,∴a n+1>a n
a n+1-a n =(a 2-1)[(n +1)3-2(n +1)]-(a 2-1)(n 3-2n)
=(a 2-1)[(n +1)3-2(n +1)-n 3+2n]
=(a 2-1)(3n 2+3n -1)
∵(a2-1)(3n2+3n-1)>0
又∵n∈N*,∴3n2+3n-1=3n(n+1)-1>0
∴a2-1>0,解得a<-1或a>1.
解法二∵{a n}是递增数列,∴a1<a2即:
(a2-1)(1-2)<(a2-1)(8-4)
化简得a2-1>0
∴a<-1或a>1
说明本题从函数的观点出发,利用递增数列这一已知条件,将求取值范围的问题转化为解不等式的问题。